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Abstract

Background: The exponential growth of protein structural and sequence databases is enabling multifaceted
approaches to understanding the long sought sequence-structure-function relationship. Advances in computation
now make it possible to apply well-established data mining and pattern recognition techniques to these data to
learn models that effectively relate structure and function. However, extracting meaningful numerical descriptors of
protein sequence and structure is a key issue that requires an efficient and widely available solution.

Results: We here introduce ProtDCal, a new computational software suite capable of generating tens of thousands
of features considering both sequence-based and 3D-structural descriptors. We demonstrate, by means of principle
component analysis and Shannon entropy tests, how ProtDCal’s sequence-based descriptors provide new and more
relevant information not encoded by currently available servers for sequence-based protein feature generation. The
wide diversity of the 3D-structure-based features generated by ProtDCal is shown to provide additional complementary
information and effectively completes its general protein encoding capability. As demonstration of the utility of
ProtDCal’s features, prediction models of N-linked glycosylation sites are trained and evaluated. Classification
performance compares favourably with that of contemporary predictors of N-linked glycosylation sites, in spite of
not using domain-specific features as input information.

Conclusions: ProtDCal provides a friendly and cross-platform graphical user interface, developed in the Java
programming language and is freely available at: http://bioinf.sce.carleton.ca/ProtDCal/. ProtDCal introduces local
and group-based encoding which enhances the diversity of the information captured by the computed features.
Furthermore, we have shown that adding structure-based descriptors contributes non-redundant additional
information to the features-based characterization of polypeptide systems. This software is intended to provide
a useful tool for general-purpose encoding of protein sequences and structures for applications is protein
classification, similarity analyses and function prediction.
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Background

The enormous growth of protein sequence databases has
become a powerful driving force for data mining studies
of protein function prediction or protein classification.
Databases such as UniProt (http://www.uniprot.org/) [1]
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and GenBank (http://www.ncbi.nlm.nih.gov/genbank/)
[2] count the number of available protein sequences in
the tens of millions, providing a large reservoir of infor-
mation for such studies. Furthermore, the Worldwide
Protein Data Bank (www.wwpdb.org) [3] now holds
nearly 100 000 3D structures, while many more can be
inferred using homology modeling and ab initio predic-
tion, even at genome-wide scale [4]. Pattern classification
and data mining techniques require numerical feature
data summarizing aspects of protein sequence and struc-
ture. Given appropriate feature selection methods, we ex-
pect to achieve greater predictive accuracy if the methods
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are provided with more and diverse input features. Such
numerical features which describe aspects of molecular
structure are widely known as descriptors in fields outside
of proteomics. In the field of cheminformatics, millions
of molecular descriptors (MDs) for small-to-mid sized
compounds [5] are currently implemented in software
packages such as: DRAGON, TOMOCOMD-CARDD,
PADEL, CDK descriptor calculator, ADRIANA CODE,
CODESSA-PRO and CERIUS [6-17]. Rather than devel-
oping different features for each application, these MDs
instead provide a rich application-independent general
numerical representation of the molecule, with each
MD relating to a different aspect of the molecule. By
applying appropriate feature selection, relevant subsets
of the same overarching set of MDs may be extracted to
develop analytical approaches to solve many diverse
problems.

A number of groups have proposed developing such
sets application-independent descriptors for the field of
proteomics [18], however, we remain limited to the order
of a few thousand descriptors to encode protein sequences
[19,20] and even fewer for protein 3D-structures [21-24].
Currently PROFEAT [19,25] (http://bidd.cz3.nus.edu.sg/
cgi-bin/prof/protein/profnew.cgi), PROTEIN RECON [26]
(http://reccr.chem.rpi.edu/Software/Protein-Recon/Protein-
Recon-index.html) and PseAAC (http://www.csbio.sjtu.e-
du.cn/bioinf/PseAA/) [27] are the most widely used
publicly available servers for computing large numbers
of sequence-based protein physicochemical features.
However, these tools lack: i) large capacity for descrip-
tor generation (as compared with programs for MD
generation); ii) portability and cross-platform code
(many are limited to a webserver interface), iii)
generalization, in the sense of including not just
their own descriptors (particularly PROTEIN RECON
and PseAAC), and iv) the possibility to also generate
descriptors relating to protein 3D structure, when
such structure is known.

We have recently developed a model intended to
describe protein folding stability and its contributing
factors, i.e. configurational entropy, close packing inter-
actions, and the hydrophobic effect [28]. Additionally,
we have introduced a physics-based formalism to score
protein structural models [29]. We here introduce a new
feature generation program called ProtDCal (PROTein
Descriptors CALculation program), which implements
these new approaches together with several physico-
chemical properties of amino acids, and structural de-
scriptors with proven capability to predict protein
folding kinetic properties [21-24]. This program is freely
available, supports multiple computing platforms, and
provides a graphical user interface. ProtDCal is capable
of generating tens of thousands of descriptors for a sin-
gle protein structure (considering both, sequence-based
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and structure-based descriptors), thereby helping to
close the gap between the diversity of descriptors avail-
able for the study of small molecules (cheminformatics)
and proteins (proteomics).

