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Abstract

Background: Effective management of patients with diabetic foot infection is a crucial concern. A delay in prescribing
appropriate antimicrobial agent can lead to amputation or life threatening complications. Thus, this electronic nose
(e-nose) technique will provide a diagnostic tool that will allow for rapid and accurate identification of a pathogen.

Results: This study investigates the performance of e-nose technique performing direct measurement of static
headspace with algorithm and data interpretations which was validated by Headspace SPME-GC-MS, to determine
the causative bacteria responsible for diabetic foot infection. The study was proposed to complement the wound
swabbing method for bacterial culture and to serve as a rapid screening tool for bacteria species identification. The
investigation focused on both single and poly microbial subjected to different agar media cultures. A multi-class
technique was applied including statistical approaches such as Support Vector Machine (SVM), K Nearest Neighbor
(KNN), Linear Discriminant Analysis (LDA) as well as neural networks called Probability Neural Network (PNN). Most of
classifiers successfully identified poly and single microbial species with up to 90% accuracy.

Conclusions: The results obtained from this study showed that the e-nose was able to identify and differentiate between
poly and single microbial species comparable to the conventional clinical technique. It also indicates that even though
poly and single bacterial species in different agar solution emit different headspace volatiles, they can still be discriminated
and identified using multivariate techniques.
Background
Clinically, the microbiology of diabetic foot infection is very
unique because it involves either Gram-positive, Gram-
negative aerobic, or anaerobic bacteria [1]; whether caused
by single or combination of bacteria (poly microbial) infec-
tion [2-4]. Single bacteria are the only one bacterial species
isolated from multiple bacterial species on debridement of
wound. Poly microbial species is the mixing of bacteria
species that exist on wound infection. Usually, moderate to
severe soft tissue diabetic foot infections are poly microbial
containing species such as P. aeruginosa, S. aureus and
group of Enterococci. It usually occurs when the patients
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received empiric antibiotic therapy [5]. Therefore, selecting
appropriate antibiotics for the treatment of diabetic foot in-
fection is crucial. It requires careful consideration in terms
of severity of infection, duration of wounds and previous
antibiotic exposure [5-7]. Although, there is no data to sug-
gest that speeding the diagnosis of diabetic foot infections
by 2 to 3 days will improve patient outcomes, nevertheless,
the proposed e-nose technology can also improve patient
care by improving or reducing drug resistance to infection
and more economical since it allows the use of narrow
spectrum antibiotics [5,8,9].
In today’s clinical practice, diabetic foot infection is diag-

nosed and monitored through many techniques such as
ulcer swabs, curettage of the ulcer base, and needle aspir-
ation after normal saline injection [10-12] to determine
the appropriate antibiotics treatment. Other techniques,
including tissue biopsy obtained at the bedside or by
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resection at the time of surgery [11,13], may pose a risk to
the patients since they involve surgical procedures and
need appropriate care. Although these tests have been
internationally standardized and are generally considered
to be reliable, results still take 2 or 3 days. This constraint
is due to the need to grow samples in media culture for
at least 48 to 72 hours in order to identify bacteria
species.
The use of an e-nose, such as the Cyranose320 to iden-

tify bacteria species may outperform conventional methods
and address current limitations by providing a faster diag-
nosis. As a comparison, a chromatography technique that
relies on a total ion chromatogram (TIC) may not be suffi-
cient as volatile peaks can overlap [14-16]. However, GC-
MS commonly applied for similar methods and mass
separation can resolve peaks that are not separated by
chromatography alone.
Alternatively, E-nose configured on an array of 32 differ-

ent mixtures with conducting carbon black polymer sen-
sors on a silicon substrate, was believed can be used to
detect even the slightest difference in headspace or com-
plex volatiles organic compounds (VOCs) emitted by the
different pathogenic microorganisms [17-19]. As such, this
non-invasive method may be promising for rapid and ac-
curate detection. It can also prevent complications from a
procedure, such as infection and contamination.
Several articles have reviewed clinical applications where-

