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Abstract

Background: Fuelled by the advent and subsequent development of next generation sequencing technologies,
metagenomics became a powerful tool for the analysis of microbial communities both scientifically and diagnostically.
The biggest challenge is the extraction of relevant information from the huge sequence datasets generated for
metagenomics studies. Although a plethora of tools are available, data analysis is still a bottleneck.

Results: To overcome the bottleneck of data analysis, we developed an automated computational workflow
called RIEMS – Reliable Information Extraction from Metagenomic Sequence datasets. RIEMS assigns every individual
read sequence within a dataset taxonomically by cascading different sequence analyses with decreasing stringency of
the assignments using various software applications. After completion of the analyses, the results are summarised in a
clearly structured result protocol organised taxonomically. The high accuracy and performance of RIEMS analyses were
proven in comparison with other tools for metagenomics data analysis using simulated sequencing read datasets.

Conclusions: RIEMS has the potential to fill the gap that still exists with regard to data analysis for metagenomics
studies. The usefulness and power of RIEMS for the analysis of genuine sequencing datasets was demonstrated with an
early version of RIEMS in 2011 when it was used to detect the orthobunyavirus sequences leading to the discovery of
Schmallenberg virus.
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Background
Chen and Pachter [1] defined the analysis of metagen-
omes as “the application of modern genomics techniques
to the study of communities of microbial organisms dir-
ectly in their natural environments, bypassing the need
for isolation and lab cultivation of individual species”.
Metagenomic applications are significantly supported by
the various next generation sequencing (NGS) technolo-
gies by reducing the cost per base while simultaneously
raising both the throughput and the output. All
sequencers feature a massive parallelisation in raw
sequence generation mainly differing in their sample
preparation and sequence detection method as well as in
the required run time. All these technologies enable re-
searchers and diagnosticians to answer various questions
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ranging from de novo sequencing, whole genome or
target-region resequencing, transcriptome research,
RNA sequencing and epigenomics to metagenomics [2].
The application of NGS enables unbiased and compre-
hensive sequencing of genomic material from diverse
samples, regardless of origin and composition. There-
fore, the generated sequence reads, i.e. short sequences
representing individual fragments of the input nucleic
acid molecules reflect the composition of the original
sample material both qualitatively (with regard to the
comprised species) and quantitatively (with regard to the
abundances of the detected species). In addition to
qualitative and quantitative analyses, the sequences allow
functional classification, i.e. classification with regard to
the functions predicted for any detected sequence. The
aforementioned possibilities make metagenomics a
powerful tool both scientifically and diagnostically. Di-
verse scientific applications of metagenomics are reviewed
in [3,4]. Scientifically, as mentioned before, the analysis of
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the microbial community with regard to its taxonomic
composition and metabolic capabilities is of interest. Diag-
nostic metagenomics may be applied if a causative agent
of a disease is suspected but cannot be detected by tar-
geted diagnostics. In this case, the agent may be identified
based on sequence similarities of even only a single read
to known sequences with a relation to database-listed
pathogen genomes. Hence, diagnostic metagenomics pri-
marily aims at the taxonomic classification of the se-
quences. For instance, Palacios and co-workers [5]
identified a novel virus with similarity to an old world
arenavirus as the causative agent in a study of three
patients who died of a febrile illness 4 to 6 weeks after
receiving organ transplantations from the same donor.
Another prime example for the diagnostic application of
metagenomics was the detection of Schmallenberg virus
(SBV). Here, the detection of only 7 reads with similarity
to orthobunyavirus sequences within a dataset of roughly
27,500 reads provided the necessary information for diag-
nosis, virus isolation, and finally experimental proof of
SBV as the causative agent of disease [6].
As outlined above, metagenomics has the potential to

answer diverse questions. However, analyses of the huge
datasets that are produced in metagenomics studies re-
quire enormous computing capacity for the analysis in
order to generate and extract information from the raw
sequence data. Meanwhile, complete workflows exist to
analyse metagenomic sequence data, for example MG-
RAST [7] and the EBI metagenomics service [8] (https://
www.ebi.ac.uk/metagenomics/). Moreover, comprehen-
sive lists of tools for the different analysis parts are avail-
able [3,9-11]. The workflows apply different strategies
for initial data preparation to ensure efficient analyses.
These strategies include initial clustering [12], mapping
along reference sequences [13,14], or assembling reads
into contigs (sets of overlapping reads) [15,16]. After
initial data preparation, the sequences are classified
taxonomically or functionally, again applying different
strategies using various tools.
For taxonomic classification, diverse software applica-

tions were designed which all use different algorithms
but rely on the analysis of 16S rRNA sequences. Soft-
ware enabling the comparison of datasets obtained from
different habitats is inter alia DOTUR [17]. This tool
clusters 16S rRNA sequences into operational taxonomic
units (OTUs) or phylotypes and analyses genetic dis-
tances between sequences. The principle of DOTUR was
expanded in the software SONS [18]. The application
LIBSHUFF [19] compares samples by statistical compari-
son of their 16S rRNA sequence contents. The tool
UniFrac [20] calculates evolutionary distances of mul-
tiple environments based on phylogenetic information
and multivariate statistical techniques. All these applica-
tions are limited to 16S rRNA sequences, hence only
prokaryotic sequences can be analysed. In addition to
the different aforementioned types of exclusively taxo-
nomic classifications, the tool Qiime [21] allows the
combination of OTU based taxonomic classification
with additional analyses. These additional analyses
include sequence alignments, inference of phylogenetic
trees, and phylogenetic or taxon-based analysis of diver-
sity. Like Qiime, PhyloPythia [22] also enables phylogen-
etic analyses. It uses a multiclass support vector machine
classifier with the oligonucleotide composition of
variable-length genome fragments for the generation of
phylogenetic sequence clades. For the analysis of read
sequences, PhyloPythia is rather inappropriate due to
the fact that its accuracy decreases dramatically by using
input sequences of length less than 1,000 nucleotides
[22] as is the case for reads.
Besides the rRNA based taxonomic classification of

