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Abstract

Background: Second-generation sequencers generate millions of relatively short, but error-prone, reads. These
errors make sequence assembly and other downstream projects more challenging. Correcting these errors improves
the quality of assemblies and projects which benefit from error-free reads.

Results: We have developed a general-purpose error corrector that corrects errors introduced by Illumina, Ion
Torrent, and Roche 454 sequencing technologies and can be applied to single- or mixed-genome data. In addition to
correcting substitution errors, we locate and correct insertion, deletion, and homopolymer errors while remaining
sensitive to low coverage areas of sequencing projects. Using published data sets, we correct 94% of Illumina MiSeq
errors, 88% of Ion Torrent PGM errors, 85% of Roche 454 GS Junior errors. Introduced errors are 20 to 70 times more
rare than successfully corrected errors. Furthermore, we show that the quality of assemblies improves when reads are
corrected by our software.

Conclusions: Pollux is highly effective at correcting errors across platforms, and is consistently able to perform as
well or better than currently available error correction software. Pollux provides general-purpose error correction and
may be used in applications with or without assembly.

Keywords: Error correction, Next-generation sequencing, Assembly

Background
The introduction of second-generation sequencing
technologies has enabled inexpensive, high-throughput
sequencing. These technologies typically produce mil-
lions of short DNA sequences (reads). These reads contain
a non-trivial number of errors which complicate sequence
assembly [1,2] and other downstream projects which do
not use a reference genome. The frequency and type of
errors depends largely on the sequencing technology, but
also on the composition of the target being sequenced.
These errors complicate de novo assembly by hiding true
contig and scaffold connections while enabling false con-
nections. Furthermore, they mislead analyses by creating
an inaccurate or incomplete picture of the data.
The error correction problem involves identifying and

correcting errors in reads introduced during nucleotide
sequencing. The number and type of errors in a set of
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reads depends primarily on the sequencing technology
employed and the number of sequenced bases, but also
on the true frequency of error prone regions such as
homopolymers. The error types common to all methods
are substitution, insertion, and deletion. A more specific
sequencing error is a homopolymer region being mis-
called in its length, resulting in spurious insertions or
deletions of the repeated nucleotide. Substitution, or mis-
match, errors are single base errors where one base is
replaced by another. Insertion errors are erroneous bases
inserted into the sequence, and are corrected by deleting
the erroneous bases. Conversely, deletion errors are bases
removed from a sequence, and are corrected by insert-
ing the removed bases back into the sequence. The error
types and rates of Illumina MiSeq, Ion Torrent PGM, and
Roche 454 are varied as a consequence of the differences
in sequencing technology.
Illumina reads contain substitutions as the dominant

error type. MiSeq has reported total error rates ranging
from substitution rates of 0.1% and indel rates of under
0.001% [3], to 0.80% total error rate [4]. MiSeq errors
are not uniformly distributed across the genome [5], but
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appear to be more frequent around homopolymer runs
[4,6], GGC triplets [5], or towards the 3’ ends of reads
[7]. There appears to be a higher frequency of mismatches
within 10 bases downstream of both a GGC triplet in the
forward direction and its reverse complement (GCC) in
the reverse direction. However, there seems to be no cor-
relation between the GGC triplet and a higher mismatch
rate if the following triplet is AT-rich [4]. Furthermore,
these errors seem to represent as little as 0.0015% of bases
[8]. Interestingly, Luo et al. report homopolymer asso-
ciated indels with Illumina Genome Analyzer II in 1%
of genes reported from assembly, suggesting homopoly-
mers may introduce more errors in Illumina data than
previously expected.
Errors in Roche 454 and Ion Torrent technologies are

typically miscalled homopolymer run lengths. Ion Tor-
rent PGM appears to have a higher error rate for calling
homopolymers of any length than Roche 454 GS Junior
[4]. Ion Torrent PGM has reported total error rates at
1.71% [4] and indel rates of 1.5% [3]. The accuracy of
PGM reads appears to steadily decrease towards the end
of the read [3]. Roche 454 GS Junior has reported total
error rates of 0.5% [8] and indel rates of 0.38% [3]. Luo
et al. report a homopolymer error rate bias with Roche
454 FLX Titanium reads within AT-rich homopolymers.
Total homopolymer error rates were as high as 25% for
homopolymers of length 7 and nearly 70% for homopoly-
mers of length 11.
When considering the overall coverage of the sequenc-

ing project, Illumina MiSeq appears to be largely unaf-
fected by GC content while Ion Torrent PGM appears to
have more uneven coverage [4]. PGM reads favour GC-
rich content, and the effect is particularly severe when
sequencing AT-rich genomes. PGM sequencing of the
AT-rich P. falciparum resulted in no coverage for approx-
imately 30% of the genome. The consequence of this is
that Ion Torrent PGM read depths may have a greater
deviation from a random sampling process than would
be expected for Illumina MiSeq. Loman et al. assemble
MiSeq, PGM, and GS Junior E. coli reads and align con-
tigs to a reference of the same E. coli isolate. They showed
that GS Junior reads align in the greatest proportion with
3.72% of reads unaligned, followed by MiSeq at 3.95% and
PGM at 4.6%.
We introduce an error correction tool capable of cor-

recting errors introduced by Illumina, Ion Torrent, and
Roche 454 sequencing technologies. We approach the
problem of error correction conservatively, removing little
information and requiring a high degree of confidence to
make a correction. Our program Pollux first scans across
all reads, divides reads into k-mers of length 31 (default),
and counts the number of occurrences of each observed k-
mer. It then scans reads a second time, generates a k-mer
depth profile for each read, and uses this information to

