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Abstract

reconstruction with less MCMC iterations.

simulated from ODE.

Background: One of the goals of the Systems Biology community is to have a detailed map of all biological
interactions in an organism. One small yet important step in this direction is the creation of biological networks from
post-genomic data. Bayesian networks are a very promising model for the inference of regulatory networks in Systems
Biology. Usually, Bayesian networks are sampled with a Markov Chain Monte Carlo (MCMC) sampler in the structure
space. Unfortunately, conventional MCMC sampling schemes are often slow in mixing and convergence. To improve
MCMC convergence, an alternative method is proposed and tested with different sets of data. Moreover, the
proposed method is compared with the traditional MCMC sampling scheme.

Results: In the proposed method, a simpler and faster method for the inference of regulatory networks, Graphical
Gaussian Models (GGMs), is integrated into the Bayesian network inference, trough a Hierarchical Bayesian model. In
this manner, information about the structure obtained from the data with GGMs is taken into account in the MCMC
scheme, thus improving mixing and convergence. The proposed method is tested with three types of data, two from
simulated models and one from real data. The results are compared with the results of the traditional MCMC sampling
scheme in terms of network recovery accuracy and convergence. The results show that when compared with a
traditional MCMC scheme, the proposed method presents improved convergence leading to better network

Conclusions: The proposed method is a viable alternative to improve mixing and convergence of traditional MCMC
schemes. It allows the use of Bayesian networks with an MCMC sampler with less iterations. The proposed method has
always converged earlier than the traditional MCMC scheme. We observe an improvement in accuracy of the
recovered networks for the Gaussian simulated data, but this improvement is absent for both real data and data

Keywords: Bayesian networks, Genetic regulatory networks, Hierarchical bayesian modelling

Background

One of the goals of the Systems Biology community is to
have a detailed map of all molecular interactions in an
organism. Although much work remains to achieve this
goal, the inference of biological networks has become an
important tool in Systems Biology. It is now widely recog-
nized that the complexity of organisms is strongly related
with the organization of its components in networks.
This shifts the interest from the individual behaviour
of the components to their orchestrated action. There-
fore, the investigation and use of biological networks is
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highly relevant in the fields of medicine, agriculture, etc.
However, these intricate biological networks are for the
most part unknown. Owing to the fact that we have at
our disposal many different types of measurements taken
from the components of these networks one interesting
approach would be to try to reconstruct such networks
from measurements (data).

In the last few years, several methods for the reconstruc-
tion of regulatory networks and biochemical pathways
from data have been proposed; see, for instance, [1-4]. For
a review of classical methods, see [5-7]. Among various
approaches for inferring networks, Bayesian Networks
(BNs) are very attractive due to their probabilistic nature
and flexibility in incorporating interventions and extra
sources of information.
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When BNs are adopted as a model for Genetic Regu-
latory Networks, they are usually sampled in a Markov
Chain Monte Carlo (MCMC) scheme. This is because
the available data is generally sparse, and it is impossi-
ble to enumerate all possible networks even for a rea-
sonable number of nodes. The MCMC scheme has the
advantage of being theoretically guaranteed to converge to
the posterior distribution [8]. Unfortunately, in practice,
MCMC is frequently slow in mixing and convergence and
is therefore very computationally expensive. This problem
is related with the fact that in the MCMC setup, the move-
ments in the space of networks are based in single edge
modifications; thus, the sampler is more easily trapped in
local maxima. The concern with MCMC convergence is
recurrent and present, e.g., in [9-13].

In [9] the authors address with the problem of conver-
gence and mixing by introducing the proposal moves in
the space of node orders. Unfortunately, in this method,
the prior probability in network structures cannot be
explicitly specified. In [13] the authors propose a new edge
reversal move that improves the MCMC convergence
when compared with the standard MCMC.

Considering these attempts to solve this problem, in this
work we propose an alternative solution that employs a
hierarchical Bayesian model to “guide” the MCMC sam-
pling. As the target for this guidance, we use the result
from Graphical Gaussian Models (GGMs).

