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Background: Barcode multiplexing is a key strategy for sharing the rising capacity of next-generation sequencing
devices: Synthetic DNA tags, called barcodes, are attached to natural DNA fragments within the library preparation
procedure. Different libraries, can individually be labeled with barcodes for a joint sequencing procedure. A
post-processing step is needed to sort the sequencing data according to their origin, utilizing these DNA labels. The
final separation step is called demultiplexing and is mainly determined by the characteristics of the DNA code words

Currently, we are facing two different strategies for barcoding: One is based on the Hamming distance, the other uses
the edit metric to measure distances of code words. The theory of channel coding provides well-known code
constructions for Hamming metric. They provide a large number of code words with variable lengths and maximal
correction capability regarding substitution errors. However, some sequencing platforms are known to have
exceptional high numbers of insertion or deletion errors. Barcodes based on the edit distance can take insertion and
deletion errors into account in the decoding process. Unfortunately, there is no explicit code-construction known that

Results: In the present work we focus on an entirely different perspective to obtain DNA barcodes. We consider a
concatenated code construction, producing so-called watermark codes, which were first proposed by Davey and
Mackay, to communicate via binary channels with synchronization errors. We adapt and extend the concepts of
watermark codes to use them for DNA sequencing. Moreover, we provide an exemplary set of barcodes that are
experimentally compatible with common next-generation sequencing platforms. Finally, a realistic simulation
scenario is use to evaluate the proposed codes to show that the watermark concept is suitable for DNA sequencing

Conclusion: Our adaption of watermark codes enables the construction of barcodes that are capable of correcting
substitutions, insertion and deletion errors. The presented approach has the advantage of not needing any markers or
technical sequences to recover the position of the barcode in the sequencing reads, which poses a significant

Keywords: Next generation sequencing, Barcodes, Multiplexing, Edit distance, Watermark codes, Insertions,

Background

Due to the steadily increasing throughput on platforms for
next-generation sequencing and dropping prices of com-
mercially available devices, DNA sequencing becomes
broadly accessible for researchers. Since the output of
bases in each sequencing run has reached giga to tera
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orders within the last few years, strategies for efficiently
sharing the sequencing capacity has become of particular
interest. Multiplexed sequencing is a major key technique,
that makes sequencing devices accessible in parallel: DNA
samples from different experiments can be pooled into
batches and sequenced in parallel in a single sequencing
run. Before joining different samples it is mandatory to
uniquely label the DNA fragments. DNA barcodes, artifi-
cially synthesized sequences of nucleic acids, are used as
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labels to tag the fragments and to separate the output of
the sequencers according to the input samples.

The robustness of multiplexing in general relies on the
properties of the used barcodes and how well they are
adapted to the underlying sequencing protocol and plat-
form. Essential experimental pre-processing steps, which
are needed to prepare the DNA material can cause errors
on the target genomic sequence and the barcodes as
well. Physical and chemical sequence modifications, e.g.
fragmentation, ligation, or copy procedures are known
sources of such errors. These errors lead to cross-talk dur-
ing demultiplexing, i.e., sequences from different batches
can not clearly be distinguished, which is of course highly
undesirable.

Different constructions for barcodes have been pro-
posed, for example those of Hamady et al. [1] and Bystrykh
[2] are based on Hamming codes [3] or the approach
of Krishnan et al. [4] based on BCH codes [5], to name
just a few. For short lengths it is even feasible to apply
brute-force search techniques, e.g. Frank [6] or Mir
et al. [7], where some of the resulting codes of the latter
approach even reach fundamental bounds. The construc-
tions mentioned so far are designed to correct substitution
errors only. From a conceptional point of view all of
them try to provide codes that maximize the so-called
Hamming distance between the individual code words.
The Hamming distance between a pair of sequences mea-
sure the minimal number of symbol-wise substitution
that are needed to transform them into each other. But,
some specific sequencing platforms are known to have
exceptional high numbers of insertion and deletion errors
as reported for Roche 454 Pyrosequencing [8], PacBio
sequencers [9] or Ion Torrent PGM [10]. See [11-13] for a
comparison of these sequencing techniques. Hence, espe-
cially for insertion and deletion prone devices one has to
consider barcodes that are capable to correct indels.

Promising attempts to find barcodes that are robust to
indels have been considered in [14,15] using the so-called
edit or Levenshtein distance (see [16] for an overview).
For calculating the distance between code words the
Levenshtein distance takes insertion and deletion oper-
ations into account and is therefore better suited for
applications where decoding based on Hamming distance
fails. Unfortunately, there is no code-construction known
that directly gives optimal codes in edit metric. Some
greedy (later evolutionary) algorithms has been proposed
in [17,18] to find sets of barcodes of moderate size with
high minimal edit distance, additionally fulfilling biolog-
ical constraints. However, a practical decoding step for
the obtained barcodes has not been addressed in the
mentioned papers. This was later done by [19], where
it is stated that maximizing the edit distance for bar-
codes (within a sequence context) is a sub-optimal or even
wrong strategy. The context of a code words, which is
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simply the sequence that contains the DNA tag plays an
important role. Due to indels the exact boundaries of code
words can not be correctly recovered. This leads to addi-
tional errors, if the sequence context was not included in
the code construction. The DNA context at one end of a
code word can be taken into account by using an adapted
Sequence-Levenshtein distance, as proposed in [19].

In this manuscript, we provide an entire different per-
spective to obtain barcodes. We give codes based on
concepts introduced by Davey and Mackay [20]. The orig-
inal watermark approach is aimed to synchronize and
decode a continuous stream of large binary data-blocks.
In the domain of DNA codes we face additional con-
straints, for which the original concept is adapted. We
finally give an exemplary set of barcodes and provide an in
silico application, which shows that demultiplexing based
on the watermark concept is applicable in the field of
next-generation sequencing. Basic concepts of watermark
coding has already been considered for data embedding
in DNA [21,22], which is closely related to the barcoding
approach for DNA sequencing. But, the transmission of
biologically compatible sequences through an evolution-
ary channel (in living cells) is only slightly similar to the
approach we consider in the present manuscript.