correct the k-mer profile. Specific k-mers are not flagged
as erroneous as a result of occurring infrequently, but
rather are explored when a discontinuity in k-mer fre-
quencies is observed when transitioning from one k-mer
to the next in a given read. The software is sensitive to
low-coverage reads and does not favour high-coverage
reads. In contrast to other methods [9], we do not specifi-
cally use quality scores for error correction. However, the
software updates the quality of corrected bases to reflect
the improved confidence of a base after correction. The
software can easily be integrated into a larger pipeline
analysis. It improves the utility of reads and can improve
hybrid assembly, as it can correct reads generated from a
variety of sequencing technologies. It may also improve
sequence analysis projects that may not require assembly,
such as metagenome analysis [10].

Implementation
Similar to other methods [9,11], we approach the prob-
lem of error correction using k-mers, consecutive k-letter
sequences identified in reads. However, our approach
does not identify individual k-mers as erroneous, but
rather compares the counts of adjacent k-mers within
reads and identifies discontinuities. These discontinuities
within reads are used to find error locations and evalu-
ate correctness. We decompose a read into its k-mers and
calculate their associated k-mer counts (Figure 1), which
are the number of times a given k-mer has appeared in
the entire set of reads. We use default k-mer lengths of
31, which are slightly larger than typically used in assem-
bly [12,13]. We choose to use longer k-mers because this
lets us avoid common short repeats which might other-
wise confound our correction procedure. We choose k =
31, because it is the longest odd k that can be represented
in a 64-bit word. We only record k-mers observed in the
data set, so we maintain an extremely small subset of all
possible k-mers of length 31. A read that is not erroneous
is assumed to have a k-mer count profile that is reflec-
tive of a random sampling process, given local coverage.
In contrast, a read that contains an error is likely to have
k-mer counts that deviate unexpectedly from this random
process. A substitution error, located at least k bases away
from the ends of the read, will result in k k-mer counts
affected. If this error is unique within the read set, these
counts will drop to 1. A similarly defined insertion error
will affect k + n k-mer counts and a deletion error will
affect k − n counts, where n is the length of the indel.
These unexpected drops in k-mer counts to a low depth
are often erroneous, but we do not immediately make this
assumption.
We recognize the boundaries of adjacent k-mers which

deviate unexpectedly and identify nucleotide positions
associated with the discrepancy. We then explore the
space of possible corrections and evaluate the fitness of
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Figure 1 The k-mer counts associated with an Illumina MiSeq read containing two highlighted substitution errors. The k-mers are of length
31. A data point corresponds to the number of times a left-anchored k-mer, starting at a given position within the sequence, has been observed in
the entire read set. The first error is located near the middle of the read and affects the counts associated with 31 k-mers. The second error located
only four positions in from the 3’ end of the read and affects only 4 k-mer counts.

these corrections. We choose the correction that removes
or minimizes the k-mer count discontinuity. If there exist
multiple corrections which achieve this, we choose the
correction that improves the most k-mer counts max-
imally beyond the current erroneous location. This is
particularly important when correcting reads that con-
tain multiple errors or within reads that may be cor-
rected in multiple ways. We attempt to correct the read
such that the k-mer counts associated with it are more
reflective of changes in k-mer counts generated from a
random sampling process. This approach allows for a sen-
sitive error correction strategy regardless of local depth of
sequencing for the read of interest. However, homopoly-
mer errors are frequently not unique and require a special
acceptance criteria as their correct k-mer counts after
correction often still appear erroneous. Pollux corrects
each read independently and does not update recorded
k-mer counts as a result of correction. The outcome of
correction does not depend on the order of the reads.
This approach to correction may be complicated by the

boundaries of repeated regions, which may also create k-
mer count discontinuities. These boundaries will initially
be flagged as potential errors. However, exploration of the
error site will often reveal that no such error exists and the
boundary region will be ignored. There is the possibility of
false positive corrections within very low coverage regions
containing a single nucleotide polymorphism when there
exists a high coverage alternative in the data set. These
low coverage regions will sometimes be corrected to their
high coverage alternative, but this is relatively rare.
For implementation of the error correction procedure

described above, we have made an effort to reduce execu-
tion times and memory requirements. For k-mer count-
ing, we compress nucleotide information and operate
within a two-bit alphabet. In combination with our hash-
table strategy, this allows us to use relatively large k-mers.
Furthermore, we process reads in batches of adjustable

size. As a result, the memory limitation is a consequence
of the hash table when counting all k-mers. We attempt to
reduce the size of the hash table by removing all unique
k-mers before correction.
Another consideration is choosing a k-mer count evalu-

ation window that balances true and false positives during
error correction. An evaluation criteria that requires a
single correction to improve all k-mer counts spanning
the error location will avoid many false positives, but will
often miss true positive corrections in reads containing
multiple errors. On the other hand, an evaluation crite-
ria which requires a correction to improve only one k-mer
count will introduce many false positives by correcting
errors inappropriately, such as correcting a substitution
error with an insertion, which instead propagates the error
forward. We use an evaluation window which considers
the fewest amount of k-mers required to make a confident
correction while avoiding error propagation. This requires
evaluating multiple k-mers containing bases following
the erroneous base to ensure our correction is appro-
priate. This allows Pollux to correct multiple, although
non-adjacent, errors in close proximity.