Graphical Gaussian Models (GGMs) are much faster
in the task of inferring Genetic Regulatory Networks.
The speed of this method comes with a price, how-
ever. When compared with BNs, GGMs lack a certain
amount of information, as by its nature it cannot either
model edge directions or moralize the graph. These fea-
tures make GGMs inherently less accurate than BNs.
Interestingly, GGMs and BNs (scored with the Bayesian
Gaussian likelihood equivalent (BGe) metric) share the
same underlying statistical model, i.e., the multivariate
Gaussian distribution.

Hence, the main aim of this work is to propose a hier-
archical Bayesian model that uses the GGM as a “guide”
to the MCMC sampling scheme, thus producing better
mixing and convergence.

Methods

Bayesian networks

A combination of probability theory and graph theory lays
the foundations for BNs.

A set of nodes and a set of directed edges define the
graphical structure G of a BN. Nodes represent random
variables, and the conditional dependence relationship
is represented by edges. The nature of the interactions
between nodes and the intensity of these interactions
are indicated by the family of conditional probability dis-
tributions F and their parameters q, which specify the

Page 2 of 10

functional form of the conditional probabilities associ-
ated with the edges. The local Markov property, i.e., A
node is conditionally independent of its non descendants
given its parents characterizes a simple and unique rule for
expanding the joint probability in terms of simpler condi-
tional probabilities. In accordance with this property, it is
mandatory that a BN be a directed acyclic graph (DAG).
Consider Xi, X, -, Xy to be a set of random variables rep-
resented by the nodes i € {1,-,N} in the graph. Define
;[ G] to be the parents of node X; in graph G, and let
Xr;[g) represent the set of random variables associated
with ;[ G]. Then, we can write the expansion for the joint
probability as P(X1, -, Xn) = [T, P(Xi|Xmii0))-

Having at our disposal a set of training data D the
task of learning a BN structure in a score-based approach
consists in finding a DAG structure that better explains
this data. Note that to learn a BN, it is not necessary to
use Bayesian learning; however, in this work, this is the
approach applied.

If we define that G is the space of all models, the first
goal is to find a model G* € G that is most supported by
the data D, G* = argmaxg {P(G|D)}.

If we apply Bayes’ rule, we get P(G|D) « P(D|G)P(G),
where the marginal likelihood implies an integration over
the whole parameter space:

P(DIG) = / P(Dlq, )P(q1G)da. 0

The integral in Eq. (1), our score, is analytically tractable
when the data is complete and the prior P(q|G) and the
likelihood P(D|q, G) satisfy certain regularity conditions
[14, 15]. In this work, we employ the scoring metric
known as the Bayesian Gaussian likelihood equivalent
(BGe) score [16], which assumes that the data come from
a multivariate Gaussian distribution.

MCMC Sampling scheme for BNs

Although there is a method to assign a score to a graphi-
cal structure given a data set, the search for high scoring
structures is not trivial [17]. The number of structures
increases super-exponentially with the number of nodes;
thus, it is impossible to list all the structures. Moreover,
P(G|D) will not be properly represented by a single struc-
ture G* when sparse data sets are considered. Hence, an
MCMC scheme is adopted [18], which under fairly gen-
eral regularity conditions is theoretically guaranteed to
converge to the posterior distribution [8].

Given a network structure Ggjq, a new network struc-
ture Gpew is proposed from the proposal distribution
Q(Gnew|Gold), which is then accepted according to the
standard Metropolis-Hastings [8] scheme with the follow-
ing acceptance probability:

P(D | gnew)P(gnew) Q(gold | gnew)

, 2
P(D|gold)P(gold)Q(gnew|gold) ( )

A:min{



Agostinho et al. BMC Bioinformatics (2015) 16:306

The standard MCMC proposes at each interaction one
of the basic operations of adding, removing or reversing
an edge. In the following, the standard MCMC scheme of
sampling BNs will be called BN-MCMC. For more details
about this scheme, see [19].