the sequence reads, the reads can also be classified both
taxonomically and functionally based on similarity
searches at the nucleic acid or the amino acid level. Ana-
lyses at the nucleic acid sequence level are e.g. per-
formed with BLAST, HMMer, or BLAT [23-25].
Glimmer, FragGeneScan, or GeneMark [26-28] perform
assessments of open reading frames using probabilistic
models in order to rate the coding capacity of the raw
sequences. All the aforementioned applications generate
only per read results which must subsequently be further
processed to extract and summarize the relevant infor-
mation. Thereto, the software MEGAN [29] can be used
to explore the content of a complete metagenomic data-
set. MEGAN also provides results of the analysis as
graphical and statistical output thereby enabling com-
parison of different datasets.
A limitation of all taxonomic and functional binning

tools is the analysis duration due to the linear correl-
ation between analysis time and data size. To speed up
the binning, hardware improvements are possible.
Another way is to split the query data into subsets for
parallel analysis in a network of multiple servers like it is
realised in cloud computing [30] and with the software
MetaGeniE [31]. The throughput of similarity based bin-
ning can also be increased by using fast heuristic
approaches applied for instance in the UCLUST and
USEARCH algorithms [32]. However, application of
UCLUST and USEARCH is restricted by the memory
requirements for the analysis which proportionally
increases ten times with the size of the database. The
performance problem can be circumvented by using
publicly available web services like MG RAST [7] and
the EBI metagenomics analysis service [8]. Certainly,
their capacity is limited as well, leading to considerably
long duration of the analyses. Therefore, it might be
more effective to run the analysis using locally installed
applications. Moreover, in certain settings, for instance
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when dealing with confidential diagnostic data, it might
be necessary to have a local analysis running. This is for
instance possible with the recently released software
SURPI [33]. After pre-processing the reads, SURPI first
screens the query dataset for human sequences followed
in fast mode by classification of the reads as viral or bac-
terial based on reference datasets for viral and bacterial
sequences, respectively. Only in comprehensive mode,
SURPI screens the pre-processed reads against the
complete NCBI nt database and then assembles the
reads class-wise to proceed with proteome analysis based
on assembled sequences. Other software for local instal-
lation also include Readscan [34] and RINS [35], both of
which require prior knowledge in form of user input ref-
erence sequences the dataset has to be screened for. In
case of RINS, the reads are initially mapped to a user
provided custom query dataset thereafter filtered for
uniqueness and then screened for human sequences. Fi-
nally, the non-human reads are assembled and the
resulting contigs are classified using blast. Since reads
that do not map to the user provided query are
exempted from the analysis, the user will only detect
what he is explicitly looking for as defined by the query
dataset. Similarly, in the case of Readscan, it is necessary
to provide datasets classified as host and pathogen refer-
ences, respectively. The reads are aligned along these se-
quences and according to the highest percent identity
with a reference sequence the reads are finally binned
into the predefined classes. Therefore, also in case of
Readscan the user needs prior knowledge to provide
suitable pathogen and host reference datasets. The cru-
cial importance of the design of reference datasets for
the successful correct classification is stressed by the
authors of Clinical PathoScope [36]. Likewise, the au-
thors of Kraken [37] emphasize the importance of a
validated dataset to be used as the basis of the database
in use. Clinical PathoScope, like Kraken [37] and
MetaPhlAn [38], can be run locally on a unix server
from the command line and produce a comprehensive
result summary.
Taken together, although a plethora of different appli-

cations and workflows for the analyses of metagenomics
data is available, there are various limitations of these.
Most importantly, the analyses take too long, the tools
do not cover full taxonomic content (e.g. rely on rRNA
and therefore will not detect viruses), are by default
centred on human sample analysis, or they do not gener-
ate a comprehensive and clear result protocol (e.g.
BLAST) for further use. Of course, these limitations are
due to the specialized aims of the tools. Nevertheless,
the resulting obstacles need to be cleared away. There-
fore, here we present RIEMS (Reliable Information Ex-
traction from Metagenomic Sequence datasets), our
software workflow for sensitive and reliable analysis of
metagenomic datasets. Unlike a number of tools men-
tioned above, which by default assume human sample
origin for host screening, RIEMS by default neither re-
quires prior information concerning the sample origin
nor other input for read classification, e.g. to distinguish
between host and pathogen. Rather, RIEMS automatic-
ally detects the most abundant species and screens the
complete dataset for the respective sequences. For this
purpose, RIEMS combines several established software
applications. Different sequence analyses are cascaded
with decreasing stringency of the assignments to allow
for the highest possible reliability and sensitivity of the
read classifications. While the above mentioned work-
flows act linearly on the complete input datasets, i.e.
screening out host reads followed by a single round of
read assignments, RIEMS repetitively runs through de-
tection of abundant species. To this end, RIEMS repeat-
edly extracts random data subsets which are assembled
and classified and subsequently the complete dataset is
screened for the detected species. Moreover, for
unbiased taxonomic classification based on the most
similar sequence, RIEMS does not rely on restricted
databases but uses the full content of the INSDC data-
bases. As an additional analysis layer, RIEMS can switch
to amino acid sequences for the analyses of reads and
contigs remaining taxonomically unclassified after
analysis of the nucleic acid sequences. Finally, all assign-
ments are summarised in diverse output files as well as
in a clearly structured result protocol, classified taxo-
nomically. An early version of RIEMS proved the power
of its approach in 2011 when it was used to detect the
orthobunyavirus sequences leading to the discovery of
Schmallenberg virus [6].

Results and discussion
As outlined above, the aim of the presented work was to
provide a tool for the automated sensitive and reliable
taxonomic classification of all individual reads com-
prised in metagenomics sequence datasets. The flow of
the analyses performed by RIEMS including a rationale
for the combination and order of the different software
tools is described in detail in the Methods section. The
most important output of RIEMS is a tabular summary
of the classifications plus the sorted reads for further use
and additional information regarding the different ana-
lyses that were carried out.