Note, that search approaches like [16,19] can be used
to find better codes in terms of code rate and mini-
mal (sequence) edit distance, but we see two striking
advantages of the watermark concept for barcoding. First,
the watermark concept contains an implicit synchroniza-
tion technique, that does not need preambles or markers
to find boundaries of code words within an unknown
sequence. Embedding of barcodes in an unknown con-
text is not generalized in approaches considering barcodes
based on (sequence) edit distance. A two-ended embed-
ding of sequences is not reflected in this metric. Further-
more, we are able to give an optimal decoding procedure,
adapted to a specific error channel. In short, this enables
a maximum degree of freedom for existing as well as
future experimental settings. Decoding speed is the sec-
ond important aspect of multiplexing approaches, as the
number of barcodes and the available read-length dramat-
ically increased within the last few years. The decoding
of barcodes based on watermarks also provides an effi-
cient method for fast decoding of large scale multiplexing
approaches.

Methods

The main concepts presented in this section originates
from the ideas first given by Davey and MacKay [20]. The
fact, that quaternary watermark codes can be applied for
DNA sequencing was preliminary outlined in [23], but
sequence constraint on practical oligonucleotides can not
be found in this conference paper. Let us denote some
basic facts about barcodes first and postpone specific
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sequence constraints to the section about reasonable
encoder settings.

For applying the concepts of watermark codes on DNA
barcoding we have to focus on the following constraints,
with implications for the modifications we consider here.
We highlight our contribution to the basic concepts with
the following barcode constraints: A barcode is

® a quaternary sequence. Therefore we will propose
generalized non-binary models and concepts here
(the original channel was considers strictly binary).

e in general embedded in other sequences. Hence we
give an adapted transmission scheme and a novel
approach to detect barcode boundaries (in [20] the
watermark pattern is repetitive and symbols are
decoded as stream).

¢ length-limited. That consequently restricts the
number of code-constructions for which an adaption
is practical (long LDPC codes are use in the original
paper, not plausible for short barcodes).

We will stress additional contributions to the work
of Davey and MacKay, where needed. Let us start with
a model for the sequencing process and continue with
encoding and decoding based on watermarks.

Sequencing model
We will first define a communications theoretic model to
formally describe the barcoding application.

Substitution model

A simplistic communication theoretic model for the
sequencing of barcodes has been proposed in [7]. Namely,
a fixed barcode word b € AN, with A = {4,G,C, T}
as set of possible symbols (nucleic acids), is entering a
communication channel with output r € AN, where the
channel itself is described by the conditional probabilities
to receive a string y if x was sent, for x,y € AN,

For our purposes this model has to be extended into
two directions: First, a barcode word b is assumed to
be embedded into a randomly chosen context to obtain
the sequence t (details will be given below). Second, the
sequence t is sent over a so-called Sequencing Channel
resulting in the received word r. The channel not only sub-
stitutes symbols from t, but is also able to delete or insert
symbols, hence the length of r and t may differ.

Embedding of barcodes

Given a barcode word b of length N the sequence t is
obtained as the concatenation of two random sequences
tpres tpost and the sequence b as follows

L
t=t1--tsy1-typn oot €AY
— —
tpre b:blbzmb}\] tpnst
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with § € {0,1,.,L — N}. The sequences t,re and tpost
are assumed to have a random length and the symbols
are chosen uniformly at random, hence the length L of
t is a random variable. We will later choose the lengths
of the embedding sequences according to a quasi-normal
length-distribution on integers (see Section Simulations).

Barcoding and working hypotheses

In this paragraph we like to focus on two different
paradigm for sequence embedding in our barcoding
approach: First we like to address the total embedding of
barcodes. Well, for most sequencing scenarios, we find
the barcodes next to fixed technical sequences, which
are more reliable due to sequence specific (biological)
reactions, e.g. primer or adapter oligonucleotides. For
sequencing experiments, where we can rely on the exact
knowledge of the position of a barcode at one end, highly
optimized code words has been proposed in [19]. As an
extension of our work is possible to include tpre or tpost as
partially known, nevertheless we want to restrict ourselves
to have no prior knowledge about the context. The main
gain from this very strict premise is a striking freedom of
experimental setups for which we can apply our concepts.
For example on platforms with paired end sequencing we
are able to decode barcodes independent of the direction
of reads not restricting the reads to start with a barcode
symbol.

The second aspect is the assumption of inherent
barcoded sequences. In this manuscript we focus on
the problem of decoding (discrimination of code word
sequences), conditioned on the fact that a code word is
present in the multiplexed sequences. The problem of
detecting a barcode (if it is not guaranteed that every
sequence contains one) is a more challenging problem,
which we want to avoid in the present assay. On codes
based on sequence edit distance this extended problem is
addressed for, e.g. the PacBio SMRT platform in [24]. We
conjecture that the detection problem of barcodes based
on watermarks can be solved in future investigations.
Such investigation might also lead beyond the barcoding
for sequencing applications, which we will address at the
end of this manuscript. Nevertheless, we rely on barcoded
samples for the following considerations.

Sequencing channel model

We define a very simplified model for sequence errors
and discuss some aspects of oversimplification in the
next paragraph. Let us describe the processes involved in
sequencing as a memoryless quaternary channel, i.e. each
symbol is handled independently of others. This chan-
nel model is specified by a set of parameters S, p; and
Pa that are integrated as follows: A transition matrix S €
R*** which describes the substitution probabilities, and
pi and p, to specify insertion and deletion probabilities.
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The channel is modeled as an infinite state-machine on
symbol level, in which a symbol ¢; is queued to pass the
channel and therefore will undergo one of the following
three events: With probability p;, the symbol ¢; remains
in the queue and the received stream is prolonged with
a random inserted symbols where we assume an uniform
distribution on A = {A, G, C, T'}. With probability p,, the
actual queued symbol is deleted. With probability p; =
1—p;—p4 the symbol ¢; is passed to a substitution channel
which substitutes the symbol ¢; according to the transition
matrix S, with transition probabilities S(7j, ;) = Pr(r;|t;).
In order to downsize the number of parameters in our
model, we will consider S as symmetric 4-ary substitu-
tion matrix later, i.e., we consider substitutions from a
base into another with a single error parameter (similar to
the model proposed by Jukes and Cantor [25]). Neverthe-
less, the model considered here would be able to mimic
a refined channel, if exact empirical parameters can be
considered.