Graphical gaussian models
Graphical Gaussian models (GGMs) are undirected
graphs in which edges represent the partial correlation
coefficients. Partial correlation coefficients describe the
pairwise correlation between two variables given all the
rest of the variables in the domain. In this way, GGMs
allow the identification of conditional independence rela-
tions among the variables under the assumption of a
multivariate Gaussian distribution of the data.
Considering a given data set D, the empirical covariance
matrix C with elements Cj, is computed and inverted, and
the partial correlations p;; are computed from

ct
Pik = — ﬁ
A% Cii Ckk

The stable estimation of the covariance matrix and its
inverse is the critical step in this method. In [20], the
authors proposed a novel covariance matrix estimator
regularized by a shrinkage approach that outperforms the
previous methods based on bagging [21]. This novel reg-
ularized shrinkage covariance estimator is based on the
concept of shrinkage and exploits the Ledoit Wolf lemma
[22] for analytic calculation of the optimal shrinkage.

An important point to observe when applying GGMs is
the following. Consider two variables, X; and Xj. In this
case the element Cj; of the covariance matrix C is related
to the correlation coefficient between these two variables.
A high correlation coefficient between these two variables
may indicate three distinct types of interaction: direct,
indirect, or joint regulation. However, the only interac-
tion of interest for the construction of a network is direct
interaction. The strengths of these direct interactions are
measured by the partial correlation coefficient p;, which
describes the correlation between nodes X; and X condi-
tional on all the other nodes in the network. Thus, partial
correlations pj; indicate the strength of the direct interac-
tions, which are the only interactions that have a meaning
for the reconstruction of the network.

3)

BNs guided by GGMs (BNGGM)
When applying MCMC for sampling network structures
in a score and search scheme, one of the main problems is
the slow mixing and convergence of the MCMC.

In this work, we follow the ideas presented in
[23-25] and propose a Hierarchical Bayesian model, here-
after called BNGGM, to sample network structures. This
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allows the MCMC sampling to be “guided” by a faster and
coarser method, GGMs, thus improving mixing and con-
vergence of the MCMC. GGMs are said to be coarser than
BNs because they are able to represent only the undirected
relationships amongst variables, and BNs can represent
directed interactions. However, not all interactions are
directed in BNs due to the existence of the equivalence
classes.

GGM is applied to the data, and information about the
graphical structure that gave origin to the data is retrieved.
This information is not perfect, but it indicates a potential
relationship among the variables. To employ this informa-
tion together with the MCMC, the probabilistic graphical
model presented in Fig. 1 is applied. The probabilis-
tic graphical model represents conditional independence
relations between the data D, the network structure G, and
the hyperparameter of the prior on GGM, Bggm-

Moreover, we follow [23] and define the prior distribu-
tion over network structures G to take the form of a Gibbs
distribution:

s e~ BaaME(9) .
(GlBcem) Z B (4)
where Bggum is the hyperparameter of the prior on GGM,
Z(BgeMm) is a normalizing constant usually referred to as
a partition function: Z(Bggm) = de((} e~PaamE(Q) gnd
E(Q) is the energy of a network G.

The hyperparameter Bggm corresponds to an inverse
temperature in statistical physics. It can be interpreted
as a factor that indicates the strength of the influence
of the GGM relative to the data. For Bggm — O, the
prior distribution defined in Eq. (4) becomes flat and
uninformative about the network structure. Conversely,
for Bggm — 09, the prior distribution becomes sharply
peaked at the network structure with the lowest energy.

The energy of a network is defined to be a measure of
how similar two networks are. In the present work we are
interested in sampling networks that are similar to the net-
works “suggested” by the GGM model; thus, the definition
of energy is as follows.