by e-nose technology was applied to non-invasive moni-
toring of patients [20] in various applications such as in
clinical microbiology and for rapid diagnosis of infection
from biological samples [18]. Moreover, there were at least
12 reported findings on the ability of an e-nose to identify
and discriminate single bacterial species in a closed-loop
system [19,21-31]. Previous studies have shown the ability
and the robustness of an e-nose to detect the single strain
of bacteria on blood culture medium [32,33], and hence
opens the way toward making the e-nose applicable in fur-
ther investigations by direct sniff to the samples [34-39].
Single-strain bacteria are accompanied by or produce char-
acteristic odours often known as a surrogate parameter,
and recognition of these odours can provide diagnostic
clues, which in turn may aid in planning for early appropri-
ate treatment.
There were many other analytical techniques that have

been used for identification of VOCs emitted from bacter-
ial such as solid phase micro extraction-MS (SPME-GC-
MS) [40,41], proton transfer reaction-MS (PTR-MS) [42],
GC with a flame-ionization detector (GC-FID) [13], se-
lected ion flow tube-MS (SIFT-MS) [43], secondary elec-
trospray ionization mass spectrometry (SESI-MS) [44],
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF-MS) [45]. Novel basic
odour detection was developed and targeted for poly and
single microbial bacteria using direct injection of a static
head space and in combination with multi-class odour rec-
ognition for robust detection of bacterial species on differ-
ent agar mediums.
In this study, the SPME-GC-MS was chosen to deter-

mine the VOCs result since combination of both SPME
and GCMS is very popular. SPME uses a polymer-coated
fiber to concentrate volatile and semi-volatile organics in
one extraction step [46,47]. Gas chromatography- mass
spectrometry (GC-MS) is a method that combines the fea-
tures of gas–liquid chromatography (GC) and mass spec-
trometry (MS) to identify different kind of substances
within a test sample [48]. The key marker volatiles were de-
tected and the volatile compounds emitted from wounds,
where bacteria can often be found, verified the possibility of
early recognition involved in infection using the SPME
technique combined with gas chromatography–mass spec-
trometry (GC-MS).
To the best of the author’s knowledge, this research paper

presents a novel work on the identification of both poly
and single bacterial subjected to different agar medium
using e-nose. Poly microbial infections of diabetic foot pa-
tients have not been well reported and documented as the
research in this area is quite challenging. Thus, the signifi-
cance of this experiment and the potential use of this appli-
cation in a clinical setting are discussed.

Methods
Media culture preparation
Blood agar medium was prepared using a 20 g Tryptic Soy
Blood Agar Base (TSBA) in 500 mL distilled water. The
medium was then sterilized at 121°C and 225 kPa for
15 minutes and cooled to room temperature. After that,
25 mL of sterile defibrinated blood was placed in the
medium and stored at 4°C.
The same procedure was also applied to the MacConkey

agar using 25 g powdered MacConkey in 500 mL of dis-
tilled water. The medium was then heated with frequent
agitation and boiled for one minute to completely dissolve.
After the medium was autoclaved at 121°C for 15 minutes,
the prepared media may turn to dark pink and trace to
slightly hazy.
The Mueller Hinton agar was prepared by suspending

19 g of the medium in 500 mL of purified water. The
medium was heated with frequent agitation and left to
boil for one minute to completely dissolve. After the
medium was autoclaved at 121°C for 15 minutes, it
appears as hazy and light to medium yellow when cooled
to room temperature.

Bacteria isolation
Bacterial isolates obtained from the samples debridement
of diabetic foot wound (wild-type bacteria) and American
Type Culture Collection (ATCC) standard bacterial was
prepared as shown in Table 1. Informed consent was