RIEMS output
The output of RIEMS is stored per input dataset in a
separate folder containing a number of result files and
subfolders reflecting the different parts of the analysis.
In the main folder, the original input file, a progress re-
port and a result protocol listing all identified organisms
can be found. Within the folders for the various analysis
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parts, separate result files, lists of read accessions which
were assigned to taxa during the respective analyses and
files summarizing alignment information of BLAST ana-
lyses are stored.
The most important output of RIEMS is the tabular

summary of all results. This is stored in both tab-
separated values (tsv) and plain text format. This proto-
col is divided into three sections, first a paragraph of
general information, thereafter a summary of organisms
identified during the ‘basic analysis’, and finally a synop-
sis of those identified in the further analysis. The top of
Figure 1 shows the general information of the result
protocol which contains the current version of RIEMS,
start date and time of the analysis, the input file name,
and the total number of reads in the input file together
with the number of reads that passed the initial quality
filtering. The next section is a summary showing the
read length distribution of the original dataset, the reads
remaining unclassified after ‘basic analysis’ and ‘further
analysis’, respectively, as well as those that finally
remained unclassified.
The second section of the result protocol (Figure 1)

is the summary of organisms identified within the read
sequences during the ‘Basic analysis’. This section is struc-
tured according to the taxonomy at the levels of “super-
kingdom”, “family”, and “species” with one taxonomic
Figure 1 Cut-out of a result protocol of the ‘Basic analysis’. The first lin
read size distribution calculated before and after the ‘Basic analysis’ as well
number of reads assigned to the detected species grouped at the domain
results for mapping, assembly, and BLAST showing the number of reads de
range of identities of the read with the best hit in the database.
entity per line. The leading columns contain the taxo-
nomic information given as the taxonomy IDs from the
NCBI taxonomy database, the last column shows the sci-
entific name of the entity. For every entity, the total num-
ber of reads assigned to this entity and besides this
information, a breakdown of the numbers of reads
assigned by the different combinations of tools and data-
bases is given. For all BLAST results, the protocol contains
information of the sequence identities of the query, i.e. the
read sequence, and the best hit. If more than one read is
classified into that taxonomic entity by the respective
BLAST, the sequence identities are given as the range of
the lowest and the highest identity. Additionally, the num-
ber of reads that potentially are viral sequences assigned
to a eukaryote by the mapping is indicated in a dedicated
column. The second section ends with a summary of the
numbers of reads and contigs that could not be assigned
during the ‘basic analysis’.
The third section of the result protocol contains infor-

mation of the ‘Further analysis’, again the results are
structured taxonomically with an identical representa-
tion as in section 2 (‘Basic analysis’). Section 3 is subdi-
vided in two parts (Figures 2 and 3). The first part of
section 3 (Figure 2) is a summary of the nucleotide blast
analyses (both megablast and blastn) without the low
complexity filter. Besides the nucleotide blast results, the
es show general information concerning the analysis, followed by a
as calculated after the ‘Further analysis’. The lower part displays the
and family levels. The central columns individually represent the
tected by the respective tool. Blast results are accompanied by the



Figure 2 Cut-out of a result protocol of the ‘Further analysis’ for reads. The first lines show general information of date, version, sample,
and the number of reads used as input for the analysis. The following table displays the number of reads assigned to the detected species
structured at the domain and family levels. The central columns individually display the number of reads detected by the different BLAST
analyses. Blast results are accompanied by the range of identities of the read with the best hit in the database.
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results of the blastp analyses of the amino acid se-
quences deduced from reads is summarized. Like in the
second section (results of the ‘Basic analysis’), the iden-
tities of the query with the hit sequences are given. Part
two of section 3 (Figure 3) displays the assignments of
ORFs detected in the contigs that were assembled dur-
ing the ‘Basic analysis’ but remained unassigned. For the
contigs, the table lists information about the assigned
ORF in addition to the numbers of sequences assigned
to the respective taxon and the sequence identities. The
ORF information encompasses the ORF identifier, the aa
range that was identified, the identity of the identified aa
Figure 3 Cut-out of a result protocol of the ‘Further analysis’ for cont
table displays the BLASTp hits for ORFs deduced from the nucleotide sequ
nucleotide sequence analyses. The ORFs are assigned to species and the re
Additional columns show information about the deduced aa sequence and
sequence with the subject sequence, the ORF length (co-
dons), the position of the ORF within the contig, and
the length of the contig. Part 2 of section 3 ends with a
list of the total number of unassigned reads and contigs
plus the number of reads assembled into these contigs.
Below the results, a short description of the protocol
and the finishing date and time are listed.

Validation and evaluation of RIEMS
RIEMS was tested with respect to its accuracy and ro-
bustness of the assignments and with respect to its per-
formance, i.e. the time necessary for complete analysis,
igs. The first line shows the number of contigs analysed. The following
ences of contigs that could not be taxonomically classified by
sults are structured according to taxonomic domain and family levels.
the alignment.
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using genuine 454 sequencing as well as simulated
sequencing datasets. The simulated datasets were
composed of (partial) genome sequences of six bac-
terial species, three viruses, and two eukaryotes
(Table 1). These genomes were split into overlapping
fragments with length distributions equal to those
from 454 pyrosequencing. The resulting approxi-
mately 90,000 simulated reads were combined into a
single dataset. In addition, we used a simulated data-
set from the Clinical PathoScope project (http://
sourceforge.net/projects/PathoScope) for validation.
This dataset comprises 10,000,000 reads of each 100
nucleotides length representing human, bacterial and
viral sequences.

Validation
The accuracy of RIEMS was first assessed using our sim-
ulated sequencing dataset. All species originally repre-
sented in the dataset were detected. The assignments of
reads representing eukaryotes (10,255 reads) and viruses
(538 reads) were carried out with 100% specificity and
close to 100% sensitivity (Table 2). Assignments of reads
generated from bacterial sequences (79,592 reads)
showed a slight decrease with regard to sensitivity
(median 98.7%, minimum 96.6%, maximum 100%) and
specificity (99.1% to 100%; Table 2). Here, additional
species were identified (see Additional file 1: Table S1).
This is caused by highly homologous sequences found in
different bacterial species due to direct relations of the
species and/or horizontal gene transfer. Assessment of
the accuracy using the Clinical PathoScope dataset
resulted in similar figures (Table 3). In this case, we used
the pre-screening feature of RIEMS to screen the sample
for reads representing human sequences. The specificity
of the classifications was 100% except for human
sequences (99.1%), the median sensitivity was
Table 1 Detailed information of sequences used to generate
comparison