A network G can be represented by an adjacency matrix.
In this matrix an entry gj can assume either the values

Fig. 1 Hierarchical Bayesian model. The probabilistic graphical model
represents conditional independence relations between the data D,
the network structure G, and the hyperparameter of the prior on
GGM, Baaw. Following the standard rules of factorization in Bayesian
networks as defined in [31] we get the expansion: P(D, G, Bcom) =
P(DIG)P(G1Bcom)P(Boam)
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0 or 1 representing, respectively, the absence or presence
of an edge between nodes i and k. Additionally, the result
of the GGM inference is a matrix, p, of partial correlation
coefficients p;x where {p;x € R| — 1 < p; < 1}. Because
our interest lies in the partial correlation strength and not
in its value we rescale the matrix p in a manner that its
highest and lowest values match, respectively, the pres-
ence and the absence of an edge in the adjacency matrix.
Each element of the rescaled partial correlation matrix, t,
is obtained by:

| pix| — min(|pl)
max(|p[) — min(|p)

ik = (5)
where |.| represents the absolute value of a number or the
element-wise absolute values in a matrix. Note that {7 €
R[0 < 7y < 1}

Having a transformed matrix of correlation coefficients,
T, we consider its entries 7;x to represent the knowledge
about the interactions between nodes as follows:

e Ifentry 7;x = 0.5, it does not provide any knowledge
about the presence or absence of the directed edge
between nodes i and k.

e If0 < 1;% < 0.5, it provides evidence that there is no
directed edge between nodes i and k. The evidence is
stronger as T;x is closer to 0.

e [f0.5 < 1;4 < 1, we have prior evidence that there is
a directed edge pointing from node i to node k. The
evidence is stronger as 7 is closer to 1.

Additionally, we define the energy of a network G as:

N
E@G) =Y |tk — gix] 6)

k=1

where N is the number of nodes in the network. The more
similar the networks G and 7 are, the lower is the energy
E. Increasing differences amongst G and 7 produce higher
values of E.

MCMC sampling scheme for BNGGM

Having defined the prior probability distribution over net-
work structures in the previous section, we now define
an MCMC sampling scheme to sample from the pos-
terior distribution both the network structure and the
hyperparameter.

The goal is to sample the network structure G and
the hyperparameter fggm from the posterior distribu-
tion P (G, Bggm|D) so that a new network structure
(Q/) and a new hyperparameter (,B/GGM) are proposed,
respectively, from the proposal distributions Q (G'|G) and
R (ﬂéGM|ﬂGGM)~ We then accept this move according to
the standard Metropolis-Hastings update rule [8] with the
following acceptance probability:
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A = min {P(D, G, Boem) RQUGIGHR(Baaml Bg ) 1}

P(D, G, Baam) QG |G R(BL gyl Bacm)
(7)

which due to the conditional independence relationship
depicted in Fig. 1 can be expanded as follows:

- { P(DIG)P(G'|Ban)PBlaan) QISR (Baam| Biam) 1}
P(DIG)P(G|Bsam)P(Baam) QG 19 R(BLgyl Bacm)
(8)

The sampling of both structure and hyperparameter in the
same move proposal is likely to produce low acceptance
probability. Therefore, we split the move proposal into two
sub-moves.

First, we sample a new network structure G’ from the
proposal distribution Q(G’|G) while keeping the hyper-
parameter Bggm fixed, and accept this move with the
following acceptance probability:

1} )

P(DIG"P(G'|Baam)QGIG")
P(DIG)P(G1Bacm)QG'|G)
Next, we sample a new hyperparameter Sggm from the
proposal distribution R(B(),|BcGm) for a fixed network
structure G, and accept this move with the following
acceptance probability:

P(G1BGem)PBaam)R(BaamIBgan) }
P(G1Bcam)P(Baam)R(BggmlBaam)’
(10)

A=

A(G'G) = min {

A(ﬁé;GMmGGM) = min {

For a uniform prior distribution P(Bggm) and a symmet-

. P , . .
ric proposal distribution R(8;z\|Bcam), this expression
simplifies to:

P(G1Bgam) 1} ‘ (11)

P(GlBaem)’

The two submoves are iterated until some convergence
criterion is satisfied. The acceptance probability Eq. (11)
can be rewritten as:

A(lgéGMmGGM) = min {

—E(G)(Bgam—BaaMm)
. )e GGM Z(Bcam)
A(,Bé;GMLBGGM) = min { 1

Z(Bgam)
(12)

This equation shows the dependency of the accep-
tance probability on the partition functions Z(Bggm)
and Z(B(),)- The calculation of the partition functions
implies a summation over the whole space of network
structures, which owing to its super-exponential complex-
ity is impractical to obtain. However, considering that all
possible networks are valid, we can reduce this complex-
ity to polynomial, thus making it possible to obtain an
upper bound on the true partition function. For a detailed
discussion about this subject, see [25, 26].