Table 1 Single and poly microbial species culture on
different medium

Total no. of data analysis
collected by e-nose

Organism Blood
agar

Mueller
Hinton

MacConkey

Gram positive aerobes

S. aureus ATCC 29213 750 750 -

S. aureus* 500 500 -

Gram negative aerobes

E. coli ATCC 35218 750 750 750

E. coli* 500 500 500

P. aeruginosa ATCC 27853 750 750 750

P. aeruginosa* 500 500 500

Mix gram negative aerobes

E. coli* + P. aeruginosa* 350 350 350

Mix gram positive and negative aerobes

E. coli* + S. aureus* 350 350 -

S. aureus* + P. aeruginosa* 350 350 -

*Isolated from debridement of diabetic foot wound (wild-type bacteria).
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obtained from all patients. This method has been granted
approval by the University Research Ethics Committee,
Universiti Malaysia Perlis to diagnose of single and poly
microbial species targeted for diabetic foot infection using
e-nose technology. ATCC bacteria are a commercially
available bacterium that is used as a standard reference in
research. The isolation of bacteria was divided based on
gram positive and negative of bacteria strains. Each of the
samples was prepared in five plate culture with three differ-
ent mediums. The total number of data analysis represents
the five times repeated measurements of data collected by
using the e-nose. The bacterial suspension solution was
adjusted to a turbidity of a standard Mac Farland 1.0 (3 ×
108 cfu/mL) in a NaCl solution and then subculture on
three different media based on the gram strain of the bac-
teria. The bacteria were then incubated at 37°C for 24 hours
before analysis.
Figure 1 Odour sniffing setup. Cyranose320 (e-nose) was setup for headsp
E-nose and odour sniffing setup
The human olfactory system (sense of smell) is a very
complex process and responds to certain volatile chemi-
cals that are thought to be important in the detection of
irritants and chemically reactive species [17]. Cyranose320
was selected as an effective instrument that “electronic-
ally” mimics the human olfaction system. It was developed
as a simplified model of the human olfactory system and
was designed to detect and discriminate different complex
odours based on a sensor-array concept.
This sensor array consists of broadly tuned (non-spe-

cific) and highly selective sensors that are coated with a
variety of odour-sensitive absorbent materials. The array
combinations together with the odour sniffing setup allow
the e-nose to be tuned for a specific application, for
example to detect slight changes in an odour profile. The
e-nose setup is shown in Figure 1.
Sampling procedure and detection system
The sampling procedure is started after bacteria were in-
cubated for 24 hours. The investigation was performed on
both bacteria (wild-type and ATCC standard) in different
nutrient medium, incubated for at least 24 hours to pro-
ject headspace variability, which may be emitted by the
bacterial infection of the patients. A Cyranose320 e-nose
system was used to sniff all the samples by transferring
the headspace of target samples to the sensors without al-
tering its composition and properties. The target medium
agar was inserted in a closed container and the odour
sniffing started immediately. This procedure was imple-
mented in such a way as to ensure consistency in e-nose
performance on immediate sniffing (in-vivo) of the pa-
tient’s wound at the clinical stage later. Table 2 shows the
measurement parameters for the Cyranose320.
The analyses result from the use of the e-nose was

compared to the results with SPME-Gas Chromatog-
raphy Mass Spectrometry (SPME-GCMS) to validate the
obtained data. Conventional multivariate analysis such as
LDA is shown to work effectively with a lower number in
ace evaluation of poly and single bacteria species infusions.



Table 2 The parameter setting for poly and single
bacteria assessment

Cycle Time (s) Pump speed

Baseline purge 10 120 mL/min

Sample draw 60 120 mL/min

Idle time 3 -

Air intake purges 40 160 mL/min

Yusuf et al. BMC Bioinformatics  (2015) 16:158 Page 4 of 12
class variability. In order to ensure robustness, e-nose
data which comprises of high number of class variability
was then subjected to different classifiers such as KNN,
SVM, and PNN. A hybrid LDA-Classifier was introduced
to enhance prediction capability and the performance
was compared with classical neural network and statis-
tical methods. These multi-class classification techniques
applied in this study was aimed to determine the best
classifier to achieve the research objectives.

SPME and GC-MS setting
A method based on the use of headspace, solid phase mi-
cro extraction (SPME), and GCMS was developed to de-
termine the VOCs produced by a single or poly microbial
infection extract from patients. The SPME technique was
applied using a fused silica-fiber coated on the surface
with a film of an immobilized stationery phase that is con-
nected to the plunger of a modified GC syringe and moves
inside the needle. The needle made by CAR/PDMS
(Supelco-57320-U, Bellefonte, PA, USA) was used in this
study to extract the volatile emitted from the bacteria.
Then, the needle which has been exposed to the sample
headspace for 10 minutes is injected into the manual in-
jector port of a gas chromatograph system.