Error correction methodology
A pseudocode of our error correction procedure is out-
lined in Figure 2. We begin with a basic preprocessing
step which removes all leading and trailing Ns. Internal Ns
are replaced with either A, C, G, or T in a reproducible
and evenly distributed manner. This allows us to operate
within a four-character alphabet and treat internal Ns as
substitution errors.We then construct a hash table of all k-
mers in the set of reads. This involves maintaining a count
of all observed k-mers and their reverse complements as
separate entries in a single hash-table.
After aggregating k-mer information from all reads,

we free significant amounts of memory by removing all
unique k-mers from our hash table and implementing
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Figure 2 Algorithm pseudocode. A pseudocode for the error
correction algorithm.

a policy of reporting a count of 1 whenever a k-mer is
not found in our hash table. Removing these k-mers sig-
nificantly reduces memory requirements and improves
execution times for the error correction procedure. In one
E. coli data set [3], 41% of Illumina MiSeq, 85% of Ion
Torrent PGM (1), and 46% of Roche 454 GS Junior (1) k-
mers are unique. These k-mers contribute no additional
information and can be safely removed using this strategy.
The number of unique k-mers will depend on sequenc-
ing depth, technology, and the number of error prone
regions.

We construct a k-mer count array associated with each
read and fill each entry with the count of the k-mer that
is left-anchored at that index position in the sequence.
r − k + 1 such counts associated with a given read, where
r is the length of the read and k is the length of the
k-mers. Reads of length shorter than k are left uncor-
rected. We scan across the array and observe changes in
k-mer counts. When we observe an unexpected change
in counts between consecutive k-mer counts in a read,
we locate the nucleotide position associated with the dis-
crepancy and identify the position as a potential error
source. We do not identify reads containing low k-mer
counts to be erroneous if such counts appear to follow
a random sampling process with no discontinuities in
k-mer depth. A more detailed description of this pro-
cedure follows. We define consecutive k-mer counts to
be potentially erroneous if their difference is larger than
a specified threshold. This threshold requires consecu-
tive k-mer counts to have a difference of greater than 3
and greater than 20% the larger count to be flagged as a
possible error. This threshold is quite sensitive, and will
identify discontinuities corresponding to homopolymer
repeats as well as substitution and indel errors. It addi-
tionally works quite well for high coverage and medium
coverage sequencing projects. The fixed-number compo-
nent of the threshold operates when correcting low to
medium coverage regions while the percent-based com-
ponent operates during medium to high coverage correc-
tion. The thresholds are designed to be conservative in
high coverage and operate well in moderate coverage. At
low coverage the rate of recognizing errors is reduced, as
less information is available for error calling. We found
that when correcting the same E.coli MiSeq data set [3],
we were able to correct 94% of errors at 50x mean cov-
erage but this was reduced to 65% of errors at 5x mean
coverage.
We determine the erroneous nucleotide position N to

be N = d if we observe a low-to-high k-mer count
discrepancy andN = d+k if we observe a high-to-low dis-
crepancy, where d is the left index of the discrepancy. This
is applicable for substitution, insertion, deletion, adjacent,
and homopolymer errors. In the case of deletion errors,
a low-to-high k-mer count discrepancy will point to the
base immediately before the deletion and a high-to-low
discrepancy will point to the base immediately following.
With respect to homopolymers, the leftmost base in a
homopolymer run is used as an anchor during correction
and is found by scanning left from N + 1 in the case of
a low-to-high discrepancy and N − 1 with a high-to-low
discrepancy. The exact position of a non-homopolymer
adjacent error will depend on the type of adjacent errors.
However, this procedure will locate the first problem-
atic base adjacent to the high k-mer count region being
considered.
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We choose to evaluate k-mer counts such that the eval-
uation k-mers overlap largely with the region of the read
which appears to contain no errors. This approach allows
us to performmultiple corrections within close proximity.
The very first k-mer we choose to evaluate is the k-mer
that entirely overlaps a trusted region of the read and
borders the erroneous region. We define a region to be
trusted if it contains no k-mer count discrepancies within
it. Additional evaluation k-mers extend into the erroneous
region. In order for a correction to be accepted, it must
improve the counts of multiple evaluation k-mers up to
at least the k-mer which contains the first base immedi-
ately following the erroneous base. We require informa-
tion about the region after the erroneous base to prevent
propagating an error further down the read by perform-
ing misleading substitutions or insertions. However, we
do not correct adjacent errors outside of homopolymer
errors, which are evaluated separately. We simultaneously
consider all possible substitution, insertion, and deletion
corrections within a single read. The correction selected
is the one that produces k-mer counts that improve the
most evaluation k-mers.We note that our library of k-mer
counts is not updated as a consequence of a correction so
the order of correction has no effect. The correction pro-
cedure is repeatedmultiple times within a read until either
there remains no detected errors which are correctable or
we determine we have made too many corrections. In the
later case, we revert all changes and do not correct the
read.
We observe the k-mer counts in a read after complet-

ing corrections and flag any reads containing more than
50% unique k-mers (i.e. k-mer depth of 1), as such reads
are typically of poor quality. In the case of paired-end read
corrections, we only flag reads if both pairs meet this cri-
teria. This approach enables us to correct many unusable
reads which might otherwise be discarded and remove
reads which appear to contribute little information. We
do not consider quality scores when making corrections
or removing reads. However, we modify quality scores to
be the average of the quality scores adjacent to corrected
base to enable downstream processing. No assumptions
are made about the accuracy of quality scores for differ-
ent sequencing technologies. Furthermore, one benefit of
avoiding quality scores is our software is not affected by
chimeric sequences or by reads which contain misleading
quality scores.