In the present study, the resulting features are assessed
in terms of relevancy and redundancy in three different
studies: 1) variability analysis along the protein dataset
(relevancy), based on Shannon’s entropy [30,31]; 2)
linear-independence (redundancy) of the codified infor-
mation by using Principal Component Analysis (PCA)
[32] within ProtDCal descriptors, and 3) redundancy of
descriptors among all three software packages. In order
to carry out the analyses presented in this report, the de-
fault configurations of PROFEAT [19] and PROTEIN
RECON were used as a source of the state-of-the-art in
sequence-based features. PseAAC was not included in
this comparative analysis because a representative
module for computing pseudo amino acid composition
features is already implemented within PROFEAT.
Lastly, we demonstrate that ProtDCal is highly compu-
tationally efficient and is able to calculate thousands of
features within 1 s for a typical protein sequence or
structure.

In the following sections the term index refers to a
property or value which has been calculated or mea-
sured for a single residue, while feature or descriptor re-
fers to the final result of a procedure which generates a
value associated with a specific group (subset) of amino
acids using an optional aggregation function and weight-
ing operator.

Implementation

ProtDCal provides a friendly graphical user interface
(GUI), see Figure 1, which generates descriptors for
groups of residues (including the whole protein as the
largest possible group). The program accepts two input
file formats: PDB and FASTA/multi-FASTA. In the
former case, the full descriptor generation capability of
the program is enabled, while inputting FASTA files will
only enable the sequence-based subset of indices. The
program calculates the requested features and creates
two tab-delimited files (*_AA.txt and * Prot.txt). These
files contain the compendium of all the residue-level in-
dices and the group-level descriptors, respectively, for
each input protein.

The software is implemented in Java (JDK version 1.7)
as it provides cross-platform support for any system
where a Java Virtual Machine (JVM) is available. The
Chemical Development Kit (CDK) library [33] (version
1.4.19) was employed within ProtDCal, mainly for the
manipulation of protein input data.

Most of the 3D-structural descriptors published to
date typically capture information relating to the entire
protein structure. These features have been largely used
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Figure 1 GUI layer corresponding to the configuration of indices and weighting operators.

to show their correlation with folding properties such as
the folding rate constant [34-36]. However, restricting
oneself to descriptors of the entire protein structure
limits the possibility of generating meaningful numbers
to encode different structural characteristics of a single
protein. The use of groups (subsets — see below) of
amino acids to generate protein descriptors permits a
combinatorial strategy to achieve a wide spectrum of
features for each input protein.

The strategy for calculating indices and descrip-
tors is divided into four hierarchical levels i) choice

of index, ii) choice of weighting procedure, iii)
choice of residue group, and iv) choice of aggrega-
tion function:

Choice of indices

This first user selection level provides to the user a
set of criteria which generate indices for each resi-
due of a protein. The formal definition of these indi-
ces is summarized in Additional file 1: Tables SM-1
to SM-4. The indices are organized into three main
families:
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i-1)Thermodynamics, which are novel physics-based
indices designed to describe the main factors involved in
protein folding stability [28,37]. These indices deal with
residue-residue electronic interactions, Van der Waals in-
teractions, dihedral torsion potential, backbone hydrogen
bond formation, and hydrophobic effect. Both 3D-
structure-based and sequence-based thermodynamic indi-
ces are provided by ProtDCal.

i-2)Topographic, which include versions of structural
descriptors, most of them, originally, designed to de-
scribe protein folding rate, e.g. relative contact order
(CO) [38], long range order (LRO) [22], total contact
distance (TCD) [23], contact number (Nc) [34], cliqu-
ishness (CLQ) [35], among others. All these features
were originally defined as sums/averages over all resi-
dues of a protein; here they were redefined to provide a
value for each residue of a protein, such that if the
contributions of each residue were summed up the
formula would coincide with its original definition.
Most of these type of features uses inter-residue con-
tacts as the basis of their formalisms. Consequently, we
included an adaptable weighting coefficient to differen-
tiate inter-residue contacts to achieve increased diver-
sity among the computed indices (see description of w;
in equations 4 & 5 below). To illustrate how these de-
scriptors were transformed into per-residue indices, we
next describe the transformation of the contact order
(CO) originally defined by Plaxco et al. [39]. According
the original definition:

ZAN (1)

¢e=1

CO =

NN

where, N represents the length of the protein, N, the
number of contacts in a protein and AN, the sequence
separation between a pair of residues involved in a con-
tact. The transformation to obtain our weighted-residue-
level Contact Order (wCQO,) is as follow:

N-1 N
CO= NN Z ANa—m >3 AN (2)

i=1 j>i

where, §;; is a binary variable indicating if residue pair
(i,j) satisfy the two contact conditions: i) the pair of
residues have spatial distances less than d, and ii) the
topological distance is greater than t. The default
values are set to d = 8 and ¢ = 4; users may change these
thresholds via the PROTCAL interface. The transform-
ation follows as:

N-1 N
COfNN 3OS ANsy= ZZNN Z AN ;648
i=1 j-i Cj=T;j=i

(3)
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Substituting the sequence separation parameter, AN,
by a general weighting parameter w;;, we obtain:

wCO=

1

1 N
2NN, 2_ @i )
L

Finally, the redefined residue-level weighted Contact
Order index is given by:

1 N
wco,-=—2Nch§iwl;6a (5)

The parameter w; represents a weighting coefficient
for each pair of residues. This parameter is computed as
the product, w,w;, of the property for each interacting
residue, where any of 12 amino-acid properties covering
structural, physical-chemical features may be selected
(see Property-based indices for details). Additionally, the
sequence separation parameter (ANj), which is present
in the original definition, and the absence of weighting
(ie. w;=1), are implemented as the possible criteria for
weighting a contact.