SPME-GC setting
An SPME fiber (75 lm Carboxen-PDMS; Supelco, Inc.,
Bellefonte, PA, USA) was exposed to the sample headspace
for 10 minute. The Volatile Organic Compound (VOC)
was desorbed by inserting the SPME fiber into a GC
injector (injector temperature 230°C) in split less mode
connected with a fused-silica GC column (Elite 5MS,
30 m, 0.25 mm ID, 0.25 μm film thickness) (Perkin Elmer,
Shelton, USA) for 10 minute. The initial temperature of
the GC was set at 70°C for 0.5 min, and then the oven
temperature was increased at a rate of 20°C/min until it
reaches 250°C which remained for another 1 min. The
detector temperature was set at 250°C.

GC-MS setting
For GC-MS analysis, a GC (Clarus680) coupled with a
mass spectrometry (Clarus600T, Perkin Elmer, Shelton,
USA) was used. The GC operating conditions (temperature
and time) were the same as described above. The mass
spectrometer was operated in the electron-ionization (EI)
mode at an ionization voltage of 70 eV.
In order to support the findings of this research, output

from GC-MS were also analysed using LDA, KNN, SVM
and PNN. Usually GC-MS provides information on spe-
cific analytes of interest (selective ion monitoring (SIM)
and mass spectra data (SIM and total ion current (TIC). In
this research, TIC data was used as input for the classifier.
TIC is merely the sum at each time point of every mass-
to-charge ratio (m/z) value across a mass spectrum [14].

Data analysis and odour recognition
A surface plot was used to visualize the signal response
from the e-nose in a sensor array configuration using the
standard toolbox “surfc” functions of MATLAB R2013a to
generate graphical plots of all 32 sensors during sniffing.
This scientific software is normally used for signal pro-
cessing [49]. The surfc () function was used to view math-
ematical functions over a rectangular region and to create
colored parametric surfaces specified by normalized values
of the sensor responses, sensor number, and the number
of gathered data points as shown in Figure 2.
The response pattern of the sensor array is known as a

‘smell print’ and different bacteria may exhibit different
smell print patterns as shown in Figure 2. For instance,
sensor 5 is the most sensitive (emitting the highest re-
sponse) compared to other sensors towards the volatile
odour produced by E. coli bacteria. Both sensor 2 and
sensor 32 showed the lowest response and may be less
sensitive to volatile compounds produced by bacteria.
To ensure the consistency and the robustness of the e-

nose, the dataset was also subjected to different classifiers
such as KNN, SVM, and PNN. The performance of each
classifier is discussed and compared. The Wilks’ Lambda
statistical test was carried out to evaluate the statistical sig-
nificant of all 32 independent conducting polymer sensors
by comparing means score of 7 different groups samples,
simultaneously. A multi-class odour classification model
was later proposed to evaluate the robustness of an e-nose
system in classifying unknown single and poly microbial
samples.

Feature extraction and dimension reduction
In this experiment, the steady-state response of each sen-
sor during the sniffing phase was used as a feature extrac-
tion. The sensor response was determined by obtaining
the difference in values between the ends of the sampling
values with the baseline values, which can be denoted as
feature extraction. This baseline correction is required to
remove a ‘drifting effect’.
Principal Component Analysis which is an exploratory

data analysis was used to extract the most influential sen-
sors based on the highest principal component. Later, the
dataset is fed through a linear classifier known as linear



Figure 2 Signal response for odour recognition. A surface plot shows the visualized data for single bacteria samples gathered using a Cyranose320
e-nose system.
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discrimination analysis (LDA) to quantify the discrimin-
ation performance of the e-nose. LDA was selected to
reduce high-dimensionality data into a much lower di-
mension and to maximize class separability for bacterial
identification [50].