Homopolymer corrections
Homopolymer errors differ from other error types in that
they frequently coincide and often contain multiple adja-
cent errors. This causes the k-mer counts associated with
a read containing an accurate homopolymer length to
often appear discontinuous and k-mer count discontinu-
ities associated with erroneous homopolymer lengths to

often appear less severe than their counterparts. This is
particularly common for very long homopolymers. We
observe however that homopolymer errors tend to have
a recognizable distribution of k-mer counts associated
with varied homopolymer lengths. The accurate-length
homopolymers tend to have the largest k-mer counts
associated with them and as the deviation in length
from the correct value increases, the associated k-mer
counts tend to decrease. When we detect a possible
homopolymer error, we explore a range of homopoly-
mer lengths and select the length which maximizes a
specific subset of k-mer counts. We evaluate the two
k-mers that overlap primarily the trusted region, the
entire homopolymer, and the two bases immediately fol-
lowing the homopolymer run. Since we have observed
homopolymers being erroneously reported as length 1,
we include the possibility of single nucleotide homopoly-
mer errors (e.g. where a homopolymer of length 2 is
reported as length 1). In all case, we consider possible
lengths from one half to twice the initial length. Pol-
lux performs homopolymer corrections independently
and only after all other correction possibilities have been
exhausted. As the homopolyer correction algorithm is
more forgiving, it would otherwise possible to mistake
random noise as a slight improvement and miss the true
correction.
The majority of homopolymer corrections we make are

adjustments that modify the length of the homopolymer
by 1. When we correct an E. coli data set [3], we see that
85% of GS Junior (1) and 92% of PGM (1) homopolymer
corrections are adjustments of length 1. Ion Torrent PGM
had a higher rate of homopolymer-associated indels per
base than Roche 454 GS Junior.We reportedmaking 0.018
indel corrections per base in PGM (1) and 0.0034 indels
per base in GS Junior (1). Loman et al. report 0.015 indels
per base in PGM and 0.0038 indels per base in GS Junior,
which is consistent with our results.

Results
We use data from the Loman et al. [3] benchtop sequenc-
ing comparison study to evaluate how well our software
performs by mapping corrected and uncorrected reads
to the corresponding reference genome. The data con-
sists of read sets from Roche 454 GS Junior (SRA048574),
Ion Torrent Personal Genome Machine (SRA048511),
and Illumina MiSeq (SRA048664) technologies generated
from the same E. coli O104:H4 isolate, which was the
source of a food poisoning outbreak in Germany in 2011.
The authors provide a reference genome constructed from
reads generated by a Roche 454 GS FLX+ system. These
reads had a modal length of 812 bases and over 99% of
sequenced bases were Q64 bases. Additionally, a paired
end library with 8kb inserts was generated to assist with
assembly.
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The reference E. coli genome consists of multiple scaf-
folds corresponding to the bacterial chromosome and two
large plasmids. The authors note that the large plasmids
and the Shiga toxin-producing phage have significantly
higher sequence coverage than the bacterial chromosome
within the Illumina and Ion Torrent data sets. In partic-
ular, there is 25-fold coverage of the chromosome and
625-fold coverage of the plasmids in the Illumina data set.
This amounts to approximately half the reads mapping to
the large plasmids. This effect is much less pronounced in
the Ion Torrent data sets.
We use SMALT (www.sanger.ac.uk/resources/software/

smalt/) to align uncorrected and corrected reads to the
reference scaffolds. A summary of our software’s reported
corrections can be found in Table 1. As homopolymer
repeat errors of two or more nucleotides are extremely
infrequent in Illumina data, we disable homopolymer cor-
rections when correcting Illumina data. This avoids intro-
ducing a small number of homopolymer associated errors.
A total of 99% of the GS Junior (1), 89% of the PGM (1),
and 99% of the MiSeq reads are retained as high qual-
ity after correction. The filtered low information reads
are corrected, but are separated from the high informa-
tion reads. A custom Python script is used to aggregate
information from the SMALT alignment about corrected,
missed, and introduced errors.We observe whether a read
is aligned or unaligned to the reference and whether the
reference scaffold it is aligned with has changed. Dur-
ing the assessment procedure, we discard incomparable
results such as read pairs which do not align to the same
reference scaffold or have alignment starting positions
further than twenty bases apart (e.g. reads aligning to
similar repetitive regions). Similar to Loman et al., we
ignore soft-clipped alignment regions and we additionally
ignore all aligned bases which are not contained within
the mutual alignment interval of the pair of reads with
respect to the reference. These removal processes leave
us with 99% of the GS Junior (1), 95% of the PGM (1),
and 94% of the MiSeq aligned bases for analysis. We cre-
ate a list of errors in both reads determined by their error

type (mismatch, insertion, or deletion) and by their posi-
tion with respect to the reference. We consider a single
nucleotide alignment with an N to be erroneous when the
N is located only within the read and not erroneous when
located within the reference. When an error is found in an
uncorrected read, but not in its corresponding corrected
read, we report a corrected error. Conversely, when an
error is found in a corrected read, but there is no such
error in the corresponding uncorrected read, we report
an introduced error. If the same error appears in both the
uncorrected and corrected reads, we report it as an uncor-
rected error. The results of the alignment comparisons are
found in Table 2.
We correct the majority of errors within all data sets