i-3) Property-Based indices, containing a set of empir-
ical indices with fixed values for each type of residue.
These measures cover a wide range of amino-acid prop-
erties, such as the Kyte-Doolittle scale of hydrophobicity,
which has been used to predict potentially exposed re-
gions and transmembrane domains [40]; the so-called
principal properties or z-values [41]: z1 related to hydro-
philicity, z2 related to steric features, and z3 dealing with
polarity; Levitt’s probabilities of adopting an alpha helix,
P, a beta sheet, P, or a turn conformation, P;, [42]; as
well as classic features such as the isoelectric point and
the mass. Additional file 1: Table SM-4 summarizes the
values of each of these properties for every residue type.
The redundancy among some of these aminoacid prop-
erties have study with a benchmarking approach [43,44].
An additional set of 147 Transferable Atomic Equivalent
(TAE) indices are provided, as originally proposed by
Breneman et al., the group responsible for the develop-
ment of PROTEIN RECON server, and as implemented
in the CDK library [12,33]. The TAE were computed
based on the quantum theory of atoms in molecules,
which has been a successful approach to study molecu-
lar properties related to electron density distribution.
Additional file 2 provides the compendium of TAE indi-
ces values for each residue type.

Weighting procedures

Once the indices are selected, five classic cheminformatics
algorithms were implemented to allow the modifica-
tion of the intrinsic index values of residues according
their particular neighborhood: Autocorrelation, Kier-Hall,
Electrotopological State, Ivanshiuc-Balaban [45], and
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Gravitational-like operators. Additional file 1: Table
SM-10 summarizes these formalisms, while an in-
depth description of each can found in the Handbook
of Molecular Descriptors of Todeschini and Consonni
[5]. In order to show how these weighting procedures
are applied to the calculation of indices, we include a
comprehensive example of the Autocorrelation weight-
ing operation, which is defined in ProtDCal as:

N
ACE =" LiLid(dy - k) (6)

j=1

where, L; represents the value of a particular index for
residue i, the parameter k is a topological distance cut-
off, the topological distance d;; = |j - i|, and & is the Dirac
delta function, and N is the total number of residues in
the protein chain. According to this operator, the neigh-
borhood of a residue i would be defined by the two resi-
dues j with a sequence separation of k residues with
respect to residue i. The results of this procedure ap-
plied to the topographic index logarithm of the Folding
Degree (InFD) for an eight-residue fragment correspond-
ing to residues 61 to 68 of a human prion protein (PDB
ID loeh) [46] are illustrated in Table 1.

As represented in Table 1, the computed index of each
residue is consequently modified according a defined
neighbourhood, which depends on the particular weight-
ing procedure and its corresponding parameters (here,
t). Figure 1 depicts the GUI’s layer corresponding with
the indices implemented in ProtDCal as well as the
weighting operators menu of the application.

Groups

As mentioned above, the user is able to compute de-
scriptors for various groups (subsets) of residues, ac-
cording their type, properties, or structural arrangement.
Each group is used to build an array of values for each
selected index in the previous step. The three types of
groups are:
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iii-1) Type-based groups. These groups correspond to
all residues of a single natural amino acid. Each of these
groups will comprise all the residues, of the same type,
within the protein.

iii-2) Property-based groups. These groups cover most
standard amino acid classifications according their phys-
icochemical properties, including: polar, basic, acidic,
aromatic, etc. Additional file 1: Table SM-11 summarizes
the definitions of these groups.

iii-3) Structure-based groups. These groups are based
on 3D arrangements of residues in the protein includ-
ing: the internal residues (INT), determined by an
adaptable cutoff of the percentage of their surface area
deemed to be solvent accessible; the superficial residues
(SUP), determined by the same cutoff mentioned
above; the residues in alpha helix (HEX), the list of the
residues involved in helix motifs must be explicitly de-
fined in the PDB file; the residues in beta sheet (SHT),
the list must be explicitly defined in the PDB file, the
coil regions (RCL) this group comprises all residues
neither in helices nor beta-sheets fragments; and finally
the residues in beta turn (TRN), they list must be expli-
citly defined in the PDB file. Selecting the entire
protein (PRT) as a special group comprising all the res-
idues in the protein is also possible. Figure 2 shows the
GUTI’s layer associated with the selection of different
groups of residues.

Aggregation operators

This final configuration level is intended to combine
the index values for a group of residues into a unique
value for every combination of index, group and aggre-
gation operator. The use of these aggregation operators
have been successfully applied, recently, by Marrero-
Ponce et al. to generalize the local vertex invariants
(LOVIs) vector to global (or fragment-based) features
of organic molecules [47-49]. Here this strategy is also
applied as a suitable way to enhance the protein fea-
tures generation. This layer of the program is divided
into four panels:

Table 1 lllustration of the application of the Autocorrelation operator to the index InFD using the parameter k=2

Residues Index value (InFD;) Label Autocorrelation procedure (k =2) Updated index value (InFD_AC;)
10EH_aal_HIS —3.53E-02 L L'=LLs = 2.93E-04
10EH_aa2_GLY —1.54E-02 Ly L'=Ll = 1.39E-04
10EH_aa3_GLY —831E-03 Ls Ly =LsL, + Lsks = 3.72E-04
10EH_aa4_GLY —901E-03 L Ly =Libs + Lylg = 2.05E-04
10EH_aa5_TRP —9.43E-03 Ls Ls'=Lsls+Lsly = 2.88E-04
10EH_aa6_GLY —7.36E-03 Le Le' = Lol + Lelg = 3.09E-04
10EH_aa7_GLN —2.23E-02 L, L' =LLs = 2.10E-04
10EH_aa8_PRO —3.30E-02 Lg Lg'=Lglg = 243E-04