Domain Sequence description

Bacteria Bacillus anthracis str. CDC 684 chromosome

Escherichia coli O104:H4 str. 2011C-3493 chromosome

Burkholderia mallei SAVP1 chromosome I

Clostridium botulinum BKT015925 chromosome

Staphylococcus aureus 08BA02176 chromosome

Yersinia pestis A1122 chromosome

Viruses Akabane virus segment M

Newcastle disease virus isolate 2009_Mali_ML008

Influenza A virus (A/muscovy duck/Vietnam/LBM295/2012(H5
complete sequence

Eukaryota Bos taurus DNA sequence from clone CH240-405I18

Canis lupus familiaris clone rp81-289 m11
determined as 97.8% (minimum 15%, maximum 99.7%;
Table 3). The minimum sensitivity was reached for In-
fluenza A virus where 83% of the reads were classified
as synthetic construct, all representing synthetic Influ-
enza A virus constructs, nevertheless not counted as
correctly identified.
Furthermore, we evaluated the robustness of RIEMS

with the simulated sequencing dataset to simulate a
situation in which novel species are comprised in the
sample. To this end, the Emboss tool ‘msbar’ [39] was
used to introduce five random mutations per read (in-
sertions, deletions, substitutions), resulting in an error
rate between 1% and 10%, depending on the read
length. A total of 90,378 of the modified artificial reads
were assigned and only 7 reads (<0.008%) remained
unassigned. As for the original simulated sequencing
dataset, all species originally comprised were identified
correctly despite the introduced deviations. Again,
some additional species were detected (Additional file 1:
Table S1). Altogether, the modified sequences were
assigned with a median specificity of 100% (minimum
specificity 99.2%; Table 2) and a median sensitivity of
99.6%. Like for the original sequences, the sensitivity
was higher for eukaryotic and viral sequences (median
100%, minimum 99.6%; Table 2) than for the bacterial
sequences (median 98.8%, minimum 97.0%, maximum
99.9%; Table 2). Hence, neither the sensitivity nor the
specificity of RIEMS classification are significantly
compromised by deviations from known related
sequences.

Performance
In order to determine the efficiency of RIEMS, different
datasets were analysed both using RIEMS and as a
benchmark blastn [23] because the classifications of
both are nearly identical. Both analyses were run on the
the simulated sequencing dataset for validation and

Genbank identifier Accession

227812678:c1-285375 NC_012581.1

407479587:c1-457939 NC_018658.1

121598179:c1-586553 NC_008785.1

331268188:c1-461407 NC_015425.1

404477334:c1-460546 NC_018608.1

384137007:c1-457660 NC_017168.1

157939617:c1-4309 NC_009895.1

355467763:c1-15027 JF966387.1

N1)) viral cRNA, segment 7, 464101994:c1-992 AB807883.1

445065096:c1-177923 FO393397.2

34787525:c1-193729 AC129099.6

http://sourceforge.net/projects/PathoScope
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Table 2 Results of RIEMS validation using our simulated sample dataset with original (upper half) and deviating (lower half) sequences

Input species True
positive

False
positive

True
negative

False
negative

Unclassified Sensitivity Specificity Positive predictive
value

Negative
predicitive value

Correct classification
rate

False classification
rate

Original
sequences

Bacillus anthracis 12774 731 76880 0 0 100 99.06 94.59 100 99.19 0.81

Burkholderia
mallei

16092 102 74129 62 0 99.62 99.86 99.37 99.92 99.82 0.18

Clostridium
botulinum

12300 0 77649 436 0 96.58 100 100 99.44 99.52 0.48

Staphylococcus
aureus

12425 0 77678 282 0 97.78 100 100 99.64 99.69 0.31

Escherichia coli 12289 0 77761 335 0 97.35 100 100 99.57 99.63 0.37

Yersinia pestis 12551 0 77788 46 0 99.63 100 100 99.94 99.95 0.05

Newcastle
disease virus

418 0 89967 0 0 100 100 100 100 100 0

Akabane virus 119 0 90266 0 0 100 100 100 100 100 0

Influenza A virus 1 0 90384 0 0 100 100 100 100 100 0

Bos taurus 4906 0 85476 3 2 99.94 100 100 100 100 0

Canis lupus 5346 0 85039 0 0 100 100 100 100 100 0

Deviating
sequences

Bacillus anthracis 12762 633 76978 12 0 99.91 99.18 95.27 99.98 99.29 0.71

Burkholderia
mallei

16055 79 74152 99 0 99.39 99.89 99.51 99.87 99.8 0.2

Clostridium
botulinum

12358 1 77648 378 0 97.03 100 99.99 99.52 99.58 0.42

Staphylococcus
aureus

12484 1 77677 223 0 98.25 100 99.99 99.71 99.75 0.25

Escherichia coli 12400 0 77761 224 1 98.23 100 100 99.71 99.75 0.25

Yersinia pestis 12529 0 77788 68 1 99.46 100 100 99.91 99.92 0.08

Newcastle
disease virus

418 0 89967 0 0 100 100 100 100 100 0

Akabane virus 119 0 90266 0 0 100 100 100 100 100 0

Influenza A virus 1 0 90384 0 0 100 100 100 100 100 0

Bos taurus 4887 0 85476 22 5 99.55 100 100 99.97 99.98 0.02

Canis lupus 5346 0 85039 0 0 100 100 100 100 100 0
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Table 3 Results of RIEMS validation using the Clinical PathoScope simulated sample dataset