In this section, we presented the usual BN as a model for
representing regulatory networks and how to sample BNs
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in a score and search scheme using an MCMC approach.
Moreover, we presented the GGM method which is used
in our proposed method. We have then introduced the
proposed hierarchical Bayesian model, BNGGM, and its
sampling scheme. The proposed method combines a sim-
pler method, GGM, with the BN model to improve the
mixing and convergence of the MCMC sampling scheme.
In the Results section we compare the MCMC sampling of
BNs with the sampling of BNGGMs to verify the improve-
ment in mixing and convergence.

Simulations

Data

Three sets of data of a different nature are used to evaluate
the proposed method in comparison with the traditional
MCMC; they are the following: (i) data generated from
a Multivariate Gaussian distribution, (ii) data generated
with the GeneNetWeaver tool and (iii) real data from
flow Cytometry experiments. Regarding the ability of the
methods to learn the network structure from the data, the
first type of data should be the easiest because it shares
the same underlying model with the learning method, i.e.,
the Multivariate Gaussian distribution. The second type of
data is obtained from a stochastic system of coupled dif-
ferential equations and is more realistic, making it more
difficult for a network to be accurately devised. The real
data does not come from a model; hence, it should be the
most difficult type of data to infer a network from.

Gaussian multivariate data

A clear and simple way of generating synthetic data
from a given structure is to sample it from a linear-
Gaussian distribution. The random variable X; denoting
the expression of node i is distributed according to X; ~
N (Zk Wikl 02), where N(.) denotes the Normal distri-
bution, the sum extends over all parents of node i, and x;
represents the value of node k. The interaction strength
between nodes X; and Xy is wy # 0. If wyz = 0, node Xy
is not a parent of node X;. The value of 0% can be inter-
preted as being dynamic noise. Low values of o indicate
a very deterministic data set; conversely, high values of o2
indicate a noisy data set. This process is the equivalent of
sampling from a multivariate Gaussian distribution and,
hence, a perfect match for the scoring method BGe. The
data generated with this method will be referred to in this
work as Gaussian data. To generate Gaussian data, we set
wix = 1 if the edge is present in the network and wj; = 0
otherwise. We also set 02 = 0.01. These values are based
on the work of [25, 27].

GeneNetWeaver data

To have more realistic simulated data we use the tool
GeneNetWeaver (GNW) [28]. Data generated using
GNW is obtained from a stochastic system of coupled
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differential equations (ODEs) with added noise. This type
of data is supposed to be more similar to real data as it
presents non-linearities which are typical of real biolog-
ical systems. However, we are sure about what network
structure the inference algorithm should find because the
data is simulated from a known structure. Regarding the
parameters in the GNW tool, we selected experiments
to be “multifactorial” with “add Gaussian noise” and “std
dev = 0.005”. Data generated with this method will hence-
forth be referred to as GNW.

For both types of simulated data, Gaussian and GNW,
we obtained data sets from the structure presented in
Fig. 2.

Real flow-cytometry data

In [29] the authors used intracellular multicolour flow
cytometry experiments to measure the concentration lev-
els of the 11 proteins that compose the network depicted
in Fig. 3.

This pathway has been extensively studied in the litera-
ture (e.g., [29, 30]), hence,

an accepted gold standard network obtained from var-
ious distinct studies is available; see Fig. 3. The data
produced with this method is regarded as Real data in this
work.

The Real data sets are achieved from the structure
presented in Fig. 3.