The structure of an octapeptide from a mammalian prion protein (PDB code: 10EH) was employed for calculations of InFD values.
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Figure 2 GUI layer corresponding to the configuration of groups of residues.

iv-1) Distance measures panel, which contains the first
three Minkowsky norms comprising the Manhattan dis-
tance, Euclidean distance and third Minkowsky norm.
Additional file 1: Table SM-6 summarizes the formulae
and descriptions of these measures.

iv-2) Measures of central tendency panel, this panel in-
cludes aggregation functions such as arithmetic mean,
geometric mean, harmonic mean, etc. which provide an
average of the entries in the array of indices. Additional
file 1: Table SM-7 summarizes these measures.

iv-3) Measures of statistical dispersion panel, this panel
encloses statistics such as variance, coefficient of
variation, skewness, etc. which encode different cha-
racteristics of the distribution of values in the index
array. Additional file 1: Table SM-8 summarizes these
measures.

iv-4) Measures based on Information Theory, this panel
contains three classical procedures [5] derived from the
information theory which describe the entropy of the
distribution of an index values within a given group.
These measures are: the Total Information Content, the
Mean Information Content, and the Standardized

Information Content. Additional file 1: Table SM-9
summarizes the formulae and descriptions of these
measures.

The Figure 3 shows the GUI’s layer associated with the
aggregation operators.

Additional functionalities of ProtDCal

In addition to computing a wide diversity of sequence-
and structure-based descriptors, ProtDCal has an
special menu called Thermo&Kinetics, which permits
the application of empirical models designed by
some of the authors to predict protein folding free
energy [28] and its different contributions: the loss
of configurational free energy, the hydrophobic effect
free energy and the close-packing interaction free
energy; as well as a model for predicting folding rate
constant [50], and a scoring potential intended to
discriminate among near-native and non-native
structural decoys [29]. All of these models require
PDB files as inputs. Additional file 1: Table SM-5
provides a summary of the definition and description
for all these models.
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Figure 3 GUI layer corresponding to the configuration of aggregation operators.

Lastly, a graphic plotting menu is provided, which
allows the possibility of plotting index profiles along the
protein sequence and index histograms within a protein.
ProtDCal can also compute distance matrices for data-
sets of proteins structures or sequences based on the
user-selected descriptors. This could provide valuable
input for protein similarity rankings and classification
models.

A comprehensive tutorial and discussion of the theor-
etical background of the various implemented formal-
isms are provided in the Help Menu of the ProtDCal
application.

Results and discussion

In order to evaluate the descriptors generated by our
software, as well as to perform comparison tests with
PROFEAT and PROTEIN RECON servers, a dataset of
874 proteins was obtained from the RCSB PDB [51] on
February 24th, 2014 by searching for single-chain mono-
mer proteins, without DNA, RNA or other non-protein
chemical entities, with sequence length between [50,500]
and resolution of at most 2.0 A. Homologues were

removed at 30% sequence identity, resulting in a clean
and non-redundant set of protein structures covering a
wide range of protein lengths and forming a representa-
tive sample of proteins known to date. These data pro-
vides a suitable scaffold to evaluate properties such as
variability and redundancy of ProtDCal’s descriptors. A
complete list of proteins can be found in Additional
file 1: Table SM-12.

First, we validate the lack of redundancy between our
sequence-based and structure-based features using prin-
cipal component analysis (PCA) for factor extraction
and the varimax normalized method to rotate the matrix
of components, as implemented in the software package
SPSS 21. Next, to measure the relevancy of our descrip-
tors and those of other servers, a variability test was
carried out using the information-theoretic approach
proposed by Godden [52,53]. This test was used to
measure the potential of descriptors to differentiate
among proteins in the dataset described above. Lastly,
we assess the diversity among our features and also with
those generated by other programs. We here leverage
the orthogonality of factors generated by PCA to assert
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that descriptors populating different factors (with abso-
lute loading values greater than 0.70) are considered to
contain significantly different information.

Three studies were carried out in order to assess the
quality of descriptors generated by our application and
to compare our features with existing available servers
with similar purpose.

Analysis of redundancy between 3D and sequence-based
ProtDCal’s descriptors

One of the potentially valuable features introduced by
ProtDCal is its capability to generate a vast variety of
novel 3D-structural descriptors for proteins. In that
sense, we started by comparing the intrinsic redundancy
of the two largest families of indices in ProtDCal i.e., the
structure-based and the sequence-based indices. To con-
duct this assay, we computed 45494 sequence-based fea-
tures, leaving aside the twenty residue-type groups and
all weighting operators. This dataset was filtered by
means of the Shannon entropy variability test to elimin-
ate those trivial attributes with zero or almost zero vari-
ance. Next, a subset of 999 descriptors was randomly
selected to serve as a representative sample of the
sequence-based family of ProtDCal indices. The same
procedure was followed to select 999 structure-based
features from a pool of all 25231 possible 3D indices
(hydrophobicity was used as weighting coefficient of the
inter-residue contact in topographic indices), and no
weighting operations were used.