Empirical parameters for a channel model

Empirical data about sequence errors can be seen as the
crux of all HMM based approaches in the field of DNA
sequencing, as predictions can only perform as good as
the underlying assumptions. But, aside from advertising
error rate of the big vendors of sequencing devices, real
estimates are rather rare to find in literature. Further, there
is no real agreement about a common technique to mine
such data in a correct way, e.g, using sequence alignment
to predict error count is recently in critic of over-fitting,
due to predefined alignment costs with impact on the esti-
mates. The commutability of substitutions, insertion and
deletion events (a substitution is equal to a deletion fol-
lowed by an insertion) made things even more difficult.
Additionally, there are some indications, that the sequenc-
ing channel is more complex as the model we utilize in our
approach: Sequencing errors seem to be highly depend on
the sequence context, with extended implications on the
distribution of symbols in sequenced reads. For Illumina
this was shown, e.g. in [26]. We know that the DNA poly-
merase molecule is prone to bursts of insertions and dele-
tions, if for example repetitive symbols (homopolymers)
are present in the physical template sequence. Note, that
the reliability of the approach presented here is sensitive
to empirical channel parameters to obtain best estimates
for demultiplexing samples. A stepwise refinement driven
by the feedback of experimental studies is mandatory to
adapt watermark barcodes for the demands of different
sequencing platforms.

Demultiplexing problem

During the multiplexing step, different samples are labeled
with different barcodes, for example t’ is labeled with b’
(b’ embedded in t') and t” contains b” (see Figure 1). After
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t = TTCTTCGGCACCTG
barcode b’
t’ = TTCCTTGGCACCTG

barcode b”

Figure 1 Sequence embedding of barcodes. Two example
sequences t’ and t” labeled with barcodes b” and b” embedded in
an unknown DNA context.

passing the discussed sequencing channel the resulting
sequences r’ and r” can differ from t’ and t’. As the bar-
codes are possibly affected by errors, r’ and r” might be
associated to the wrong origin during the demultiplexing
step, what is called crosstalk. The encoding and decoding
based on watermarks is able to reduce such crosstalk.

Barcode construction on watermarks

For the construction of barcodes we use concatenated
encoding similar to the scheme proposed by Davey and
Mackay, which consists of the following two blocks (see
Figure 2): An outer code C; with parameters [IF;;, 1, k1]
is a code of length 7, dimension k; and alphabet size ¢;
(Galois field Iy, ), that provides a set of qll(l code words.
Note, that long LDPC outer codes are used in [20]. In
order to avoid the constructions of short LDPC codes for
barcoding, we will consider different outer codes later. It
is worth to mention, that minimal distance and the ability
for soft decoding is the only demands on outer codes. We
consider information words ¢ € F ]q?, which are mapped to
inner code words d € C; C ]FZ% The code C; provides a
set of code words with a high minimal Hamming distance.
The n; — k; redundant symbols are used to arrange outer
code words as distant as possible. Such a code can give a
code rate of R} = Ir%

The second block consist of an inner encoder, which
works in a complete inverse direction. An inner code Cy
is used to create barcode words that have a low Hamming
distance to a watermark sequence. The similarity of all
barcodes to this watermark pattern is utilized to gain syn-
chronization as explained below. The inner code adds
redundancy to the code words by mapping each outer
symbols d; € F, to a sparse sequence representation
sV e Zy*. The set of sequences s¥) with low mean
Hamming weight (number of non-zero symbols) can be
seen as inner code Cy. The cardinality of this inner code

set is g1 and the rate of the inner code can be stated as
R, = log, (1)

= nlog,@" By joining n; of these inner code words, a
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sparse inner block s = s(Vs® ... s(") of length N = nyny
is generated.

A barcode word b = s @ w € AV is obtained via a
symbol-wise adding of an arbitrary watermark sequence
w to the sparse inner block s using a fixed mapping of A =
{A, G,C, T} onto Z4, where addition is defined modulo 4
(explicit mappings in Additional file 1 section). The final

set of barcodes is denoted as C = Cy o C; throughout this
k1 log, (q1)
ny log,(4) *

manuscript. The code C gives a code rate R =

Decoding

The decoder consists of two blocks (see Figure 2): An
inner decoder D,, which utilizes a hidden Markov model
(HMM) and channel parameters H to provide symbol-
wise likelihoods. These are fed into the outer decoder D;
that performs a maximum likelihood decoding to obtain
an estimate ¢ of the sent code word. We will first define the
HMM and explain how this can be used to find the likeliest
transmitted sequence (optimal decoding). Afterwards we
give a modified HMM, that enables to estimate the bound-
aries of embedded barcodes and end this section with a
suboptimal symbol-wise decoding approach with lowered
complexity.

HMM for decoding
The basic idea of the HMM presented in this paragraph
refers to considerations in [20]. To explain the function
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random context and the embedding of code words ini-
tially. Therefore we assume tpe and tpest to be absent
and the transmitted sequence is exactly one barcode, i.e.

t=tity - -tyy—n = b.
If no insertions or deletions occur in a channel the
received sequence r = riry---rp is as long as the sent

sequence t, i.e. L = M, but some symbols r; might dif-
fer from t;. Assuming that errors occur independent of
the position and equally distributed, we can use fixed
substitution probabilities to describe the channel.