For each one of the three types of data, Gaussian, GN'W
and Real, we generated five data sets with 100 mea-
surements (data points) each. The GN'W and Real data
sets were preprocessed before being analysed. We used
quantile-normalisation to normalise each of the five data
sets. That is, for each of the variables we replaced the
100 measured values by quantiles of the standard nor-
mal distribution N(0, 1). More precisely, for each of the
variables the j-th highest measured value was replaced

by the (ﬁ)-quantile of the standard normal distribu-

tion, whereby the ranks of identical measured values were
averaged.

Simulation setup

In total, we have at our disposal 15 data sets. They are
obtained from the three different types of data, Gaussian,
GNW and Real, with five data sets in each type.

For each of the data sets and for each of the inference
methods, BN and BNGGM, we executed two MCMC sim-
ulations. The number of two MCMC simulations permits
our analysis of convergence. In total, we performed 60
MCMC simulations. The number of MCMC steps was
set to 10%, from which samples were taken in intervals of
10 MCMC steps. The first half of the MCMC steps were
discarded as the burn-in phase.

Following [25], we set P(Bggm) to be the uniform distri-
bution in the interval [ 0, 30].
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challenge 3 as presented in [28]

N
)

Fig. 2 Sub-network Escherichia Coli. The graph shows a sub-network extracted from Escherichia Coli network. This sub-network is part of the DREAM

Evaluation

Our results are evaluated in two main aspects. One
aspect that we are interested in is the reconstruction
accuracy and the other is the quality of mixing and
convergence.

The result of the MCMC simulation is a collection
of sampled network structures represented in adjacency
matrices. From this collection of matrices, we obtain one
average matrix, R, where each entry r; indicates the
marginal posterior probabilities of the edges. To assess the
performance of the methods, it is necessary to compare
its results with some known network. We call this known

network the true network 7, where the entries tj € {0,1}
indicate the presence and the absence of the connection
between nodes X; and X;.

To compare our resulting network R with the true net-
work 7 we transform it in an adjacency matrix, Axg (¢), by
imposing a threshold €. Each entry of the adjacency matrix
a;jis 1 if r;j > € and 0 otherwise.

Having these two matrices, 7 and Ag (¢), we can clas-
sify each of the edges into categories. An edge can be
classified as true positive (TP), false positive (FP), true
negative (TN) or false negative (FN); see Table 1 for a

summary.

Fig. 3 Raf signalling pathway. The graph shows the currently accepted signalling network, adapted from [29]. Nodes represent proteins, edges
represent interactions, and arrows indicate the direction of signal transduction
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Table 1 Classification of edges

tj i Category
0 0 N
0 1 FP
1 0 FN
1 1 TP

This table shows how an edge is classified according to the values in the true matrix
(tj) and in the adjacency matrix (a;). An entry that is equal to zero means that the
edge from node X; to node X; is absent, conversely, an entry that is equal to one
means that the edge is present

The receiver operator characteristics (ROC) curve is
obtained by varying the threshold € and plotting the rel-
ative number of TP edges against the relative number of
FP edges for each of the thresholds. As it is impracti-
cal to compare the whole ROC curves, we instead use
the area under the ROC curve (AUC). The AUC summa-
rizes the results for all the thresholds. A perfect predictor
would produce an AUC value of 1. Conversely, a ran-
dom predictor would produce an AUC value of approxi-
mately 0.5. In general, bigger area values represent better
predictors.

Due to the existence of the equivalence classes, not
all of the edges in an inferred Bayesian network are
directed. Therefore, to compute the AUC, we consider
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an undirected edge as the superposition of two directed
edges pointing in opposite directions.

Results and Discussion

The results are presented with two main aims: verify the
reconstruction accuracy and assess the quality of mixing
and convergence. The results regarding the hyperparame-
ter Bggm are presented in the Additional file 1.

Results are shown for two methods: (i) BN-MCMC
which is the standard sampling of BNs with the structure
MCMC and (ii) BNGGM which regards the proposed
Hierarchical Bayesian model in which network sampling
is guided by GGMs results.