Finally, the sequence- and structure-based features
were united into a single data set with a total of 1998
features. PCA was applied to evaluate the overlap in the
information content between these two sets of indices
(linear independence). A total of 159 principal compo-
nents were extracted, accounting for 95% of total
explained variance. Additional file 1: Table SM-13 sum-
marizes the percentage of variance explained by each of
the 159 extracted components. The filtered rotated com-
ponent matrix for this analysis is provided in Additional
file 3 (only loading coefficients with absolute values
greater than 0.7 are shown). The results indicate that
there exists some degree of overlapping information
given that both types of indices significantly populate fac-
tors 1, 6, and 14 (see component matrix in Supplementary
Material). Nonetheless, the structure-based descriptors
have high loadings in 94 Factors while the sequence-based
descriptors only populate 16 factors with high loadings.
This implies that there is a large amount of information
captured by the structure-based ProtDCal descriptors that
is not present in sequence-based descriptors. Additionally,
the present analysis built a total of 46 factors which don’t
significantly correlate with any individual descriptor in the
composed dataset. This means that the combination of
3D and sequence-based descriptors of ProtDCal is
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capable of capturing information that is not contained
in any single descriptor, but is disaggregated among the
entire data.

This experiment validates the enormous amount of
new information available for data mining studies by
using 3D descriptors introduced in ProtDCal, when
compared to traditional sequence-based feature extrac-
tion servers. The following experiments compare the
sequence-based features of ProtDCal with those features
generated by the sequence-based servers PROFEAT and
PROTEIN RECON.

Comparison of variability among sequence-based
descriptors of ProtDCal versus descriptors of PROFEAT
and PROTEIN RECON

Variability or relevance is the first characteristic which
should be validated in any new descriptor, i.e. valuable
descriptors should vary among different sequences. To
address this comparison, all the descriptors of the de-
fault configuration of PROFEAT (1130 descriptors) and
PROTEIN RECON (141 descriptors) were used. Given
that these servers generate only sequence-based features,
we here restricted ourselves to ProtDCal descriptors of
to this kind. The twenty residue-type groups imple-
mented in ProtDCal were excluded in order to diminish
the amount of data in the analysis. The size weighting
operators were applied separately, leading to six sub-
datasets of 45494 descriptors each.

Shannon entropy was used to assess the variability of
the eight datasets of descriptors (six PROTCAL plus
PROFEAT and PROTEIN RECON). Additional file 4 pro-
vides the Shannon entropy rankings for the eight datasets.
Figure 4 plots the number of descriptors (x-axis), in each
dataset, with entropy values larger than each value in the
y-axis.

This figure shows that all five weighting operators
implemented within ProtDCal and the unweighted data
have a significantly larger numbers of relevant descrip-
tors than the other applications. Also, it is shown that,
by using weighting operators, a larger number of rele-
vant descriptors can be generated (see shift in weighted
curves compared to unweighted curve in Figure 4).
Closer inspection reveals that the Kier-Hall weighting
operator produces the top relevant descriptors (see inset
picture in Figure 5), but the Ivanciuc-Balaban operator
provides the most stable rate of relevancy among all
descriptors.

To ensure that the six weighting operators are not
redundant with each other, and that they actually pro-
vide useful independent features, an experiment was
conducted as follows. The feature (HP_PRT_Q2) result-
ing from the combination of the hydrophobicity scale of
Kyte and Doolittle (HP), the whole protein sequence
taken as a group (PRT), and the second quartile of the



Ruiz-Blanco et al. BMC Bioinformatics (2015) 16:162

Page 9 of 15

Shanon Entropy

9
89
38 ~——PROTDCAL
87 = PROTDCALKH
86 ~—— PROTDCAL:GF
85 ——PROTDCALIB
34 ~—— PROTOCALES
83 - = PROTDCAL:AC
82 - ~—— PROFEAT
81 - ~—RECON

8

1 101 201 301 401 501 601 701 801 501
=== PROTDCAL

== PROTDCAL:KH

e PROTDCAL:GF

2 -

= PROTDCAL:IB
14 ——— PROTDCAL:ES
0 e PROTDCAL:AC

1 5001 10001 15001 20001 25001 30001 35001 40001 45001
= PROFEAT
Count of Features
w RECON
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operators of ProtDCal: autocorrelation (AC), Kier-Hall (KH), electrotopological state (ES), Ivanshiuc-Balaban (IB) and gravitational-like (GR) operators.

index’s distribution used as aggregation operator (Q2),
was computed with the five weighting operators and also
without weighting. Principle component analysis was ap-
plied to these six features to ensure that they were not
redundant with each other. This analysis resulted in
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Figure 5 Comparison of runtime values per protein per feature
versus protein lengths by using four families of protein features:
structure-based thermodynamic indices, sequence-based
thermodynamic indices, topographic indices (weighted by
topological distance), and amino-acid-property-based indices

(TAE-derived indices excluded).

three significant components having eigenvalues greater
than 1, which explained 83% of the total variance among
the six features. To reach about 95% of variance, a
fourth component is required. These results demon-
strate that the six weighting operators provide a rich di-
versity of feature data.

Comparison of information content among sequence-based
descriptors of ProtDCal, PROTEIN RECON and PROFEAT

The second and highly significant subject, which should
be validated in any novel features generator program, is
the degree of redundancy among its descriptors. That is,
in order to be truly useful resource, the descriptors must
encode intrinsically different information. The general
paradigm is that features should be simultaneously rele-
vant (i.e. each feature helps differentiate among proteins)
and non-redundant (ie. do not simply duplicate infor-
mation encoded by other features).