For channels with insertion and deletion events the
symbol-wise fixed association ¢; «~ r; is usually lost. For
example, for a single insertion event at the i-th symbol, ¢;
will be associated to riy;. A single deletion event before
transmitting the i-the symbol, will shift ¢ to the sym-
bol r;_; in the received sequence. Obviously, such errors
accumulate during the transmission.

One of the main problems of decoding is to estimate
the number of insertions and deletions given a received
sequence r. Therefore we define the drift x; at the i-
th transmit symbol as (# insertions) - (# deletions) that
occurred in the received sequence before taking ¢; into
account. The drifts {x;} can be seen as the hidden states of
an HMM.

Further, we assume the received sequence

;@ | LD

of the HMM for decoding it is helpful to ignore the r=riry-ry=r
* outer coder 1
C1 DI
| 4 || ] 4 ||(1| deFm P(dj|r) € R
illll(‘l' ('()(1(‘1‘
s $() s(m1)
S1 | S2 -185.1 ISj.zl- . Sj.n_>|' | SN
woy wj, 1|11J gl wj, ””I |u N Watermark
| by | by |...|b]1 | Ib]“ - ber I‘EZQI
tl)!'(‘ random
tpost context
| tore | b | tpost | te Zi‘

channel with insertion, deletion and substitution errors.

Figure 2 Transmission scheme for barcodes based on watermark codes. Consisting of three blocks:
code words of a linear code C1[Fq,, n1, k1] and soft-decoder D . 2) inner coder, with inner code C; (for sparse sequence representation), decoder
‘D, (providing likelihood values) and watermark sequence w (known to encoder and decoder).

channel

1) outer coder, encoding index words ¢ as

3) embedding of barcodes in random context and
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to be assembled of sub-sequences r'?, as observables,
based on the hidden state x; and the transmit symbol ¢;.
Every state transition x;_; — x; causes an emission of a
sub-sequences r, that is associated to the position i in
t (in general HMMs the emissions are associated to sin-
gle states and not to transitions, compare with Figure 3).
To characterize the transition probabilities among hid-
den states and the emission probabilities of observables
in the HMM, we use the following set of parameters H :
{S, pi,pa,I}. Although we used an identical notation for
parameters as before (infinite state-machine in section
Sequencing Channel), the channel model and the HMM
discussed here are not equivalent.

The matrix S is parametrizing substitution events, with
pi and py; we model the probabilities of insertion and
deletions and I is used to limit the maximal length of
observables. For computational reasons we suppose that
only I consecutive (leading) insertions can be present in
observables (the channel model is capable to insert an infi-
nite number of symbols). We further assume that the last
symbol of an observable r'”) is created by either delet-
ing the actual transmit symbol ¢; or appending ¢; at the
end, substituted according to S. If ¢; is deleted, we can
either just observe r') = ¢ (the empty symbol) or the last
symbol of the observable will be a random (inserted) sym-
bol, if leading insertion are present. This limits the set of
observables in our model to

D € L€, b, 8, kb, wEiy kK by oo kK Y

1

where we use wild cards * to symbolize random leading
insertions. With #; € Z4 \ t; we denote symbols differing
from t;.

Now we give the transition and emission probabilities
of the stated HMM. Due to our non-binary adaption,
we use a slightly different notations than used in the
original approach in [20]. An elementary part for both

Figure 3 lllustration of the HMM. Exemplary series of transitions of
the HMM and observables ¥?, based on state transition Xi—1 = X
and transmit symbols ¢; forj € {i —1,i,i 4 1}.
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probabilities is the length distribution of observables, that
can be derived from

1 for!/ =0
NN
ol = 1(_14(,1)9‘)1 for0 <l <1
0 else,

the probability of observing !’ random insertions, condi-
tioned on an observable of length /. The probability for a
sequence r'” of length [ is given by

p(D) = oy(Dpy + a;(l — Dpy,

with p; = 1 — p; — p4. The sequence can be obtained via
[ insertions and deleting ¢; or via / — 1 leading insertions
and attaching ¢; (or ¢;) as last symbol.

The transition probability of the HMM can easily be
stated as Pr(x;lx;—1) = p() by choosing [ = x —
xi—1 + 1, i.e. two consecutive drift states determine the
length of observables and vice versa. The joined probabil-
ity Pr(r, x;|x;_1) of observing r") with a state transition
Xi_1 — X;is

QU ) = 4Ppa+ UL piser) 1),

with 0 < [/ < I + 1. Explicitly, r'D can consists of [ ran-
dom insertions and is not associated with ¢; (as ¢; is deleted
with probability p,). It is also possible to have [ — 1 leading
insertions and ¢; is substituted according to the substi-
tution matrix S. The probability Q° can easily be used
to calculate likelihoods Pr(r|#H,t) as shown in the next
section. Note, for the original binary perspective in [20]
no matrix representation of the substitution probability is
needed. Here we generalize the basic concepts.

Optimal decoding

Given a received sequence r = riry---rg, the set of
possible barcodes b = b1 by - - - by € C and model param-
eters H we can describe the decoding as the following
maximization approach

~

b= P ,b)}.
argr;lgg{ r(r|H, b)}

The sequence r is most likely to be captured, if b is
assumed to be the transmitted sequence and the channel
exactly acts as described with the model parameters H.
Let us shortly explain how Pr(r|#,b) can be calculated
for the given HMM. The following methods can be found
in common text books or, e.g. in [27], but we recall the
calculations as we focus on a very special kind of HMM
here. Therefore we have to associate the observables of
the HMM to received symbols, which is achieved with the
drift states. If the barcode symbol b; is assumed to be the
i-th transmit symbol ¢;, then b; can be associated to the i-
th observable r® by the HMM. The drift state x; can be

used to associate the last symbol rl(i) of an observable to
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the symbol r;1,, in the received sequence r. To calculate
likelihood values we consider the so-called forward metric

Fi(y) =Pr (1’1 C Ty Xie1 = YIH, b)

as probability of having reached the drift state y and
received symbols r; - -r;_11y before considering the i-th
transmitted symbol. In a transmission setting where t = b
we can not have any non-zero drift state before consider-
ing the first symbol b;. Thus we define F; (y) = Pr(xg = y)
as F1(y = 0) = 1 and F1(y # 0) = 0. The forward metric
can easily be calculated as

I+1

Fi1 () = ) Fily — 8DQ°( rigy, bi),

=0

withé; =/—1,forl1 <i<Nandl <i+y < M. The like-
lihood values Pr(r|#, b) can be obtained as Fy1(L — M).
Using this optimal decoding approach there is no need for
outer decoding and demultiplexing ends up with an esti-
mated barcode as output of the inner decoder. For large
sets of code words this maximum likelihood approach
becomes computation expensive, as for an outer code of
dimension k; and symbol alphabet of size g; there are
qll(1 calculations of the forward metric left for decoding.
Before we give a suboptimal decoder with reduced com-
plexity, we have to consider how sequence boundaries can
be obtained for barcodes embedded in random context.