Input species True
positive

False
positive

True
negative

False
negative

Unclassified Sensitivity Specificity Positive predictive
value

Negative predicitive
value

Correct classification
rate

False classification
rate

Haemophilus
influenzae

344646 17 9643530 7010 3 98.01 100 100 99.93 99.93 0.07

Homo sapiens 8975152 8541 986662 24848 7 99.72 99.14 99.9 97.54 99.67 0.33

Human
mastadenovirus B

59289 0 9931563 4351 0 93.16 100 100 99.96 99.96 0.04

Human bocavirus 9 0 9995193 1 0 90 100 100 100 100 0

Human coronavirus
NL63

24375 0 9970203 625 5 97.5 100 100 99.99 99.99 0.01

Enterovirus A 911 0 9994203 89 0 91.1 100 100 100 100 0

Human respiratory
syncytial virus

9855 0 9985203 145 56 98.55 100 100 100 100 0

Rhinovirus C 241 0 9994953 9 0 96.4 100 100 100 100 0

Influenza A virus 15 0 9995103 85 0 15 100 100 100 100 0

Moraxella catarrhalis 169607 7 9823264 2325 1 98.65 100 100 99.98 99.98 0.02

Streptococcus
pneumoniae

193919 18 9800120 1146 0 99.41 100 99.99 99.99 99.99 0.01

Streptococcus
intermedius

175739 47 9818606 811 0 99.54 100 99.97 99.99 99.99 0.01
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same server with identical conditions using the max-
imum number of available cores (n = 24). Five different
datasets were used for benchmarking; three of these
were simulated sequencing datasets comprising 79,592,
90,385, and 10,000,000 reads, respectively, and two
genuine sequencing datasets (13,816 reads; 247,833
reads). The simulated datasets were the same that were
used for the validation. The results of the comparison
are shown in Figure 4. While RIEMS classified 99.9%
of the 13,816 genuine reads within only 6 minutes,
blastn analysis [23] (NCBI nt database) of the same
dataset required approximately 10 hours. Extending
the dataset roughly linearly increases the duration of
blastn analyses due to the approximately linear correl-
ation between the number of sequences and blastn
duration. Therefore, the time necessary for the blastn
analyses of the larger datasets was extrapolated. Unlike
blastn, an increase of the sequence volume does not
necessarily cause an increase of the time necessary to
analyse the data using RIEMS. RIEMS analyses of
79,592; 90,385; 247,833; and 10,000,000 reads, respect-
ively, always classified ≥99.9% of the reads and took
between one and two hours, except for the Clinical
PathoScope simulated sample dataset (with default set-
tings 46 hours; by performing an optional pre-
screening for human sequences, the duration could be
reduced to approximately 19 hours; Figure 4). In
conclusion, using RIEMS, there is no direct correlation
between the number of sequences and the analysis
time, but the duration mainly depends on the com-
plexity of the dataset.
Figure 4 Comparison of the analysis duration of RIEMS and blastn an
the NCBI nt database. For all datasets, RIEMS classified 99.9% of all reads. Fo
from the dataset with 13,816 reads.
Comparison with other software
RIEMS was compared with web-based workflows and
other software running locally, all representing different
concepts of the program structure and different classifi-
cation algorithms for the analysis of metagenomic data-
sets. A major reason for inclusion in the comparison
was that the software like RIEMS does not require user
provided prior knowledge. Moreover, since the crucial
importance of validated reference datasets has been
stressed [36,37], we restricted the comparisons to tools
for which the necessary validated databases are pro-
vided. Namely, we used the web-services MG-RAST [7]
and EBI metagenomics [8] to analyse the simulated
sequencing dataset of 90,385 reads and the programs
Kraken [37], Clinical PathoScope [36], and the MetaPh-
lAn clade specific marker database [38] for the analysis
of our simulated dataset and the Clinical PathoScope
simulated dataset.
Comparison of RIEMS and the 2 web-services was

hampered by the fact that these do not provide classifi-
cations per read but only overall figures. For both MG-
RAST and EBI Metagenomics only the simulated read
dataset of 90,385 original reads was used. The MG-
RAST [7] results were formatted to resemble the RIEMS
results as far as possible (assignments were limited to
the best hit; annotation source set to ‘GenBank’ with a
maximum e-value cut-off of 10−4; minimum percentage
identity cut-off 60%; minimum alignment length cut-off
15; result table grouped according to families). MG-
RAST classified nearly 100% of the reads with an overall
accuracy of approximately 90% at the read to family
alysis. All computations were performed locally using 24 cores and
r the larger datasets, the duration of blastn analysis was extrapolated
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level. Except the Canidae, all families comprised in the
dataset were detected but only a few hundreds instead of
thousands of reads were assigned to the Bovidae. How-
ever, MG-RAST assigned more reads than actually
present in the dataset to bacterial families except the
Bacillaceae. In contrast, too few reads were assigned to
the virus families Paramyxoviridae and Bunyaviridae by
MG-RAST. Furthermore, 4,701 simulated sequencing
reads were assigned to 130 families not being part of the
original data. For a more detailed comparison of the
RIEMS and the MG-RAST results please refer to
Additional file 1: Table S2. For the second comparison,
the simulated sequencing dataset of 90,385 reads was
analysed by the EBI metagenomics service [8]. Compari-
son of the results of RIEMS and EBI metagenomics is
hampered by the different classification strategies and
data output structures. Most notably, RIEMS does not
perform any functional analysis like EBI metagenomics
does. On the contrary, EBI metagenomics taxonomic
analyses are performed by QIIME [21] only based on the
detected 16S rRNA sequences. Hence, EBI metage-
nomics did not identify a single viral sequence com-
prised in the dataset. In order to enable the comparison
of the results, 488 16S rRNA sequences comprised in
the original dataset of 90,385 reads were selected and
analysed using RIEMS. Subsequently, the assignments of
reads to OTUs by EBI metagenomics or to taxonomic
classes by RIEMS were compared (Table 4). RIEMS clas-
sified all reads except one correctly; the only falsely clas-
sified read belonging to the bacilli was classified to the
betaproteobacteria. EBI metagenomics [8], i.e. QIIME
[21], also assigned the majority of the clostridial and
betaproteobacterial reads to the correct OTUs (deviation
Table 4 Comparison of RIEMS and EBI metagenomics results

Assignme

16S rRNA reads comprised RIEMS

Class absolute % Reads det

absolute

Bacilli 387 79.3 386

Clostridia 51 10.5 51

Unknown firmicutes - - -

Alphaproteobacteria - - -

Betaproteobacteria 50 10.3 51

Unknown proteobacteria - - -

Unknown bacteria - - -

Assigned 488

Unassigned - 0

Total 488 100.0 488

For this comparison a data subset of 488 16S rRNA sequences comprised in the sim
between the percentage of the respective assignments and the percentage in the o
less than 1%). However, for the bacillal sequences, with a
deviation of 47% the accuracy of the OTU assignments
was rather low. These reads were grouped to the alpha-
proteobacteria, unknown firmicutes, unknown proteo-
bacteria, or unknown bacteria (Table 4).
The analyses run locally using Kraken, Clinical Patho-

Scope, and the MetaPhlAn approaches are substantially
faster (analyses duration in the range of minutes) than
RIEMS (hours) (see Additional file 1: Table S3). All tools
detected all species targeted by the prebuilt validated
databases provided by the respective authors. Based on
the read to species assignments, all 4 programs had
specificities close to 100% for all analysed species they
target. However, the results for both simulated datasets
revealed substantial differences in the sensitivities of the
different software in combination with the provided da-
tabases (Figure 5) for the different species comprised in
the datasets. These differences are most likely caused by
the databases we used since restricted databases gener-
ally cause a reduced sensitivity [31]. Additionally, our
results imply that a restriction of the analysis to only
bacteria or bacteria plus viruses poses a problem because
a huge proportion of the reads may be left unclassified
and hence no information may be available whether
these reads represent host sequences or novel microor-
ganisms leaving a substantial portion of uncertainty.
Noteworthy, the sensitivity of Clinical PathoScope sub-
stantially decreased when analysing the dataset com-
prising sequences deviating between 1% and 10% from
the original sequences (compare Figures 5A and B).
Therefore, in the case of novel sequences with too low
similarity with the chosen references these novel
sequences will not be classified.
nts by