In that sense, PCA was conducted in order to demon-
strate the relations in content of information between
PROFEAT, PROTEIN RECON and ProtDCal. Note that
in this test, the quality measure is that features from a
particular software shows significant loading (absolute
values > 0.7) in a given component where no other soft-
ware has substantial loadings.
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To ensure we only consider relevant features, we took
the top 30% most relevant descriptors of PROFEAT,
PROTEIN RECON, and PROTCAL (using the Kier-Hall
weighting function) according Shannon entropy test,
(see Additional file 4). PCA was first applied to each fea-
ture set in isolation in order to obtain condensed repre-
sentations of the encoded information of each software.
Parameters were adjusted to extract enough components
to describe 95% of the variance within the data. A total
of 1 principal component was extracted from PROTEIN
RECON, 111 from PROFEAT, and 125 from ProtDCal,
which indicates the enormous redundancy among
PROTEIN RECON’s descriptors. Next, all initial com-
ponents from each software were assembled together
and a second PCA followed by Varimax Normalized
rotation was carried out. A total of 191 composed
components were extracted in order to explain 95% of
the data variance. Since PCA provides a list of compo-
nents sorted by decreasing ability to explain the vari-
ance in the data, the highest ranking components tend
to be the most important. Therefore, we were able to
evaluate the distribution of the software-specific initial
components among the final composed components.
Additional file 5 summarizes the filtered rotated com-
posed component matrix with the list of software-
specific initial components and their loadings to every
composed principal component (only variable loadings
with absolute values greater than 0.7 are shown).

Additional file 1: Table SM-14 shows the results of the
explained variance results of this PCA. First, the analysis
showed that the three software packages have high
loadings in the first, and more significant, component.
Additionally, PROFEAT and ProtDCal share high load-
ings in the factor 2. However, an interesting behaviour is
observed from factor 3 onwards: no other component is
loaded by initial factors arising from both programs at
the same time, which means that the information stored
in those components is mostly divided, part in ProtDCal
and part in PROFEAT. This analysis indicates that
ProtDCal provides more useful features in that, of the
20 top ranked composed components, 16 (i.e. 80%) have
high loadings from strictly ProtDCal initial components,
and all of composed components 1-13 have high load-
ings from ProtDCal initial components. Taken together,
this demonstrates that the components of ProtDCal are
more relevant than those arising from PROFEAT. In
total, ProtDCal achieves high loadings in 103 composed
components, comprising 51.81% of explained variance,
whereas PROFEAT loads 90 composed components, for
a 45.30% of explained variance.

These results prove that in addition to the enormous
capacity of descriptors generation of ProtDCal, this pro-
gram has a low rate of redundancy among its most rele-
vant descriptors. Furthermore, we have demonstrated
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that ProtDCal descriptors provide information not rep-
resented within the descriptors of PROFEAT and PRO-
TEIN RECON.

Here is worth highlighting that the first experiment
showed that the structure-based descriptors implemented
in ProtDCal have different information than sequence-
based descriptors, thus, this further increases the capabil-
ity of ProtDCal to generate informative descriptors.

Illustrative example: using ProtDCal’s features in the
prediction of N-glycosylation sites

Glycosylation is one of the most common protein post-
translational modifications (PTM) occurring in diverse
organisms [54]. As consequence of this modification, a
glycan is linked to the polypeptide chain; particularly,
N-linked glycosylation modifies an asparagine residue.
This type of PTM is closely associated with a sequence
motif (sequon) defined as: Asn-Xxx-Thr/Ser, where Xxx
can be any residue but proline. However, the existence
of this sequon is not sufficient to dictate the occurrence
of the glycosylation [55]. N-linked glycosylation is known
to influence protein folding [56], cell-cell interactions, and
antigenicity [57,58]. Therefore, the development of com-
putational methods for predicting N-glycosylation sites
within a protein sequence would facilitate protein func-
tional annotation.

As demonstration that ProtDCal is able to automat-
ically extract meaningful and information-rich fea-
tures from protein sequence, we have created and
evaluated N-linked glycosylation prediction systems
using ProtDCal-generated features. Here, we compare
the performance of models trained with ProtDCals fea-
tures, and four contemporary predictors of N-glycosylation
sites: GPP [59], NetNglyc (http://www.cbs.dtu.dk/services/
NetNGlyc/), EnsembleGly [60] and ScanSite [61]. The
performance metrics of these four methods were taken
from the report of Hamby and Hirst, 2008 [59], using a
dataset of 241 proteins obtained from OGLYCBASE
[62]. This dataset was also used to train and evaluate
the ProtDCal-based predictors.

A total number of 3508 sequence-unique windows
(length = 15 AA) were extracted from the initial dataset, see
Additional file 7, where each window was centered on an
asparagine that was either known to be glycosylated (posi-
tive) or not (negative, i.e. assumed to be non-glycocylated).
ProtDCal sequence-based features were computed for each
position of these segments. Feature selection was carried
out twice using the Weka wrapper approach: once using a
Random Forest (RF) classifier as the evaluator, and once
using a Naive Bayes (NB) classifier. Both feature selection
searches were carried out using a genetic algorithm search
of 500 generations and 50 chromosomes in each popula-
tion. For the RF classifier, Weka’s default parameters were
used, and for NB a supervised discretization of attribute


http://www.cbs.dtu.dk/services/NetNGlyc/
http://www.cbs.dtu.dk/services/NetNGlyc/

Ruiz-Blanco et al. BMC Bioinformatics (2015) 16:162

values was applied to convert numeric features to nominal
ones. Class imbalance was handled by resampling a reduced
subset of instances in each training fold, in order to obtain
balanced training subsets for each fold of the cross-
validation. These searches of the feature space resulted on
two datasets: one for NB containing four features, and an-
other for RF comprising six features, see Additional file 6.