HMM to estimate barcode boundaries

Up to this paragraph we have not discussed the role of the
watermark in the transmission. We have just illustrated
an HMM able to give the likeliest received sequences r
conditioned to a hidden transmit sequence t and param-
eters H. We will now take a closer look at the watermark
and how the inner encoding can be understood from a
communication theoretic point of view (see Figure 2).

Recall that a barcode is constructed via addition of two
quaternary sequences s, w € Zf;[ asb = s @ w. Due to the
symmetry of the addition, there are two ways to perceive
a data transmission: Apparently there is the transmission
of s > bwithw causing some distortion. A further valid
perspective of the transmission is w > b, which takes w
as source with s causing substitution errors. Here we stick
to the last concept treating the symbols s; as independent
and identically (iid) distributed errors on w (which is used
to find the boundaries of barcodes).

Given an iid assumption for symbols s; and the inner
code Cy we can calculate an extended substitution matrix
S’, with probabilities S'(b;, w;) for placing a symbol b; in
the barcode, when a w; is present at position i. We use the
matrix §’ to define an upstream meta-channel that causes
additional substitutions to those generated by the real
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sequencing channel. In analogy to the previous paragraph,
we can state emission probabilities

. . .
Qs (l, rl(‘)) = D py+ LD p,E (rl(l), Wi):

for observing a certain r¥) if the symbol w; is present at
position i. With

E (rl(i), wi> = ZS (rl(i), b) S (b,w))
b

we denote the effective probability of having substitutions
due to the sequences s and the substitution matrix S. The
task of estimating barcode boundaries can be reduced
to the estimation of the likeliest sequence of drift states
Pr(x1x2 - -xn+1|H, r, w) in the HMM using Qf,i as we show
in the next section.

Finding barcode boundaries
For embedded code words we can understand the symbol
b; as shifted transmit symbol #54; and thus b; has to be
linked to the observable r®t9 in the HMM (see section
Embedding of barcodes). But we can easily integrate the
sequence offset § as initial drift xy . For the symbols b;
we therefore redefine the drift states {x;} for the HMMs
according to embedded symbols.

To calculate likelihood values for received sequences, we
now consider the forward metric

Fi(y) =Pr(ry - -ric14y,xi-1 = yIH, w)

as probability of having reached the drift state y and
received symbols r1 - -r;_11, before considering the i-th
watermark symbol. We furthermore have to determine
an initial distribution for the quantity Fj(y) to be able to
calculated the forward metric

I+1

Fini(0) = ) Fily =80 Q, (Lriey) s

1=0
with §; = [ — 1. We can furthermore calculate backward
quantities

Bi(y) = Pr(rit14y - |xi =y, H, w)

as probability of receiving a certain tail of symbols start-
ing with r;y14, given a state y associated with the i-th
watermark symbol, which can be calculated as

I+1
B 1(y) = ZBi()/ + 5Z)val- (Lrigyss;) -

=0
If we have a good guess for the distribution Fj(y;) and
Bn(yn), i.e. an a priori distribution of having barcode
boundaries at position y; respective N + yx, we make use
of it. To enable an alignment of the embedded barcodes,
we have to introduce novel prior distributions, slightly dif-
ferent to those proposed by Davey and MacKay. Anyway, a
conservative approach is setting non-zero probabilities for
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Fi(y) = ﬁ,whereO <y < MandBy(y) = 1 on drift posi-
tions —N < y < M — N. Here we have to differ from the
original concept [20], which is needed to detect a single
non-repetitive watermark within an unknown context.

The likeliest drift associated with the i-th embedded
symbol is finally inferred as

&; = argmax {Pr(y|H,r,w) o Fip1(0)Bi(»)} .
J

The estimates Xxo and X are used to refer to the barcode
boundaries in the received sequence.

Symbol-wise likelihoods

We can finally perform a symbol-wise decoding as follows:
The forward and backward metric does not only provide
estimates for the start and the end position of an entire
barcode word, but also enables to calculate conditional
likelihoods

P(xHws?) = 3 Fum (5,257 ) B
iz

based on inner code words s¥) € C,. With the indexes
u = (j — 1)ny + 1 and v = juy we denote delimiters of s
(compare Figure 2). The drifts ¥ and z define potential
boundaries # + y and v + z of an emitted sub-sequence
of r that is assumed to depend on s’). With 7, (y,z,5")
we symbolize a truncated version of the forward metric,
starting at states y and ending at states z. For the eval-
uation of 7 we further consider emission probabilities

QS (l, rl(i),wl- @si>. As the inner code words are deter-

mined by outer code symbols, ie. C; : dj — sV, we
can easily derive symbol-wise marginal a posteriori prob-
abilities P(dj|H,r) from the conditional likelihoods. The
symbol-wise marginals are finally utilized in the outer
coder (see Figure 2).

Using this suboptimal inner decoding approach, we are
able to decrease the computational costs to g;7; evalua-
tions of the forward metric = (compare section Optimal
decoding). As we need an additional soft decoding for
the outer code, there are further operations needed: For
a maximum likelihood approach we have to consider qll‘
code words and search for the likeliest solution.