Results
E-nose results
The preliminary work was focused on the investigation of
volatiles released by a single bacterial species. This also in-
cluded one-to-one comparison between a wild-type strain
and standard ATCC bacteria combined in a blood agar
medium. Three different species of bacteria namely, E.
coli, S. aureus, and P. aeruginosa obtained from ATCC
standard were cultured and the volatiles released were
measured after an incubation process of 24 hours at 37°C.
Figure 3 shows the results obtained by supervised LDA.
The most striking finding was a clear separation between
all three different bacteria when LDA was applied.
The result shows that each bacteria species does emit a

distinct smell including the blind test that includes wild-
type bacteria. Moreover, the blind test samples matched
closely with the distribution of the different groups of bac-
teria in the training data. Both the wild-type strain and
ATCC standard bacteria of the same species are clustered
in the same group, showing that they emit the same vola-
tiles. Distinct separations between group samples were ob-
served even when the groupings of different bacteria were
close to each other. This proves that the e-nose was able
to discriminate different volatiles emitted from ATCC and
wild-type bacteria.
Further studies was conducted to extend the capability

of e-nose to identify more groups of different bacteria
categorize under single and poly microbial species within
different mediums. Single and poly microbial species as de-
scribed in the background are investigated and classified
using LDA, PNN, KNN and SVM. Due to the limited ratio
of the classification diagram and unclear classification plot,
the analysis was carried out for both groups of bacteria.
However, to clearly show the classification result, one of
the diagrams is illustrated in Figure 4.
Figure 4 shows the classification of single bacteria that

has been separated into their groups. While Figure 5 shows
the overall classification result of both groups of bacteria.
Figure 5 shows the two groups of single and poly micro-

bial species that were successfully classified. For different
types of single and poly microbial species dataset, eighteen
groups (G = 18) were involved with 32 features (p = 32) of
the e-nose. The number of useful discriminant functions
that can separate the bacteria species by different mediums
is the minimum of (G-1) or p, and in this case it is the
minimum of 17 and 32, that is 17. In this case, a maximum
of 17 useful discriminant functions (DF) can be applied to
separate the bacteria species. However, for display purposes
only the highest discriminant functions are considered to
show the actual classification among 18 different groups of



Figure 3 Supervised LDA plot for ATCC standard and wild-type bacteria in blood agar. The wild-type bacteria obtained from the samples debridement
of diabetic foot wound were compared with the ATCC standard bacteria. The sign ‘+’ and ‘O’ in the plot are used to highlight the training and testing
phase (blind test).
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bacteria. Among the highest discriminant function ac-
counted for display are 87.4% for DF1 and 12.6% for DF2.
On the other hand, the Wilks’ lambda test shows that,

there is a statistically significant relationship between the
independent variables and the group samples whereby the
p-value of Discriminant Function 1 through 5 is less than
0.001 as shown in Table 3. The Discriminant Function 6
was statistically less significant as both p < 0.003 and
Wilks’ Lambda value were high. Only the first 3 Discrim-
inant Function was used in the latter analysis.
Figure 4 LDA plot of single bacteria species in three different mediums. Th
in three different mediums (blood agar, Mueller Hinton & MacConkey).
Evaluation and classification performance
A hybrid LDA-Neural Network classifier was introduced
to enhance prediction of unknown sample. Table 4 shows
the multi-class classification accuracy of single and poly
microbial species when different sets of features are
subjected to different classifiers. In order to estimate the
performance of the classifier, we adopted the common
“leave-one-out” cross validation technique to train and test
the remaining samples which were not used during the
cross validation process.
is diagram is to show the clear vision of one group of single bacteria



Figure 5 LDA plot of single and poly microbial species in three different media. This combination of single and poly microbial in different media
is to study the effectiveness of e-nose to classify the bacteria in a different group region.
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The results show that almost all classifiers performances
in these three different media (blood agar, Mueller Hinton
and MacConkey) were achieved up to 89% accuracy. The
blood agar sample was achieved 100% accuracy, using fea-
ture extraction and without feature extraction of the LDA,
which indicates an excellent result compared with Mueller
Hinton and MacConkey medium. While for PNN and
SVM classifiers, using raw data, was not able to achieve
higher classification of mixed media data samples. How-
ever, using data extracted from a discriminant function of
LDA, performance of 96% accuracy was achieved. The
Table 3 The statistical significance classifiers using Wilks’
Lambda

Test of function(s) Wilks’ Lambda Chi-square df Sig.