In Fig. 4, a summary of the results regarding the recon-
struction accuracy is presented. To measure the accuracy
of reconstruction, we use the AUC (Area Under the ROC
Curve), where ROC is the Receiver Operator Character-
istics. The vertical axis shows the mean AUC, and the
horizontal axis presents the MCMC step. Each graph
presents the mean (in the middle line) and standard devi-
ation (in the upper and bottom lines that delimit the
shaded grey area) of the AUC calculated from five distinct
data sets. The AUC value is calculated for each simu-
lation step; i.e., in each step, we considered this to be
the size of the simulation and calculated the AUC value.
With this setting, it is possible to analyse what the results
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Fig. 4 Comparison of AUC values. Each graph presents, for each simulation step, the mean AUC in the inner solid line and one standard deviation in
the upper and bottom lines that delimit the shaded gray area. The mean and standard deviation are calculated from five different data sets for each
type of data and for the two methods. BN-MCMC results are presented in the top panels, (a), (b) and (c), and the results from BNGGM are presented
in the bottom panels, (d), (e) and (f). In left panels, (@) and (d), are the results from Gaussian data set, the middle panels, (b) and (e), present the
results for GNW data set and the right panel, (€) and (f), shows results for real flow cytometry data




Agostinho et al. BMC Bioinformatics (2015) 16:306

would be if the simulation was run for the given number
of steps.

The mean and standard deviation are calculated from
five different data sets for each type of data and for the
two methods. BN-MCMC results are presented in the top
panels, (a), (b) and (c), and the results from BNGGM are
presented in the bottom panels, (d), (e) and (f). In the left
panels, (a) and (d), are the results from the Gaussian data
set; middle panels, (b) and (e), present the results from
the GN'W data set and the right panel, (c) and (f), shows
results for real flow cytometry data.

Figure 5 depicts the results regarding the convergence
of the MCMC algorithms. To evaluate convergence in an
MCMC in which the sampled parameters are graphs (net-
works), it is usual to run two simulations with different
initializations and produce a scatter plot of the posterior
probability of the edges. In a long enough simulation, the
posterior probabilities of the edges will be very similar,
and all the scatter plot points will lie very close to the
line y = «. If simulations have not properly converged,
these points are expected to lie far from this line. As a
way to verify convergence, one usually inspects these scat-
ter plots and decides if the simulations converged; see, for
instance, [9, 13]. The visual verification of convergence
only satisfies a necessary condition for convergence and
does not guarantee that convergence has been achieved.
In this work, we propose a method for measuring the
spread of the points around the line y = x and use this
value to evaluate the convergence of the MCMC. We call
this measure the convergence rms, or simply ¢yms. For
an explanation of how we obtain this value, please refer to
the Additional file 1.

In Figure 5, typical convergence behaviour is presented
for each type of data and for the two inference methods.
The vertical axis presents the c;ms, and the horizontal axis
shows the MCMC step. In each graph, there are two lines,
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one presents the results from the BN-MCMC, and the
other results are from the BNGGM. Each of these lines
is the result of running the algorithm twice from differ-
ent initializations. Here, we show the graphs for only one
data set. The plots for all the data sets are presented in the
Additional file 1.

From Fig. 5, it is clear that the new method, BNGGM,
converges in less iterations than the BN-MCMC. In the
Gaussian data set, left panel, BN-MCMC appears to have
not converged even at the end of the entire simulation. In
the GN'W and Real data sets, both methods appear to have
converged. However, the BNGGM presents better conver-
gence at the end of the MCMC and moreover converges
earlier than the BN-MCMC. By inspecting these plots, it
is possible to observe that with the new method, the sim-
ulations for all three types of data could easily have been
stopped earlier. In general, it is safe to say that 4 x 103 steps
should have been enough to produce good results.