Simulations

In order to perform an in silico application of barcodes
based on the watermark concept, we first have to define
some reasonable setting for encoding, which is already
quite challenging.

Reasonable encoder settings

As stated before (see section Barcode construction on
watermark), there are different parameters, which influ-
ences the concepts and for which we have to find a
reasonable setup to run simulations. First there is an outer
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codes, which should in combination with the inner coding
lead to short barcode words, because we do not want to
produce exceptional overhead with multiplexing (tagging)
target fragments. There is the minimum distance of outer
code words and the sparsity of the inner encoder, which
can independently be characterized. And finally we have
the watermark sequence, which can randomly be chosen.
We utilize the degree of freedom with the watermark to
incorporate with additional sequence constraint, that bar-
codes should fulfill to be experimentally valid. Therefore
we run a greedy search for the watermark pattern that
maximizes the number of barcodes that meet all sequence
constraint. But let us consider all particular setting one by
one in the following paragraphs.

Suitable outer codes

For the construction of barcodes we focus on a target-
length of N = mny; € [12,.,25] symbols with n; €
{3,4,5,6} and ny € {4,5,6,7,8}. Further we limit the
outer code C; [Fql,nl,kl,dH] to the best known linear
codes listed in [28] for several cardinalities of Galois fields
[F4,, for which we considered ¢, € {2,3,4,5,7,8,9}. Long
LDPC codes has been used in the original approach of
Davey and MacKay (see [20]), but as the construction of
short LDPC codes would be somehow confusing for read-
ers involved in channel coding, we decided to use the best
known linear codes. But we might note, that the ham-
ming distance and the ability for soft decoding is the only
demand on outer codes here and LDPC codes are likely to
perform equivalent. The minimal Hamming distance dy
of the best known linear codes we used is either maximal
or the highest known regarding given parameters. Addi-
tionally we bound the dimension k; to achieve code set
sizes 48 < |C1| = qll(1 < 1000. This guarantees a certain
minimal code rate on one side and limit the computational
effort of the outer decoding the other side. We end up at
263 possible code configurations, but most of the result-
ing codes perform disastrous with the watermark concept,
because the watermark is heavily corrupted by inner code
words.

Sparsity of the inner code
We consider the density (mean Hamming weight) as

*«2)—#2 (s)
WH ) = L CiCl M

seCy

for the inner code, with wy(-) as Hamming weight, n(-) as
length and | - | as cardinality of the code. The inner code
Cy needs to exhibit a low density, to keep the watermark
shining through the barcodes, when inner code words are
added. For large densities there is no ability left to detect
the barcode boundaries and consequently decoding will
fail completely. Inspired by the approach in [29] we avoid
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the all-zeros code word in Cy, but further bound the den-
sity to w(Ca) < 0.3, to keep the watermark present.
Finally, we end up in a set of 73 parameter configurations
for q1, k1, n1 and ny. For each of the 73 different param-
eter sets we run a brute-force search (107 trials), where
we iteratively selected one inner code and watermark ran-
domly to produce barcode sets. From the evaluated set-
tings we kept the one, which met the following sequence
constraints.

Sequence constraints

We filtered for code words with unbalanced counts of
symbols, to respect limitations on the GC content of
barcodes. Such filtering can be seen as a de facto stan-
dard in the construction of barcodes (see for example
[1,7,19]) and is related to technical constraints due to the
preparation and the sequencing of genomic material. The
relative frequency of a subset of two symbols should not
be below 40% and above 60% in each barcode, otherwise
we excluded the barcode. We furthermore exclude bar-
codes with prefect self-complementation and more than
two sequential repetitions of the same base (homopoly-
mer length), similar to the restrictions stated in [24]. We
consider this settings as sufficient and strict enough to
avoid experimental problems during the preparation in
real sequencing tasks. Discarding such inappropriate code
words means an additional loss in code rate.

Increasing the mean edit distance

For decoding based on the HMM approach, edit distance
implicitly matters, thus we try to increase the mean edit
distance of code word with a simple strategy. For two sets
of barcodes with identical counts of remaining barcodes
(after filtering) we keep the one maximizing the mean edit
distance

1

EO = one -1

Y. de(by,by),

b,’,bjGC:i;ﬁj

where dg(b1,by) denotes the edit distance [30] of bar-
codes b; and by, which can be understood as the number
of single-symbol sequence operations to transform by into
by or vice versa. But, as the edit distance is bounded by
the hamming distance, we do not gain a lot with this final
heuristic refinement step.

Estimating the decoding error

To evaluate the refined set of 73 codes, we give the follow-
ing demultiplexing scenario. For each code we consider an
error curve according the estimates of the decoding error
probability on different channel settings. The estimation
of a single point in the error curve is based on a set of
200,000 barcodes, which we refer to as batch. Each batch
is processed with a certain symbol mutation probability
Prut € [.01,.16]. This value determines a symbol-wise
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probability for an edit operation that can be caused by
our channel model. Similar approach has been consid-
ered in [19], but we like to be a bit more precise with
the description of the modifications of the channel model.
Buschmann et al. [19] considered a minimal mutation
probability of 107! for their evaluation, but others claim,
that error rates are several orders lower [11]. We will take
such indications into account.

Each barcode from a batch is embedded in a random
context of variable length (compare section Embedding of
barcodes). We use normal distributed random variables
(with mean u; = 50 and variance o; = 5) to determine the
length of tyre as well as tpost. We simply take the nearest
non-negative integer to define the length of the random
context, which is uniformly distributed on {4, C, G, T}.

We further use a state machine to produce erroneous
received sequences based on the following four events:
correct transmission C, substitution S, insertion I and
deletion D. In slightly different notation to the former
model (see. Sequencing Channel) we assign probabilities
to the events C and S and do not use conditional probabil-
ity like a substitution matrix S.