Comparison studies were conducted in the following
way: First, the results, in 10-fold cross-validations, of the
ProtDCal models, trained with RF and NB, were com-
pared with the results of the predictor GPP using the
original performance metrics reported by the authors
[59], see Table 2. This comparison shows a slightly lower
performance of ProtDCal models when using RF. On
the other hand, when using NB, ProtDCal achieves a
significantly superior sensitivity than GPP, maintaining
the specificity over 90%. The global accuracy of ProtD-
Cal_NB is also slightly higher than GPP. Such results are
significant considering that GPP features were hand-
selected leveraging domain-specific knowledge, while
ProtDCal features were automatically extracted from the
input sequence data with no domain-specific knowledge.

Next, GPP and ProtDCal’s models were compared
with three other contemporary predictors, see Table 3.
The values summarized in this table show that ProtDCal
and GPP have better performance than NetNglyc and
ScanSite, however EnsembleGly provides slightly im-
proved sensitivity. Nonetheless, a direct comparison with
the reported metrics of EnsembleGly should be consid-
ered with caution, since they were obtained based on a
sequence-based 5-fold cross-validation approach, while
the other methods use window-based 10-fold cross-
validation. Importantly, in the former approach, highly
similar sequence windows may appear in both the training
and testing data leading to a potentially optimistically-
biased performance metric.

Ultimately, a blind test is conducted to measure the
actual prediction capability of ProtDCal models and
GPP. This was conducted to ensure that the cross-
validation performance is sustained on new independ-
ent test data, not used for feature selection. The test is
carried out using an external dataset extracted from
dbPTM [63] (http://dbptm.mbc.nctu.edu.tw), which is
a database compiling experimentally verified post-
translational modifications of proteins, including
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glycosylation. A subset comprising 216 positive and
1918 negative sequence-unique windows were ex-
tracted from dbPTM, see Additional file 8, to form the
final external dataset such that no test data shared se-
quence identity with the cross-validation dataset used
above for feature selection. The final class imbalance is
approximately 10 negatives for each positive, which is
consistent with the original dbPTM dataset.

Results of this blind test are summarized in Table 4.
The obtained performance validates the greater predic-
tion capability of ProtDCal models given significantly
higher values of accuracy, specificity and precision.

In general, these analyses validate the applicability of
ProtDCal’s features in obtaining models with predictive
capabilities similar or better that state of art predictors
of sites of N-glycosylation. Considering that no domain-
specific knowledge was used to extract these features, it
is expected that ProtDCal will be equally applicable to
other fields.

Computational complexity of ProtDCal

Finally, we conducted a simple experiment to study the
computational cost of ProtDCal calculations. This pro-
gram is computationally efficient and intended to be run
on common desktop or even laptop computers. In order
to analyze the runtime values of the main families of fea-
tures related to the proteins size, we designed the fol-
lowing experiment:

First, to assure not-biased file-reading times due to
extra lines in the PDB files, the used dataset of 876 pro-
teins was cleaned by removing 31 PDB files containing
either explicit hydrogen atoms or incomplete sets of
atoms in several residues. Furthermore, all ANISOU
lines were removed as well as REMARK lines, as these
are irrelevant to the extraction of descriptors.

Five datasets of features were calculated and the run-
times were saved for each protein, including time re-
quired for reading the input file, calculation, and writing
output. The selected features were: first, a total of 17986
features composed from all topographic indices (weighted
just with the topological distance), second, a total of
7245 features resulting from the selection of all the
structure-based thermodynamic indices; third, 1555
descriptors derived from all the sequence-based
thermodynamic indices, and a fourth set of 5040

Table 2 Performance metrics for N-linked glycosylation prediction using GPP and ProtDCal features using Random

Forest and Naive Bayes classifiers

Random Forest Naive Bayes

CCl (%) Sensitivity (%) Specificity (%) CCl (%) Sensitivity (%) Specificity (%)
GPP 92.8 96.6 9138 90.3 83.8 94.6
ProtDCal 916 932 914 91.1 976 90.6

CCl = Correctly classified instances. GPP results from Hamby & Hirst [59].
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Table 3 Performance metrics for N-linked glycosylation prediction from different contemporary predictors

ProtDCal_RF ProtDCal _NB GPP NetNglyc *EnsembleGly Scan Site
CCl (%) 91.6 91.1 92.8 76.7 95.0 79.8
Sensitivity (%) 93.2 97.6 96.6 439 98.0 72.7
Specificity (%) 914 90.6 91.8 95.7 77.0%% 819

Results reproduced from Hamby & Hirst [59]. CCl = Correctly classified instances. *Metrics of EnsembleGly are based on sequences-based 5-fold cross-validation.
**This value refers to precision [= TP/(TP + FP)] and not to specificity [= TN/(TN + FP)] as it was originally reported [60].

descriptors obtained by choosing all the property-
based indices (TAE indices not included). For all these
features families no weighting operator was applied
and all the aggregation operators were selected. For
the third and fourth sets of indices, all groups of resi-
dues were examined except those associated with
structure (e.g. INT, SUP), to restrict the corresponding
calculations to purely sequence-based features. A spe-
cial fifth selection of 17204 topographic features was
carried out by leaving aside one particular index: the
cliquishness (aka clustering coefficient) [35]. This index
was introduced by Micheletti (2003) in order to study
the native topology influence on protein folding rate
and transition state placement. Rather than strictly
dealing with pairwise inter-residue contacts, this
metric considers triads of residues to define the con-
tacts. Figure 5 shows how the runtime dependence on
protein length changes from a fairly linear behaviour
to a quadratic trend because of the calculation of this
index. Calculations were run on a laptop computer
with processor Intel Core i5-3210 M 2.5 GHz (6GB
RAM total; 64 MB assigned to JVM).