and corrections are sequencing technology appropriate.
Additionally, we introduce very few errors with respect to
the number of errors in the uncorrected reads. We cor-
rect 86% of insertion and 83% of deletion errors in the
GS Junior (2) data set while only introducing 2% more
insertions and 6% more deletion errors; that is, we correct
about 20 errors for every 1 error introduced. We cor-
rect 91% of insertion and 86% of deletion errors in the
PGM (1) data set while introducing 2% more insertion
and 5% more deletion errors. We report 95% of substi-
tution errors corrected in our MiSeq (1) data set while
introducing only 1% more of such errors. Overall, we cor-
rect 85% GS Junior (2), 88% PGM (1), 94% MiSeq errors,
and introduce under 4% new errors in all data sets. We
appear to have some difficulty correcting MiSeq insertion
errors with only 10% of MiSeq insertion errors corrected.
However, these insertion errors make up only 0.2% of the
total, and may also include insertion errors present within
the 454 GS FLX+ reference assembly. Additionally, we
introduce 15% more substitution errors in GS Junior (2),
but the overall number of errors introduced in the data
set is 4%.
There are a number of issues which should be consid-

ered when interpreting the results. The reference genome
is sequenced using Roche 454 GS FLX+ and it will contain
some errors. This will give the MiSeq data the appearance

Table 1 The number of corrections reported and low-information reads removed by Pollux

Number Total number Corrections Reads

Platform (Run) of reads of bases Mismatches Insertions Deletions Homopolymers removed

454 GS Junior (1) 135,992 70,999,968 24,100 164,198 56,144 17,221 1%

454 GS Junior (2) 137,528 71,710,564 21,004 167,999 53,947 13,535 1%

Ion Torrent PGM (1) 2,483,868 303,579,279 610,872 2,609,205 1,863,522 1,106,908 11%

Ion Torrent PGM (2) 2,154,577 260,017,346 561,024 2,215,086 1,765,495 968,961 13%

MiSeq 1,766,516 250,356,566 250,896 1,893 3,349 0 1%

All reads are sequenced from the same O104:H4 E. coli isolate. Substitution, insertion, deletion, and homopolymer corrections are performed on all data sets except for
MiSeq, for which we do not perform homopolymer corrections. The percentage of reads which were removed as a consequence of more than 50% unique k-mers is
provided under Reads Removed.

www.sanger.ac.uk/resources/software/smalt/
www.sanger.ac.uk/resources/software/smalt/
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Table 2 Alignment comparison of corresponding uncorrected and corrected reads against the reference genome

Corrected (Abundance (counts/kb)) Introduced (Abundance (counts/kb))

Platform (Run) Total Mismatches Insertions Deletions Total Mismatches Insertions Deletions

GS Junior (1) 81% 76% (0.33) 82% (2.28) 81% (0.81) 4% 11% (0.048) 2% (0.065) 6% (0.063)

GS Junior (2) 85% 79% (0.24) 86% (2.23) 83% (0.76) 4% 15% (0.044) 2% (0.059) 6% (0.050)

PGM (1) 88% 82% (1.68) 91% (7.67) 86% (7.10) 3% 2% (0.046) 2% (0.16) 5% (0.44)

PGM (2) 86% 80% (1.72) 90% (7.47) 84% (7.70) 4% 2% (0.052) 2% (0.16) 6% (0.52)

MiSeq 94% 95% (0.85) 10% (0.0015) 78% (0.007) 1% 1% (0.010) 4% (0.0007) 8% (0.0007)

All reads are sequenced from the same O104:H4 E. coli isolate. Corresponding uncorrected and corrected reads are aligned to the reference genome using SMALT.
Incomparable alignments are removed. Corrected errors reflect alignment errors which are found in uncorrected reads but not in corrected reads. Similarly,
introduced errors are a consequence of alignment errors found in corrected reads but not in uncorrected reads.

of having higher than expected amounts of uncorrected
indel errors. Additionally, a small number of correspond-
ing uncorrected and corrected reads may produce equal-
scoring alignments which differ only slightly. When these
alignments contain an error which is resolved differently
in each alignment, the error may appear to be corrected
and reintroduced. However, we expect alignment noise
to be minimal since we both the reads and the reference
are sequenced from the same E. coli isolate and the ref-
erence is of high quality. Furthermore, since our software
attempts to find corrections which improve k-mer counts
maximally, it is possible to report compound errors as an
alternative error type. For example, a homopolymer with
a single insertion adjacent to a homopolymer with a sin-
gle deletionmay appear as a mismatch and be corrected as
such. This does not have an adverse affect on the correc-
tion itself, but may result in reporting more substitution
corrections than expected.