1 through 6 0.000 19972.418 54 0.000

2 through 6 0.025 6706.844 40 0.000

3 through 6 0.180 3115.957 28 0.000

4 through 6 0.444 1477.723 18 0.000

5 through 6 0.760 499.888 10 0.000

6 0.991 15.784 4 0.003
hybrid LDA-KNN achieves highest classification accuracy
in mixed media culture. Despite of some inconsistency
that were observed in the classification bacteria species of
mixed media, the e-nose is still a promising tool for in-situ
identification of bacterial infection. Since the highest ac-
curacies obtained for information extracted using LDA, so
those data were applied to show the sensitivity and speci-
ficity for each bacteria species in mixed media as il-
lustrated in Table 5.
Table 5 represents the sensitivity and specificity

for different classifier for each of the bacteria spe-
cies in mixed media culture. From the perspective
of specificity, generally it can be concluded that all
the classifiers are good at specifying the different
bacteria species in different media culture with their
actual group. However, the classifiers’ sensitivity is
inconsistent where some of the bacteria species
using LDA, PNN, KNN and SVM were concerned,
was unable to detect some of the bacteria species
with particular mediums into the correct groups. Al-
though the performance of KNN classifier achieved
the highest accuracies compared to other classifier,



Table 4 Classification accuracy of both single and poly microbial species in three different mediums using different
classifier

Blood agar (1,750 data) Mueller Hinton (1,750 data) Mac Conkey (1,000 data) **Mixed media (4,500 data)

Classifiers Train & validation
(733 data)

Test
(1017 data)

Train & validation
(733 data)

Test
(1017 data)

Train & validation
(399 data)

Test
(601 data)

Train & validation
(1792 data)

Test
(2708 data)

LDA 100% 100% 99.7% 98.7% 100% 100% 95.9% 94.7%

PNN 100% 100% 100% 89.7% 98.7% 98.2% 65.2% 63.3%

KNN 100% 100% 97.0% 95.4% 100% 100% 99.9% 99.2%

SVM 100% 100% 100% 100% 100% 100% 67.3% 65%

*PNN 100% 100% 100% 96.3% 100% 100% 99.2% 96.8%

*KNN 100% 100% 100% 100% 100% 100% 99.9% 99.6%

*SVM 100% 100% 100% 100% 100% 100% 98.9% 98.7%

*Data was extracted from a discriminant function of LDA and subjected to classifier input.
**Combination of three media (blood agar, Mueller Hinton & MacConkey), p value < 0.001.
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refer Table 4, this classifier has low sensitivity to differen-
tiate S. aureus bacteria in blood agar and Mueller Hinton
media.
Headspace SPME-GCMS results
The total ion chromatogram (TIC) data of a single and
poly microbial profile from headspace-GC-MS is illus-
trated as in Figures 6 and 7.
Table 5 Sensitivity and specificity of both single and poly mic

Classifiers

Mixed
media
culture

Bacteria
species

LDA % PNN %

Sensitivity Specificity Sensitivity S

BA

Ecoli 100 99.65 100 1

Sau 83.11 98.44 76.19 9

Pae 98.72 99.96 100 1

Blank 96.48 99.30 100 1

Ecoli + Pae 100 100 100 1

Ecoli + Sau 100 100 100 1

Pae + Sau 100 100 100 1

MH

Ecoli 100 100 100 1

Sau 75.76 99.02 69.28 9

Pae 100 100 100 1

Blank 87.50 99.84 98.68 9

Ecoli + Pae 95.68 99.49 99.32 1

Ecoli + Sau 100 99.80 100 1

Pae + Sau 90.78 99.96 100 9

MAC

Ecoli 94.23 100 100 1

Pae 96.03 99.73 100 1

Blank 88.89 99.18 99.36 9

Ecoli + Pae 100 100 100 1

BA: Blood agar; MH: Mueller Hinton; MAC: MacConkey; Ecoli: E. coli; Sau: S. aureus; P
Every peak obtained was identified by matching sam-
ple mass spectrum with those of the National Institute
of Standards and Technology (NIST) MS spectral li-
brary for peaks presented in the chromatograms. It has
been observed that the biomarkers from ‘TIC peaks’ for
single bacteria species can be extracted and used for
classification. The TIC peaks clearly show the VOCs
produced from that particular bacteria. Unfortunately
for poly microbial species in Figure 7, the bio-marker
robial species in mixed media using different classifier

KNN % SVM %

pecificity Sensitivity Specificity Sensitivity Specificity

00 100 100 100 100

8.01 74.84 98.16 72.44 100

00 100 100 87.08 100

00 100 100 70.14 100

00 100 100 85.88 100

00 100 100 100 99.07

00 100 100 100 100

00 100 100 92.77 100

8.62 70.25 98.47 77.19 97.61

00 100 100 100 98.99

9.96 99.34 99.96 81.18 100

00 99.32 100 67.20 100

00 100 100 100 98.51

9.96 100 99.96 100 98.81

00 100 100 100 99.53

00 100 100 100 98.46

9.92 99.36 99.96 100 96.81

00 100 100 100 99.96

ae: P. aeruginosa.