EBI Metagenomics

ected Deviation
(basis point)

OTUs detected Deviation
(basis point)% absolute %

79.1 0.2 27 33.3 46.0

10.5 0.0 8 9.9 0.6

- - 2 2.5 2.5

- - 3 3.7 3.7

10.5 0.2 8 9.9 0.4

- - 2 2.5 2.5

- - 30 37.0 37.0

100 80 98.7

0.0 1 1.3

100 81 100

ulated sequencing dataset was used. The deviation is presented in basis point
riginal dataset.



Figure 5 (See legend on next page.)
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Figure 5 Comparison of the sensitivities of RIEMS, Clinical PathoScope, Kraken, and Megablast against the MetaPhlAn clade specific
marker database. The plots show the sensitivities calculated from the read to species assignments using the three simulated sample datasets.
(A) Our simulated sample comprising 90,385 reads representing original sequences derived from viral, bacterial, and eukaryotic genome
sequences (see Table 1). (B) The same dataset as used in (A) but with 5 deviations per read. (C) The Clinical PathoScope simulated
sample dataset.
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To test the suitability of the different tools in combin-
ation with the databases provided by the authors for the
classification of novel sequences, we constructed a data-
set of 2,827 genuine Illumina MiSeq reads (FASTQ for-
matted) representing 2 novel viruses from our
unpublished sequencing projects. Only reads were
chosen that were previously assembled into the respect-
ive genomes and could unambiguously be identified as
viral sequences. The chosen viruses are not yet classified
by the International Committee on Taxonomy of Viruses
but additional experimental evidence exists regarding
their taxonomic classification. Their genome sequences
are not available in the sequence databases and viruses
and sequences will be published elsewhere. These reads
were analysed with Kraken, Clinical PathoScope, and
RIEMS; the MetaPhlAn clade specific marker database
was not used because this only targets bacteria but not
viruses. Using the NCBI nt database (as of 30.09.2014)
which does not comprise the respective sequences,
RIEMS classified all 2,827 reads correctly (read to spe-
cies classification) at the nucleotide sequence level.
Additional analyses at the aa level were not necessary.
On the contrary, both Kraken and Clinical PathoScope
classified none of the reads at all.

Analysis of genuine sequencing datasets
Throughout the development of RIEMS, the workflow
was used to analyse experimental and diagnostic data-
sets. In all cases, the relevant information from these
datasets could be extracted and used for the identifica-
tion of viruses, for complete genome assemblies, or as
references to set up specific real-time RT-PCR assays.
In order to compare RIEMS with other analysis strat-

egies, datasets from two published studies were re-
analysed. First, raw data from a study in which a new
avian bornavirus (ABV) was identified [40] were
analysed. This dataset consisted of approximately
121,000 reads. RIEMS required less than 1.5 hours for
the detection of reads and contigs representing the new
ABV variant. Here, based on the deduced amino acid
sequences the ‘Further analysis’ unambiguously identi-
fied the genome as a viral sequence belonging to the
species avian bornavirus within the family bornaviridae
although the identity of the newly detected with known
ABV genome sequences was too low to be identified by
nucleotide sequence analyses. Secondly, data from a
study of Sachsenröder and co-workers [41] were
analysed. The authors of this study identified a pig stool-
associated circular ssDNA virus (PigSCV). RIEMS ana-
lysis of this second dataset (approx. 70,000 reads) gained
equivalent results with regard to the identified organisms
and viruses including the new PigSCV. Also in combin-
ation with sample preparation specifically targeting
sequencing to viral nucleic acids, data analysis using
RIEMS proved to be useful and powerful [42].
Most importantly, RIEMS analysis of sequences gener-

ated from diagnostic samples from cows with undiag-
nosed disease and unspecific symptoms yielded seven
orthobunyavirus reads with low identity to Akabane
virus sequences amongst ca. 27,000 reads within one
hour. These reads provided the initial hint for the identi-
fication of the novel Schmallenberg virus [6]. The
sequences of the identified viral reads were easily
retrieved from the complete dataset and were used for
the development of a specific real-time RT-PCR assay.
Using this RT-qPCR assay, the detected virus was con-
firmed as the causative agent and the spread of the virus
could be determined.