Comparison
We compare our software to several other error correc-
tors. These include Quake [9], SGA [14], BLESS [15],
Musket [16], and RACER [17]. We use the Roche 454
GS Junior (1), Ion Torrent PGM (1), and Illumina Miseq
E. coli sequencing data sets available in the Loman
et al. comparison [3]. Additionally, we include a S. aureus
Illumina Genome Analyzer II data set (SRX007714,
SRX016063) available in GAGE [2] as well as L. pneu-
mophila (SRR801797) and M. tuberculosis (ERR400373)
Illumina HiSeq data used to previously benchmark error
correction [18]. We evaluate the effect of correction in
the same manner as described above. The results of this
comparison are shown in Table 3. We use k = 31 for all
software except Quake, which uses k = 19 because of
hardware memory limitations. However, we note Quake
specifies using k-mers of approximately this size [9]. We
additionally note that Quake, SGA, and Musket were
intended to only correct Illumina sequencing data. How-
ever, we include Roche 454 and Ion Torrent corrections
for completeness. Pollux, GAGE, and SGA perform read

filtering whereas BLESS, Musket, and Racer do not filter
reads.
We find that Pollux corrects the greatest percentage of

errors in four of the six test sets and is second in the
remaining two. Pollux filters reads with similar aggressive-
ness as Quake and SGA. RACER corrects the most errors
within the GS Junior data, corrects the majority of errors
in the PGM data, and performs well on Illumina data sets
while filtering no reads. The amount of errors introduced
by RACER is comparable to Pollux within the Illumina
data. However, RACER introduces a significant number of
errors within GS Junior and PGM data. SGA, BLESS, and
Musket correct and introduce similar amounts of errors
within Illumina data. These error correctors remove a sig-
nificant number of errors while introducing extremely few
errors. However, of these three, only BLESS performs well
on GS Junior and PGM data. Quake performs exception-
ally well on HiSeq L. pneumophila, correcting 99.66% of
errors while introducing almost no additional errors. The
effect of read filtering is significant within S. aureus data.
Pollux is able to obtain a high percentage of errors cor-
rected in this data because of its ability to remove reads
which do not contribute information. This is supported
by the observation that an assembly generated from cor-
rected S. aureus reads improves significantly following
correction.

Mixed genome correction
Pollux is also intended for mixed genome data sets, such
as those that would be obtained in a metagenomics study.
We create a suitable high quality mixed reference data
set for testing by incorporating two data sets from GAGE
[2] with the Loman et al. E. coli reads [3]. This data set
is comprised of uncorrected Illumina data from E. coli
(SRA048664) [3], S. aureus (SRX007714, SRX016063) [2],
and R. sphaeroides (SRX033397, SRX016063) [2] and is
used to evaluate our software’s ability to correct errors in
a mixed genome environment. The E. coli reads are the
same as above and were sequenced with Illumina MiSeq.
The S. aureus and R. sphaeroides reads were sequenced
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Table 3 Comparison of various error correction software

Illumina MiSeq - E. coli

Errors Errors Reads Run
Software corrected (%) introduced (%) removed (%) time (min)

Pollux 93.81 1.28 0.89 3.01

Quake 58.78 0.05 0.92 4.09

SGA 78.65 0.09 1.11 15.51

BLESS 83.21 0.10 0.00 0.86

Musket 81.75 0.15 0.00 2.37

RACER 86.59 1.60 0.00 1.07

Illumina genome analyzer II - S. aureus

Errors Errors Reads Run
Software corrected (%) introduced (%) removed (%) time (min)

Pollux 87.04 0.38 31.73 3.67

Quake 75.30 0.10 29.81 4.81

SGA 47.45 0.02 10.71 14.28

BLESS 55.32 0.06 0.00 0.49

Musket 45.04 0.14 0.00 6.96

RACER 75.76 0.28 0.00 0.68

Illumina HiSeq - L. pneumophila

Errors Errors Reads Run
Software corrected (%) introduced (%) removed (%) time (min)

Pollux 96.16 0.13 6.01 14.40

Quake 99.66 0.00 4.25 22.25

SGA 84.61 0.03 3.87 73.82

BLESS 87.61 0.03 0.00 3.56

Musket 83.33 0.10 0.00 18.67

RACER 94.09 0.16 0.00 4.14

Illumina HiSeq - M. tuberculosis

Errors Errors Reads Run
Software corrected (%) introduced (%) removed (%) time (min)

Pollux 69.98 0.83 6.51 4.24

Quake 68.06 0.12 3.06 5.62

SGA 31.99 0.16 0.46 17.75

BLESS 60.01 0.13 0.00 1.04

Musket 44.68 0.80 0.00 5.93

RACER 65.14 1.28 0.00 0.79

Roche 454 GS Junior - E. coli

Errors Errors Reads Run
Software corrected (%) introduced (%) removed (%) time (min)

Pollux 81.02 4.14 0.82 5.45

Quake 0.21 0.00 0.07 3.62

SGA 8.94 3.63 1.64 5.33

BLESS 34.68 1.27 0.00 0.24

Musket 0.00 0.00 0.00 0.05

RACER 82.03 24.27 0.00 0.36
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Table 3 Comparison of various error correction software (Continued)

Ion torrent PGM - E. coli

Errors Errors Reads Run
Software corrected (%) introduced (%) removed (%) time (min)

Pollux 87.83 3.43 10.90 26.75

Quake 12.35 2.03 37.60 11.11

SGA 5.43 1.12 0.16 55.93

BLESS 22.82 0.52 0.00 1.25

Musket 9.40 4.88 0.00 47.27

RACER 67.86 15.95 0.00 1.64

The evaluation is performed by aligning corresponding uncorrected reads and corrected reads, which were not removed, against a reference genome using SMALT.
Corrected errors are an aggregate of all alignment errors which are found in uncorrected reads but not in corrected reads. Similarly, introduced errors are an
aggregate of all alignment errors found in corrected reads but not in uncorrected reads and are relative to the sum of corrected and uncorrected errors. The
percentage of reads removed by each software is noted. We note that Quake, SGA, and Musket were intended to only correct Illumina sequencing data.