The probability for correct transmission C or substitu-
tion S is equal to p; in the former representation. The
probability for C equals 1 — py,r and the probability for
any of the error events (S,I or D) is py,¢. Every error event
S, I or D is equal likely. To obtain an equal distribution
among the mentioned events, it is easier to use the present
notation, but equivalent behavior can be approached with
both versions of the channel state-machines.

To save decoding time we iteratively pass each transmit
sequence through the state machine, until we have at least
one error event within the barcode region. The probability
of having a defective code word of length N is Pr(def) =
1-(1- pmut)N . We further considered an error-free bar-
code to be decoded perfectly, i.e. Pr(err|def) = 0, with
err denoting the event of decoding error. Please note
that this oversimplifies the false positive rate introduced
by sporadic similarities of the context with dedicated bar-
code words. The rate is supposed to grow linear with the
context length and the size of barcodes set. Nevertheless,
the probability for false positive events exponentially tend
to zeros with the length N of the code words. For bar-
codes of length > 12 embedded in 100 random symbols
we consider this error as marginal offset for the estimated
decoding errors. Our evaluation finally end up in esti-
mating the conditional error Pr(err|def), which gives an
estimate for the unconditioned error probability as P, =
Pr(err|def)Pr(def).

Results and discussion

First we give a rough overview on meaningful proper-
ties of watermark-based barcodes with the considered
73 parameterizations. Furthermore, we provide a refined
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analysis and evaluation for certain codes in the already
defined decoding scenario. To minimize the textual ele-
ments in the figures, we use the following notation:
q1lki|n1|ny indicates the concatenated coding using an
outer code C; [Fql, nl,kl] and an inner code C; : F,; —
Zy*. The particular codes can be found in the Additional
file 1 section of this paper.

Properties of barcodes based on watermarks

In Figure 4 we link the principal characteristics as mean
edit distance dz, mean density Wy and the cardinality
|Cy o Cy] of barcodes in a comprehensive illustration. We
use star-symbols to indicated the mean density (several
levels) and two dimensional coordinates to link mean edit
distance and the size of code sets.

There are distinct blocks, where the influence of the
inner code can be separately examined. With fixing the
outer code, e.g. q1|2|3|n2 or q1|3|4|ny for g1 € {7,8,9}
and increasing the length #ny of inner code words, one
can deduce how code rate is exchanged for lowered mean
density and increased mean distance. However, we see
configurations, for example 4|3|4|ny for ny € {4,5,6},
where we have not been able to increase the mean distance
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For the codes q|ki|4|ny or qilk1|5|ny and q1lk;|6]n
the effect of the outer code can be separated. We find
clusters of star symbols at different mean distances (see
darkened areas in Figure 4). These levels can be explained
through the different minimum Hamming distance of the
outer codes. We have Hamming distances 2,3 and 4 for
the present outer codes at n; equals to 4,5 and 6. For con-
catenated coding it is known that the minimum distances
of inner and outer codes are multiplicative [31]. As the
edit metric is upper bounded by the Hamming distance,
we anticipate the described levels for edit distances. The
mentioned leveling can consistently be found for all outer
codes.

Despite we have maximized the edit distance of bar-
codes on average, it is also interesting to focus on the
pairwise distance of barcodes. To examine the distance in
detail we utilize the so-called distance distribution. In [32]
the average number of code words at a certain distance
to a fixed code word is considered as an useful distance
measure for non-linear codes based on Hamming metric.
The edit distance distribution of a codes C consists of the
numbers

by prolonging the inner code. We have observed several 1,, ..
clusters, where similar effects can be found. De = M {G@)) : de(biby) = e, bybj € O},
800 : s :
w o N 22 o >
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Figure 4 Properties of the examined barcodes based on watermarks. Star-symbols indicate the mean density and two dimensional
coordinates link the mean edit distance dg and the size |C; o C;| of codes. Parameters of the barcodes are labeled as g1 |k |n1|n;, denoting an outer
code Cy []qu Ny, /q] and inner code C; : Fg, — ZQ? Codes evaluated in refined analysis/simulations (see. Figure 5 and 6) are colored.
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where M = |C|(|C| — 1) and dg denotes the edit dis-
tance. In Figure 5 we illustrate the distance distribution
of barcodes with parameters 8|3|n;|ny (Figure 4, in blue).
Apparently, there are particular pairs of code words with
very low edit distances, but as we recall the code construc-
tion based on inner code words with very low Hamming
weight, this fact is not too surprising. Nevertheless, some
longer codes show a negligible amount of such code words
with small edit distances. For instance, in the code 8|3|6|4
less than 1% of all possible pairs of barcodes show an edit
distance dg < 6.

According to the very strict filtering (see Sequence con-

straints), we had to prune out the sets of qll<1 outer code
words, what additional lowers the code rate. A detailed
description about the excluded barcodes can be found in
the Additional file 1.

Evaluation of decoding

In Figure 6 we illustrate the estimates P, for the decod-
ing error probability of different codes settings. We ran
simulations for all 73 barcode set and ranked the sets
according the decoding behavior. To give a rough outline
for the performance of our approach we show the bar-
codes, which performed best (Figure 4 and 6 in green)
and worst (Figure 4 and 6 in red). A barcode length of
12 (codes ¢1]k1|3|4) seems to be insufficient to provide a
good synchronization based on watermarks and thus the
majority of decoding errors were found to be caused by
synchronization issues (results not shown). The best per-
forming sets of barcodes surprisingly have not occupied
the maximal possible length, but 24 symbols. As there
are only 49 sequences available, this set of code words

log2(72) _
ooy = 0.117.

A reasonable trade-off between error-correcting capa-
bility and cardinality is provided for example by codes
with parameters 8|3|n;|ny (Figures 4, 5 and 6, in blue).
Although we are facing relative low code rates (com-
pared to approaches like [19]) ranging from 0.188 to 0.281,

provides a poor code rate of
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more than 400 sequences available with quite surprising

decoding capability.