The obtained runtimes for each protein were divided by
the number of computed features in each dataset in order
to estimate an average runtime per protein per feature.
Results of these experiments are given in Figure 5.

Additional file 1: Table SM-15 summarizes the run-
time of every protein used in the experiment. The ob-
tained results demonstrate the fast execution time of
ProtDCal, with observed runtimes on the order of 10
~* seconds per protein per feature, and showing linear
variation within proteins lengths from 50 to 500 resi-
dues. Nonetheless, to facilitate batch-mode calculations,
project files may be saved directly from the GUI. These
files store information related to the path of the data dir-
ectory, the selected indices, weighting operators, groups,

Table 4 Performance metrics for N-linked glycosylation
prediction from using GPP ProtDCal’s models in a blind
test

CCl (%) Sensitivity (%) Specificity (%) Precision (%)

ProtDCal_RF ~ 87.11 93.50 86.40 43.60
ProtDCal_NB  86.78 95.80 85.80 43.10
GPP 66.21 97.22 62.72 22.70

CCl = Correctly classified instances.

aggregation operators, and parameters needed for the
calculation. Several of these project files can be loaded,
in batch mode, by using the multi-projects menu in the
GUL

Conclusions

The summary of the analyses presented in this manu-
script validates the capabilities of ProtDCal to generate
valuable sequence- and structure-based protein descrip-
tors. ProtDCal may provide to the protein data mining
community a free, portable, and computationally effi-
cient tool to generate a wide variety of meaningful de-
scriptors for protein sequences and structures. We have
demonstrated that ProtDCal sequence-based descriptors
provide more relevant and low redundant information
than what is currently available through sequence-based
feature generation servers. In addition, we have shown
that structure-based descriptors contribute significant
additional information to that encoded by sequence-
based ones. These latter descriptors are expected to en-
hance the quality of protein structure-function studies
based on the ever-increasing availability of structural
models from experimental and computational predic-
tions [4]. The use of different metrics of distance, central
tendency, and dispersion over groups of residues, consti-
tute a modern and successful approach to encode rele-
vant structural information as discussed by some of the
authors previously. Ultimately, as a demonstration of the
utility of ProtDCal feature data, N-glycosylation site
prediction models were trained using these data. Classi-
fication performance of the obtained models, compare
favourably with contemporary predictors, which leverage
domain-specific knowledge. Considering its significant
protein encoding capacity, ProtDCal enriches the feature-
based representation of proteins, becoming a potentially
valuable contribution the state of art of a wide range of
applications in proteomics.

Future outlook

We expect that ProtDCal will become an alignment-free
protein-modelling platform to generate relevant fea-
tures for protein sequences and/or structures. Future
developments will allow ProtDCal to compute, select,
and assess features within an integrated analysis
pipeline, by combining the feature generation with
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attribute selection strategies as implemented in librar-

ies of the Weka software package.

Availability and requirements

Project name: ProtDCal, see Additional file 9 for a tu-

torial guide.

Project home page: http://bioinf.sce.carleton.ca/ProtDCal

Operating system(s): Platform independent
Programming language: Java

Other requirements: JDK-7 or higher
License: GNU GPL
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Additional file 1: Table SM-1. Formulae and description of
3D-Thermodynamics Indices. Table SM-2. Formulae and description
of Thermodynamics Indices for Protein Sequences. Table SM-3.
Formulae and description of Topographic Indices. Table SM-4.
Compendium of structural and chemical-physical aminoacid properties.
Table SM-5. Models implemented in the Thermo&kinetics menu of
ProtDCal. Table SM-6. Aggregation operators: Norms (Metrics)
Invariants. Table SM-7. Aggregation operators: Mean (First Statistical
Moment) Invariants. Table SM-8. Aggregation operators: Statistical
(Highest Statistical Moments) Invariants. Table SM-9. Aggregation
operators: Information-Theory-based Invariants. Table SM-10. Weighting
operators (Windex) implemented in ProtDCal. Table SM-11. Summary of
the definitions of property-based groups. Table SM-12. List of PDB codes
and sequence length of the proteins used for features analyses. Table SM-13.
Explained variance results for the first 159 components of the PCA carried out
with 3D and sequence-based protein descriptors. Table SM-14. Explained
variance of the PCA carried out with extracted components of PROFEAT,
PROTEIN RECON and ProtDCal. Table SM-15. Runtime values per
descriptor per protein for different families of features.

Additional file 2: Summary of TAE (Transferable Atom Equivalent)
indices.

Additional file 3: Rotated component matrix of the PCA carried out
with sequence- and structure-based descriptors. Only the entries
whose absolute values are larger that 0.7 are shown.

Additional file 4: Summary of the Shannon entropy ranks for
different families of sequence-based descriptors.

Additional file 5: Rotated component matrix of the PCA carried out
with the factors extracted from ProtDCal, PROFEAT and PROTEIN
RECON. Only the entries whose absolute values are larger that 0.7 are
shown.

Additional file 6: Training and test sets used with the techniques:
Naive Bayes and Random Forest, for the study of N-linked
glycosylation sites.

Additional file 7: List of sequence windows in the training and test
sets used for the study of N-linked glycosylation.

Additional file 8: Weka's model files built with Naive Bayes and
Random Forest, using ProtDCal's descriptors, to predict N-linked
glycosylation sites.

Additional file 9: Tutorial guide of how to use ProtDCal program as
well as a practical example of how to train a model using
ProtDCal's features and Weka.
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