Conclusions
While sequencing capacities are steadily increasing and
simultaneously the price per base is decreasing, there is
a substantial lack in powerful tools for efficient data
analysis. Meanwhile, the bottleneck of exploiting the full
potential of NGS is determined by data analysis capaci-
ties. Especially the analysis of metagenomics datasets is
complex and time consuming. Although various tools
and strategies were published and are publicly accessible,
the available capacities are not sufficient. Moreover, the
tool of choice depends on the aim of the study. All exist-
ing tools and pipelines have their strengths and short-
comings. A general issue seems to be incorrect
classification of reads to species. All software programs
tested in this study did classify reads incorrectly. This is
an intrinsic problem of sequence classification caused by
high degrees of identity between the genomes of differ-
ent strains and even between different related species.
However, the specificity of the read classifications is not
the major problem but rather the sensitivity seems to be
an issue. The reduced sensitivity in a number of settings
for the analysis of unbiased metagenomics sequence data
is caused by the fact that they don’t do unbiased data
analysis due to restricted reference databases. This
causes a substantial loss in sensitivity especially for the
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classification of sequences with only limited similarity to
known sequences. Here, RIEMS has the potential to fill
the gap that still exists. All comparisons showed a high
sensitivity for RIEMS analyses and at the same time a
high specificity. With its only very limited software
dependencies RIEMS is suitable for local installation,
thereby minimizing the need to transfer huge datasets
via the internet and helping to maintain data confidenti-
ality. Moreover, the output of RIEMS is clearly struc-
tured taxonomically and the sorted sequence reads can
easily be used for successive analyses. This allows the
integration of RIEMS analysis into existing workflows,
for instance sorting the raw data prior to assembly. Of
course, the combination of RIEMS with various other
tools for metagenomics analyses is possible, enabling the
quick and comprehensive characterization of metage-
nomics datasets.
Methods
Implementation, integrated software and databases
RIEMS is implemented as a unix shellscript written in
bourne-again shell (bash). The script files are available
under the GNU General Public License Version 3 to-
gether with the validation datasets and the “novel viruses
dataset” at http://www.fli.bund.de/no_cache/en/startseite/
institutes/institute-of-diagnostic-virology/labs-working-
groups/laboratory-for-ngs-and-microarray-diagnostics.
html. RIEMS only relies on validated standard software
and databases. All software applications are installed on a
local server (specifications see below). RIEMS has access
to the 454 genome sequencer software suite (works with
version 2.6 and later; Roche, Mannheim, Germany; avail-
able free of charge after registration at http://454.com/
contact-us/software-request.asp), in particular the assem-
bler Newbler and the GS reference mapper as well as the
standard flowgram format (sff) and the FASTA nucleic
acid (fna) tool commands. Furthermore, the NCBI BLAST
software suite (version 2.2.26+; available at ftp://ftp.ncbi.
nlm.nih.gov/blast/executables/blast+/) and the NCBI data-
bases (available at ftp://ftp.ncbi.nlm.nih.gov/blast/db/) for
nucleotide (nt), protein (nr), and taxonomy are integrated
[23]. In addition, the Emboss software package (version
6.3.1; http://emboss.sourceforge.net/download/) [39] is in-
cluded, in particular the applications for open reading
frame (ORF) detection and amino acid translation. All
software applications are used with default settings. The
BLAST hit selection is based on the e-value (cut-off
0.001); the hit with the lowest e-value is selected. RIEMS
accepts sequences input in the common sequence formats
sff (as generated by Lifetechnologies IonTorrent and 454/
Roche Genome Sequencers), FASTQ (for instance
Illumina), or FASTA; in case of FASTA files preferably
in combination with the corresponding quality files.
Hardware and operating system
RIEMS and all necessary applications are installed locally
on a server equipped with four Intel Xeon E7450 proces-
sors (each 6 cores with a frequency of 2400 MHz) and
64 GB PC2-5300 (DDR2-667 MHz) ECC RAM. The ser-
ver is linked with 2 × 4 Gbit/s ports to the storage area
network. The operating system is CentOS release 5.10
with Linux kernel release 2.6.18-371.1.2.e15.

Delineation of RIEMS data processing
A general overview of the RIEMS pipeline is depicted in
Figure 6. RIEMS is subdivided into a ‘Basic analysis’
which taxonomically assigns the bulk of the dataset and
a ‘Further analysis’ dealing with all sequences remaining
taxonomically unassigned after the ‘Basic analysis’. Both
the basic and the further analysis follow the general
strategy of sequentially applying different tools with
decreasing stringency in order to achieve a fast and reli-
able overall analysis. After both the basic and the further
analysis are finished, all results are summarized in a
spread sheet arranged taxonomically.
Prior to all analyses, all reads are quality trimmed for

high reliability of the final classifications. For this pur-
pose, the GS reference mapper application is used which
intrinsically performs a quality trimming. Thereto, a
poly-A sequence of 120 nucleotides in length is gener-
ated and used as reference for a mapping (Figure 6). The
trim points which are determined during this quick
initial mapping are then used as fixed trim points in all
analyses. In parallel, a pre-screening of the dataset
against a user provided reference set can optionally be
performed like shown in the analyses of the Clinical
PathoScope dataset (Figure 4).

Basic analysis
The main steps of the ‘Basic analysis’ (Figure 6B) are
identification of the sample background, assignment of
reads to the background species, identification of further
abundant species in the remaining dataset and a final
blast analysis with decreasing stringency, first using
megablast followed by blastn.
The first step of the actual analysis is the identification

of the sample background, i.e. the species the bulk of the
reads can be assigned to. For this purpose, a subset of
5,000 reads is randomly extracted from the trimmed
reads and assembled into contigs using the 454 newbler
assembler. Subsequently, the resulting contigs are
analysed using megablast against the NCBI nucleotide
database “nt” (all GenBank + EMBL +DDBJ + PDB se-
quences) [23]. Based on GenBank identifiers (GIs) of the
best hits, the associated taxonomy IDs of the corre-
sponding species are determined in the NCBI taxonomy
database. This information is used to retrieve all
sequences of each detected species from the nucleotide

http://www.fli.bund.de/no_cache/en/startseite/institutes/institute-of-diagnostic-virology/labs-working-groups/laboratory-for-ngs-and-microarray-diagnostics.html
http://www.fli.bund.de/no_cache/en/startseite/institutes/institute-of-diagnostic-virology/labs-working-groups/laboratory-for-ngs-and-microarray-diagnostics.html
http://www.fli.bund.de/no_cache/en/startseite/institutes/institute-of-diagnostic-virology/labs-working-groups/laboratory-for-ngs-and-microarray-diagnostics.html
http://www.fli.bund.de/no_cache/en/startseite/institutes/institute-of-diagnostic-virology/labs-working-groups/laboratory-for-ngs-and-microarray-diagnostics.html
http://454.com/contact-us/software-request.asp
http://454.com/contact-us/software-request.asp
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
http://emboss.sourceforge.net/download/


Figure 6 Flow diagram of RIEMS. (A) Main steps of RIEMS analysis. (B) Succession of analyses within the ‘Basic analysis’ (C) Principal steps of
the ‘Further analysis’. For details see text.
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database. Successively, each of these sequence sets is
first used as reference for a mapping and thereafter a
megablast [23] analysis in which reads excluded from
the mapping due to length restriction or partially
mapped reads are included (a detailed depiction of the
repetitive taxonomy based sequence retrieval and align-
ment procedure can be found in Additional file 1:
Figures S1, S2, and S3). In case an identified organism is
a eukaryote, all reads that were classified to this organ-
ism by mapping are blasted against a partial database
containing only viral sequences in order to identify viral
reads potentially classified as eukaryotic reads due to
viral sequences which may be part of eukaryotic
genomes (Additional file 1: Figure S3). All reads that
were classified in one of these steps are exempted from
subsequent analyses. This procedure (generating and as-
sembling a random sequence subset, followed by
BLAST, sequence retrieval and mapping plus scanning
for viral sequences) is repeated with the remaining un-
assigned reads until either no new species are identified
by blasting the generated contigs or no new contigs can
be assembled. This repeated procedure enables a rapid,
automatic breakdown of the dataset without user pro-
vided knowledge of the organisms making up the sample
background.
If after the initial repeated background analyses more