Decoding complexity

According to [20] we utilized a fast decoding approach
with reduced complexity for our simulations. We bounded
the maximal number of possible drift states {x;} in all
HMMs to A € {5,..,20} according to the suggestion given
by Davey and Mackay. The complexity for decoding a sin-
gle embedded barcode is O(MLI + qgiNAI + qllq), with
N denoting the length of the barcode, that is embedded
in a received sequence of length M. Decoding is based
on the assumption that the channel can introduce maxi-
mal ] inserted symbols and we consider the maximal drift
between received and transmitted sequence to be limited
by A. An order of MLI calculation are needed to esti-
mate barcode boundaries, ny Al operations are needed to
provide soft-values for each of the g;n; possible outer
code words (result in g1 NAI) and qllq final comparisons
has to be spent for soft decoding the outer code in the
most expensive case (maximum likelihood).

The prototype decoder with which we ran our simula-
tions is implemented in MATLAB. We further parallelized
the decoding procedure and created jobs of 10° received
sequences, that were processed by single cores (Opteron,
2.6 GHz). The average length of received sequences was
in a range of 112 and 150 symbols, resulting in an average
processing time of 6 hours for the tasks with lowest cal-
culation costs (code parameters 7|2|3|4). The longest time
we needed to complete demultiplexing of 10° sequences
(code parameters 9|3|5|5) was strictly below 24 hours (on
a single core).

Future directions

Apart from the theoretical considerations we have given
in this manuscript, there are lot of future direction start-
ing from this initial point. Some of them are mandatory
to enable an application in real biological experiments,
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Figure 5 Exemplary distance distribution of a sets of barcode based on watermarks. D, denotes the relative number of code-pairs with an
edit distance equal to e. Each barcode set consists of maximal 512 code words, according to the examined outer codes C [Fg, ny, 3] (see also
Figure 4, in blue). The distance distribution is normalized regarding the cardinality of code words after filtering.
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others are modifications of the concepts for extended
applications.

Let us first address the essential steps needed to estab-
lish an HMM based decoding in real experiments: The
HMM, as core of the decoding system, is the most sen-
sible part of the concept. It is mandatory to run exper-
iments to gather reliable data about all channels, the
concepts should be used for. From our point of view
there is a lack of reliable data about insertions, dele-
tions and substitution errors for possible channel models.
For the sequencing application we assume that different
platforms show a variety of sequencing channels, addition-
ally affected by experimental parameters, e.g. the extend
of PCR pre-processing of samples. To obtain an opti-
mal suited decoder, the HMM should be adapted to the
considered channels. As most of the channels show a cor-
relation of errors, more complex HMMs should be con-
sidered, reflecting a channel model with memory. Finally,
it might be possible to establish a self-adaptive algorithm
to parametrize the HMMs without any prior knowledge
about the ratio of errors in the channel. A suitable statistic
and refined calibration steps should be invented. Another
important point for estimating the error characteristics
is the construction of watermark codes. Exact empirical
parameters of the channel could be incorporated in the
design of watermark codes to improve decoding steps,
suited for special channels.

Further aspects that could be considered with the given
concepts are the following: Aside from the synchroniza-
tion aspect in this manuscript, it seems very promising
to use the maximum likelihood decoding method for
other sequences than watermark codes. Conditioned on
good empirical parameters for an underlying HMM one
could consider a reliable detection of barcodes based on

the Sequence-Levenshtein distance in a probabilistic way
rather than based on sequence alignment.

In the presented approach we focused on the discrimi-
nation of code words, assuming codes are always present
in inspected sequences. The detection of code words
within DNA context is another big issue that should be
solved for future investigations using an HMM based
decoding. Resent research shows that even for sequencing
approaches the detection of barcodes is quite challeng-
ing. In [24] they focus on a specific problem with certain
setups on the PacBio SMRT platform. Caused by tech-
nical reasons, sporadically barcodes are not present in
the sequence data. Another interesting field of applica-
tion of an HMM based sequence detection could be clonal
studies, where the sequenced genome could or could not
contain a predefined sequence, which was introduced in
ancestor organisms.

Conclusion

We proposed an adaption of the watermark concept of
[20] for DNA barcoding. A generalized channel model
for sequencing and suitable modifications of the decoder
were defined. Moreover, we investigated in a strategy to
choose watermark sequences and inner codes in a reason-
able way to enable barcoding in line with common exper-
imental requirements. We provide a code construction,
considering the best known linear codes as outer codes
and biological sequence constraints to filter for suitable
code words, resulting in an exemplary set of 73 different
code sets ranging from 12 to 24 nucleotides. The codes
are illustrated in a comprehensive scheme, highlighting
watermark specific parameters as well as the mean edit
distance, to give an impression how watermark based bar-
codes could be characterized. For a reduced set of codes
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we finally evaluated the demultiplexing of sequences in a
realistic simulation scenario. Within this in silico evalua-
tion we could show that barcodes based on watermarks
can theoretically be used for multiplexing. It is remark-
able, that even with very short watermark patterns we are
able to reliably find the barcodes boundaries in order to
discriminate different code words with an HMM based
decoder. The probability of decoding errors, which finally
leads to the undesired cross-talk phenomenon was found
to be very low. Other approaches that investigate bar-
codes with large (sequence) edit distance [16,19] show
significant higher code rates for shorter barcodes, but we
have given an entirely different concept that allows for
large scale multiplexing approaches, also able to handle
insertion and deletion errors.

Moreover, we can provide the marker-less synchroniza-
tion based on watermarks, to recover the barcode bound-
aries. This synchronization concept provides an ultimate
degree of freedom for experimental sequencing setups
as well as for future applications, also apart from the
sequencing context.

Additional file

Additional file 1: We provide 73 files containing all the examined
barcodes. Further informations are given, like: The watermark in decimal
and nucleic acid notation, as well as the mapping of the inner encoder and
the used mapping from integers to nucleic acid Z4s — {A, G, C, T} are given
in a preamble. We furthermore give the distance distribution of barcode
words. Finally, all barcodes are listed (plus explicit construction via code
concatenation). Dropped barcodes, which do not meet the sequence

constraints are explicitly indicated.
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