Despite the indication that the BNGGM has converged
in less iterations than BN-MCMC, it is still necessary
to check its performance regarding the reconstruction of
networks. This verification is necessary because our con-
vergence diagnostics are just a necessary condition for
convergence, and it is possible that the simulations have
converged to the wrong posterior distribution. If this is
the case, the quality of the reconstructed networks should
be poor. Figure 4 presents the results in terms of network
reconstruction accuracy.

In the Gaussian data set, the difference in both meth-
ods is clear. At the end of simulations (10* steps), the
BNGGM AUC mean value is very close to 1 and presents
very little variance, indicating that the simulations for
all data sets have retrieved almost all of the struc-
ture of the network correctly. On the other hand, at
the same point, BN-MCMC presents very high variance
indicating that the simulations have not yet converged.

(a) Gauss data set (b)

GeneNetWeaver data set (c)

Real data set
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convergence. Here we show the results for only one data set. For the results of all the remaining data sets please see the Additional file 1
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These results are in accordance with the indication in
Fig. 5(a).

The simulations of the GN'W data set do not present
a significant difference among the methods in the AUC
value at the end of the entire simulation. However, it
is clear that BNGGM has converged earlier than BN-
MCMC and presents lower variance in general, indicating
improved convergence.

The results for the Real data set are very similar to those
of GN'W. This is very interesting and reinforces the notion
that the GN'W simulated data is similar to the Real data.
Again, in this case, we can see that BNGGM appears to
have converged earlier than BN-MCMC despite not pre-
senting a significant difference at the end of the whole
simulation.

Conclusions

In this paper, we presented a hierarchical Bayesian model
that by combining GGMs with BNs, improves the conver-
gence of the MCMC algorithm applied to the inference of
regulatory networks.

If the two methods, BN-MCMC and BNGGM, are run
for infinitely long MCMC steps, they will both provide the
same result regarding the network reconstruction accu-
racy. This is expected, as both methods sample networks
from the posterior distribution and are guaranteed to
converge in an infinitely long simulation. Hence, the prin-
cipal advantage of the new method is not related with
the reconstruction accuracy but instead with the num-
ber of MCMC steps necessary to reach convergence. It is
clear by inspecting the results that the new method con-
verges earlier than the standard method. Therefore, due
to the earlier convergence, it may be possible to run fewer
MCMC steps.

When comparing the proposed method with the tra-
ditional method, we can observe an interesting feature.
When running standard BN-MCMC simulations, it is
common for some of these simulations to take a long time
to converge, and some simply do not converge in a deter-
mined number of simulation steps. Interestingly, when
applying the new method, this did not happen in any of the
simulations, indicating that the new method “guides” the
sampling towards the correct posterior distribution from
the beginning of the simulations.

Another attractive aspect of this work is that the extra
information used in the BNGGM is obtained from the
data itself; thus, there is no need for any other source of
data. The extra information is obtained from a distinct
method that has the ability to recover such information
much faster than the MCMC methodology. It is inter-
esting how the knowledge from the coarser method is
transferred to the more refined method. A future research
possibility will be to compare the method presented here
with the transfer learning methodology. Additionally, we
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need to investigate the application of the present method
in a setting where both methods use different assump-
tions. For instance, we need to test a coarser method
like Mutual Information associated with the multivariate
Gaussian model. Because Mutual Information can model
non linear interactions, we need to verify if this knowledge
can be an advantage in guiding the MCMC sampling.

The main conclusion of this study is that the proposed
method improves convergence of MCMC in comparison
with the traditional MCMC scheme and, therefore, makes
safer the use of MCMC for the sampling of regulatory
networks.

Availability

All the data sets and programs (written in Octave) are
available as a zip file in http://tinyurl.com/qh9v{8k. This
zip file contains a file named readme.txt that explains
how to use the data in conjunction with the programs to
reproduce all the results presented in the paper.
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file named bmec_bnggm_supplementary new.pdf. It can be
viewed in any pdf file reader. The file contains an explanation about the
score we use in substitution of the visual evaluation for the evaluation of
the MCMC convergence. We also put in this supplementary material all the
graphs of the results that were the basis for the summarized results
presented in the main article. (PDF 1986 kb)
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