than 10,000 reads are still unassigned and cannot be as-
sembled into contigs, another random sub-setting
process is initiated. However, in this process, only 100
reads are taken from the remaining unassigned reads
and are analysed directly using megablast [23] without a
prior assembly. The taxonomy IDs of the hits are deter-
mined according to their GenBank Identifiers (GIs)
obtained from the BLAST result. Only if more than
eight reads are assigned to the same taxonomy ID the
corresponding sequences are retrieved from the
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nucleotide database and used as reference for a map-
ping and a subsequent megablast analysis like in the
initial background analysis (Additional file 1: Figures S2
and S3).
All reads that remain unassigned after the initial

screening are assembled into contigs. Reads that
remained unassembled in this step are assigned to the
contigs by megablast if at least 80% of the bases can be
aligned to the contig. Subsequently, all contigs are
searched against the local nucleotide database using
blastn [23]. If BLAST aligns contigs only partially and
the unaligned part consists of more than 30 consecutive
nucleotides, this unaligned part is again searched in the
database by blastn. Based on the assignment of a contig
to an organism, reads that were aligned to that contig by
megablast are assigned to the respective organism as
well (Additional file 1: Figure S4). Unassigned and par-
tially assigned contigs are saved in a file for the further
analysis (see below).
Those reads that were neither assembled into a contig

nor assigned to a contig by megablast in the previous
assembly step are sequentially investigated by multiple
BLAST analyses. The first of these BLAST analyses is a
megablast against a database encompassing the nucleo-
tide sequences of all organisms that were identified in
the partial datasets and used as references for mappings.
Secondly, the remaining unassigned reads are searched
in the NCBI nt database again using megablast. Finally,
blastn is used to search the unaligned remainder in the
NCBI nt database. In all of these BLAST searches, un-
aligned parts of more than 30 consecutive nucleotides of
partially aligned reads are searched a second time
(Additional file 1: Figure S5).

Further analysis
The ‘Further analysis’ can optionally be executed and
starts with additional nucleotide BLAST analyses of the
reads. Then, for the subsequent analyses the sequence
type is switched to the amino acid sequences coded by
the sequences that remained unassigned (reads and con-
tigs). Due to the higher information content of the 20
letter amino acid alphabet, usually additional sequences
can be classified.
The initial nucleotide read sequence analyses within

the ‘Further analysis’ are performed without low com-
plexity filtering first using megablast and subsequently
blastn both searching in the NCBI nt database. Deactiva-
tion of the low complexity filter further decreases the
stringency of the assignments because even low com-
plexity regions of the sequences are considered
(Additional file 1: Figure S6). Hence, there is the chance
that additional reads can be classified.
The next step is the translation of the unclassified

reads (Emboss sixpack [39]) and contigs (Emboss getorf
[39]) into amino acid sequences in all six frames. The
only limitation we apply is a lower size cut-off of 20
amino acids because shorter peptide sequences cannot
be analysed by blastp to yield a truly significant result;
hence all ORFs with a minimum length of 20 codons are
translated independently of start codons until reaching a
stop codon. These settings assure that even in the case
of sequencing noise causing non-sense mutations by in-
sertions, deletions or single base exchanges the coded aa
sequences can be analysed at least as partial sequences.
In the case of short reads, i.e. Illumina HiSeq style reads,
the lower size cut-off of 20 aa still permits their analysis.
The deduced amino acid sequences are binned accord-
ing to their length in order to select the proper substitu-
tion matrices for blastp according to [43,44] (<35 amino
acids PAM-30, 35 – 50 amino acids PAM-70, 50 – 85
amino acids BLOSUM-80 and >85 amino acids BLOSUM-
62). For contigs, all deduced aa sequences are analysed by
blastp vs. NCBI nr database (Additional file 1: Figure S7).
Blastp analyses (vs. NCBI nr database) of aa sequences de-
duced from reads (Additional file 1: Figure S8) start with
the longest sequences translated from the reads, and only
proceeds with the next shorter aa sequence deduced from
that read if no hit was found in the database. If a similar
aa sequence was detected all additional aa sequences for
the respective read are exempted from further blast
analyses.

Comparison with other software tools
For the comparison of RIEMS with other tools with re-
gard to sensitivity and specificity, we used Kraken [37]
with the available Kraken Minidatabase (as of
30.09.2014), Clinical PathoScope [36] (v. 1.0.3, and data-
base as of 30.09.2014) and the MetaPhlAn Clade Specific
marker BLAST database [38] (as of 30.09.2014) in com-
bination with Megablast for read classification; all three
were used with default settings as recommended by the
respective authors in combination with the validated
databases provided at the project websites. For the com-
parisons we used different datasets, namely our simu-
lated sample (see Table 1) with and without deviations, a
small dataset comprising roughly 2,800 genuine Illumina
MiSeq reads representing 2 different novel viruses, and
the simulated sample #1 from the Clinical PathoScope
project (http://sourceforge.net/projects/PathoScope). Here
we had to modify the read accessions of reads represent-
ing Streptococcal sequences, because the authors didn’t
label the reads according to the two different Streptococ-
cal species present in the dataset. This was done by
majority according to the classifications of the 4 tools in
use. Roughly 4800 reads had to be discarded because of
inconclusive classifications. Like RIEMS, the three tools put
out read-wise classifications which were analysed using R
(v3.1.0) [45] and R-Studio (v 0.98.507; RStudio, Inc.

http://sourceforge.net/projects/PathoScope
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www.rstudio.com) to calculate the sensitivity and specificity.
To enable a robust comparison of the different tools, classi-
fications were consolidated to the species level and only un-
ambiguous read-to-species classifications were taken into
account. In case of Clinical PathoScope, reads longer than
100 bases are by default split into fragments; RIEMS has
the capability to split reads if only partial matches occur. In
both cases, results obtained for the sub-sequences were
consolidated at the read level and again only counted if the
results were unambiguous.
Additional file

Additional file 1: Supplementary figures and tables. The file contains
the supplementary Figures S1 – S8 and the respective figure legends
and supplementary Tables S1 – S3.
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