Figure 6 Chromatograms of single bacteria species using headspace SPME-GCMS. The GCMS result shows that the different bacteria species emitted
different biomarkers which confirm the e-nose result.
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peaks are overlapped. Intensive data collections on poly
microbial samples are required and must be subjected
to chemometric technique. This to ensure correct bio-
markers of poly microbial profile can be extracted from
the TIC spectrogram.

Discussion
This paper proposed multi-class classification of single
and poly microbial species in vitro to target diabetic foot
infection. As mentioned previously in Figure 3, the wild-
type bacteria obtained from debridement of diabetic foot
wound produced almost similar VOCs with the standard
ATCC bacteria. This proves that the wild bacteria spe-
cies used in this experiment such as E. coli, S. aureus
and P. aeruginosa have similar features with the standard
ATCC bacteria as a reference. The e-nose was able to
identify wild-type bacteria and match it with the stand-
ard bacteria samples.
Moreover, we preceded our investigations by analys-

ing our data from a combination of the two groups of
bacteria species in different media culture as shown in
Figure 5. We found that the odour produced from single
bacteria species was totally different with the odour pro-
duced by poly microbial species. This occurs because
when two different gram-stain bacteria interact, they
produce different volatile odours due to metabolic reac-
tions to specific biochemical precursors and interactions
among themselves while digesting nutrients [28].
The chromatograms from GC-MS allowed detailed

analysis of potential biomarkers. Figure 6 shows an in-
teresting result for three different bacteria species. E. coli
emitted the highest peak of indole which showed similar
results with other research studies [44,51]. Hence, the in-
dole produced can be described as a common diagnostic
biomarker for the identification of this bacterium.
It same goes with the TIC result for P. aeruginosa which

consists of compounds undecene and methyl group (al-
kenes). Although, the highest peak was 1-hexanol-2-ethyl
compound, 1-undecene and styrene can be concluded as a
biomarker of P. aeruginosa since those compounds are
only found in P. aeruginosa profile. This finding confirmed
with studies of [51,52].
Furthermore, the results TIC for S. aureus also showed

that it contains alcohol group (silanediol), disulphide



Figure 7 Chromatograms of poly microbial species using headspace SPME-GCMS. The GCMS result shows that the VOCs emitted when combine the
two bacteria species in one media culture.
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dimethyl, 1, 3, 5, 7-cyclooctatetraene and the highest peak
was 1-hexanol-2-ethyl. Based on the VOC produced, 1, 3,
5, 7-cyclooctatetraene was the biomarker for that bacteria.
These biomarker can be confirmed with other research
such as [44,52].
Unlike single bacteria groups, the combinations of mixed

bacteria species as illustrated in Figure 7 create a unique
smell print pattern for each bacterium. It consists of indole,
methyl group and alcohol group such as hexanol and buta-
nol. Those VOCs could be used as a volatile smell print of
each bacterium. It has been observed that the biomarkers
from the ‘TIC peaks’ for single bacteria species clearly
showed the VOCs produced from that particular bacteria
and can be extracted and used for classification. However,
the GCMS result for poly microbial species are not conclu-
sive since the bio-marker peaks are overlapped. Intensive
data collections on poly microbial samples are required
and later must be subjected to a chemometric technique
which is not a straight forward analysis.

Conclusions
In conclusion, the analysis on the e-nose system was
brought one stage closer to medical application as our
study used real patient samples, rather than pure laboratory
cultures, but a culture stage was still involved. The sam-
pling procedure was carefully formulated to serve as proof
of concept that will enable further work on in-vivo (direct
sampling) of bacterial infection on diabetic foot ulcers.
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