using an Illumina Genome Analyzer II. The E. coli refer-
ence was assembled from Roche GS FLX+ reads, while
the S. aureus and R. sphaeroides references were assem-
bled with reads generated from Sanger sequencing. As
our error correction and evaluation procedures ignore
the order of reads, we concatenated all read sets into a
single file and similarly concatenated all references into
a single reference file. The mixed data set was com-
prised of 35% E. coli reads, 25% S. aureus, and 40% R.
sphaeroides. We correct these mixed reads using k =
31 with homopolymer correction disabled and evaluate
the effect using the same alignment procedure described
above.
An overall total of 82% of errors were reported cor-

rected with only 0.6%more errors introduced. Specifically,
our software corrected 82% of substitution errors, 70%
of insertion errors, and 73% of deletion errors, with 98%
of all of corrections being substitutions. A total of 19%
of reads were removed using our k-mer removal crite-
ria and not aligned. We evaluated 94% of aligned bases
after discarding incomparable alignment locations and
soft-clipped bases. While 19% seems substantial, we note
that Quake [9] and the error correction procedure within
ALLPATHS-LG [13] remove 37% and 36% of the S. aureus
reads, respectively, and similarly removed 26% and 31% of
the R. sphaeroides reads [2] when correcting the data sets
independently.

Assembly improvements
We evaluate our error correction software as a prepro-
cessing step before de novo assembly. The E. coli Illumina
MiSeq [3] and S. aureus Illumina Genome Analyzer II [2]
read sets are used to evaluate the effect of our software
on assembly when correcting paired reads with both short
and long insert lengths. The E. coli reads are paired and
have an average read length of 142. The S. aureus data
set consists of paired fragment reads of length 101 with
average insert lengths of 180 and long-range paired-end

reads of length 37 with average insert lengths of 3500.
The paired reads are corrected together using our soft-
ware’s paired-end correction. However, we choose not
to remove any short-jump S. aureus reads as nearly half
of short-jump reads were flagged as having more than
50% unique k-mers. Removing these reads would have
rendered much of the valuable short-jump information
unusable.
Velvet [12] is used to assemble the E. coli and S. aureus

Illumina data sets. We use assembler default settings
(k = 31) for the E. coli reads and assembly settings as
described by GAGE [2] (k = 31) for the S. aureus reads.
The results of the assemblies can be found in Table 4.
We compare the common assembly metrics number of
scaffolds and N50 of assemblies using uncorrected and
corrected reads. We additionally include NGA50, as cal-
culated by QUAST [19], which represents the contig
length such that equal or greater length contigs account
for at least 50% the length of the genome. This value is
calculated after breaking misassembled contigs and addi-
tionally differs from the N50 in that it is with respect
to the genome size and not the assembly length. There
are fewer scaffolds and larger N50 values in the error
corrected assemblies than there are in there uncorrected
counterparts. The uncorrected E. coli assembly produces
2120 scaffolds with an N50 of 31 kb and a maximum
scaffold of size 99 kb. This improves to 1840 scaffolds
with an N50 of 37 kb and a maximum contig of size
163 kb. The NGA50 improves slightly as well, increas-
ing from 84 to 85 kb. The S. aureus assembly improves
even more significantly. The uncorrected assembly pro-
duces 737 scaffolds with an N50 of 192 kb and amaximum
scaffold size of 435 kb. The corrected assembly reduces
the number of scaffold to 603 and has a N50 of 1771 kb,
which is themaximum scaffold size, and is longer than half
the genome length. Furthermore, the NGA50 improves
substantially after correction, increasing from 145 kb to
202 kb.
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Table 4 Comparison of de novo assemblies using uncorrected and corrected reads

Uncorrected Corrected

Assembly Scaffolds N50 (kb) NGA50 (kb) Scaffolds N50 (kb) NGA50 (kb)

E. coli 2,120 31 84 1,840 37 85

S. aureus 737 192 145 603 1,771 202

Assemblies of uncorrected and corrected reads using Velvet. E. coli reads are paired and assembled using default parameters. S. aureus reads are comprised of paired
fragment reads with average inserts of length 180 and short jump reads with average inserts of length 3500. These reads are assembled using parameterization as
described in GAGE.

Performance
Pollux requires 3, 5, and 24 minutes when correcting
MiSeq, GS Junior (1), and PGM (2) E. coli data sets,
respectively, when executed on a 8 core Linux machine
with an Intel Core i7-3820 (3.60 gigahertz) processor and
64 GB of memory (maximummemory requirements were
9.7 GB). The Ion Torrent PGM E. coli data sets had signif-
icantly more errors reported than the similar MiSeq and
GS Junior data sets. Pollux uses a maximum of 1 GB of
memory when counting k-mers and correcting the Illu-
mina MiSeq data set [3] containing 19M distinct k-mers
and 250M bases. We conduct a further test of memory
and execution time requirements by running Pollux on the
GAGE [2] human chromosome 14 data set (http://gage.
cbcb.umd.edu/data/) consisting of 61.5 million paired-
end reads total. This correction requires 6.5 hours and
uses a peak of 30 GB of memory during k-mer counting
and 23 GB of memory during correction.

Filtering
We note that our approach to filtering reads based on
unique k-mers is an improvement over a naive quality
score approach. To verify this we compared the effect
of removing reads using both our software’s unique
k-mer approach with a simple quality score approach.
The unique k-mer approach is accomplished using our
error correction software. Reads that contain more
than 50% unique k-mers after attempting correction
are removed. The quality score approach is accom-
plished using a custom Python script. The script removes
reads which contain more than 10% low quality bases,
as reported by the sequencer. We define low quality
bases to be a Phred [20] quality score of Q10 or less.
We then consider the reads which are removed by the
quality score approach but not by the k-mer approach.
These are reads that are designated as having poor
quality scores, but which our error correction software
considers valuable. We find that our error correction
software is capable of correcting many of the errors in
these reads despite having an abundance of low qual-
ity scores. The most notable difference is with respect
to the Ion Torrent PGM (1) E. coli data set. We find
that our software is able to correct 87% of the 3.3M
errors found in reads that would be discarded exclusively
through a simple quality score approach. Our software’s

k-mer based removal approach can evaluate the
usefulness of a read after attempting corrections, retain-
ing more information than filtering using a simple quality
based approach before correction.

Discussion
The number and kinds of reported corrections, both by
our error correction software and by our alignment evalu-
ation procedure, corresponds with what we would expect
to correct for the respective sequencing technologies and
with the results reported by Loman et al.. With the E. coli
data set, Pollux reports 98% of attempted MiSeq correc-
tions as substitution, 90% of PGM(1) as indel, and 92% of
GS Junior (2) as indel. Similarly, our alignment evaluation
procedure reports 99% of successful MiSeq corrections
as substitution, 90% of PGM (1) as indel, and 93% of GS
Junior (2) as indel. With respect to GS Junior (2) correc-
tions, insertion corrections appear to be more frequent
at 70% than deletions at 23%, as reported by our evalu-
ation procedure. We report per base indel corrections at
1.9% for PGM (1), 0.33% for GS Junior (2), and 0.0021%
for MiSeq. This agrees with Loman et al. who report per
base indels at 1.5% for PGM (1), 0.38% for GS Junior (2),
and 0.001% for MiSeq. Similarly, we report per base sub-
stitution corrections at 0.1% for MiSeq which agrees with
Loman et al. at 0.1%.
An example of the changes in k-mer counts before and

after correction is provided in Figure 3. The effect is most
noticeable when correcting Ion Torrent PGM reads. The
k-mers associated with the uncorrected read reveal one of
the difficulties with the data: errors are often not unique
and instead frequently coincide, resulting in erroneous
regions with k-mer counts that do not drop to one. This is
problematic because a read containing an accurate length
homopolymer will contain a k-mer count drop relative to
the number of errors in other reads containing the same
homopolymer region. We are therefore required to have
a more forgiving correction procedure for homopoly-
mers which allows for accurate length homopolymers
that otherwise appear erroneous. When the k-mers are
re-evaluated after all corrections, we discover the over-
all coverage of the read has increased significantly and
k-mer counts across reads become more reflective of a
random sampling of the genome, as many errors have
been corrected. The average k-mer counts also increase in

http://gage.cbcb.umd.edu/data/
http://gage.cbcb.umd.edu/data/
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Figure 3 The k-mer counts associated with the uncorrected and corrected version of an Ion Torrent PGM read containing a highlighted
deletion error. As is common with PGM data, the counts associated with the deletion error are not all reduced to one. This is a result of multiple
similar deletion errors coinciding. The overall depth of the read increases after correction, suggesting a large number of errors are removed in other
reads.

MiSeq and GS Junior corrected reads. However, the effect
is much less extreme.
While the current version of the software is effective,

there are some areas that may be improved by future
refinements. The number of corrected errors could be
improved by targeting adjacent errors and other coin-
cident errors that are not homopolymers. Within the
homopolymer correction algorithm, we do not correct
errors other than homopolymer repeats and thereby
ignore all other multinucleotide errors. Correcting these
errors would require exploring a larger space of correction
possibilities. There is also room for improvement when
correcting the rarer error types in sequencing technolo-
gies. For example, we appear to be slightly overcorrecting
substitution errors in GS Junior reads and potentially
under-correcting indel errors in MiSeq reads. Addition-
ally, we have a somewhat lower success rate correcting
deletion errors than insertion errors across all technolo-
gies. This may be a consequence of deletions resulting in
fewer k-mer count evaluations and therefore simpler to
correct. The running time andmemory requirements may
be improved by incorporating dedicated k-mer count-
ing software, such as BFCounter [21], Turtle [22], or
KMC [23].
We believe that our success correcting a mixed data

set lends evidence to our correction software’s ability to
correct more complicatedmixed data sets such asmetage-
nomic data. This is supported by our successful correction
of E. coli MiSeq data which contains 25-fold chromo-
some coverage and 625-fold phage coverage, suggesting
our software is able to correct the majority of errors in the
presence of highly variable coverage.

Conclusion
The k-mer count approach used by our software is highly
effective at correcting errors across different sequenc-
ing platforms, including Illumina MiSeq, Roche 454 GS

Junior, and Ion Torrent PGM data sets. These correc-
tions are sequencing technology appropriate and agree
with published findings. Our software is sensitive to low-
depth sequencing regions and can correct errors in the
presence of highly variable coverage while introducing few
new errors. Additionally, we find our software corrects the
majority of errors in a mixed genome environment. We
believe our software is a versatile tool that may be used in
a variety of applications.

Availability
The source code for Pollux is distributed freely.
Project name: Pollux
Project home page: http://github.com/emarinier/pollux
Operating system(s): Unix-based 64-bit OS
Programming language: C
Other requirements: None
License: GNU GPL
Any restrictions to use by non-academics:
Non-academics may freely use this software.
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