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Prediction of piRNAs using transposon interaction
and a support vector machine
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Abstract

Background: Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNA primarily expressed in germ cells that
can silence transposons at the post-transcriptional level. Accurate prediction of piRNAs remains a significant challenge.

Results: We developed a program for piRNA annotation (Piano) using piRNA-transposon interaction information. We
downloaded 13,848 Drosophila piRNAs and 261,500 Drosophila transposons. The piRNAs were aligned to transposons
with a maximum of three mismatches. Then, piRNA-transposon interactions were predicted by RNAplex. Triplet
elements combining structure and sequence information were extracted from piRNA-transposon matching/pairing
duplexes. A support vector machine (SVM) was used on these triplet elements to classify real and pseudo piRNAs,
achieving 95.3 ± 0.33% accuracy and 96.0 ± 0.5% sensitivity. The SVM classifier can be used to correctly predict
human, mouse and rat piRNAs, with overall accuracy of 90.6%. We used Piano to predict piRNAs for the rice stem
borer, Chilo suppressalis, an important rice insect pest that causes huge yield loss. As a result, 82,639 piRNAs were
predicted in C. suppressalis.

Conclusions: Piano demonstrates excellent piRNA prediction performance by using both structure and sequence
features of transposon-piRNAs interactions. Piano is freely available to the academic community at http://ento.njau.
edu.cn/Piano.html.
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Background
Non-coding RNAs (ncRNAs) are important RNA mole-
cules. Although they do not encode proteins, their roles in
gene regulation are crucial [1,2]. There are many types of
long ncRNAs whose functions remain largely unknown
[3]. Short ncRNAs, such as microRNAs (miRNAs) and
piwi-interacting RNAs (piRNAs), are important post-
transcriptional regulators [4]. piRNAs are produced
from un-characterized precursors in both male and
female germline cells. The discovery of piRNAs was a
highly important break-through as they are involved in
germ cell formation, germline stem cell maintenance,
spermatogenesis and oogenesis [5-8].
The biogenesis of piRNAs is quite different from that

of miRNAs. Although details of their biogenesis are
currently unclear, several models have been proposed.
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In germline cells, piRNAs can be produced by the primary
processing pathway and by a feed-forward loop, called
the “ping-pong” pathway, which uses primary piRNAs
to direct cleavage of complementary transposon sense
transcripts [9]. These mature sense piRNAs will target
complementary antisense piRNA precursors to create
mature antisense piRNAs that can continue sense piRNA
generation. piRNAs lack apparent structural motif and se-
quence conservation across different species, making their
prediction a difficult task. piRNAs are generally under-
stood to participate in transposon silencing during embryo
development [10]. The majority of piRNAs are antisense
to transposons. In the genome, piRNAs tend to occur in
clusters and to be located in intergenic regions [5]. How-
ever, piRNAs are also found in somatic cells [11], and
studying piRNA functionality is still a challenging task be-
cause of the wide variation of piRNA sequences.
piRNAs have been reported in human [12], mouse

[6], rat [13], zebra fish [7], and fruit fly [14]. A typical
experimental procedure to obtain piRNA data relies on
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immunoprecipitation of small RNAs bound to the protein
PIWI and deep sequencing. However, with this method, it
is still hard to identify piRNAs expressed at low levels
or with restricted spatiotemporal expression. Therefore,
computational prediction can provide an alternative ap-
proach to identify potential piRNAs. Unfortunately, hom-
ology sequence searching methods such as BLAST [15] or
motif searching methods such as MEME [16] are not suit-
able for detecting piRNAs because sequence conservation
is very low and no conserved structural motif has been de-
tected in piRNAs.
The first de novo algorithm to identify piRNAs was a

position-specific usage method that classifies piRNA
sites along the genome using piRNAs starting with a uri-
dine at their 5′ ends. A vector of 21 × 4 components was
constructed containing 10 nucleotides upstream and 10
downstream of the starting U (i.e., +10 to −10, where U
has the position of 0). The precision of this algorithm
was only 61-72%, indicating that this tool is helpful for
piRNA classification but still needs improvement [17].
Zhang et al. developed a k-mer based algorithm, named
piRNApredictor, to predict piRNAs. piRNA and non-
piRNA sequences from five model species were used as
the training set. piRNApredictor has a high precision of
>90% and a sensitivity of >60% [18]. piRNApredictor
was integrated with mirTools 2.0 to predict piRNAs
from small RNA-Seq data [19]. Moreover, iMir can be
used to find piRNAs [20], but it mainly focuses on
miRNAs. There is another program called "multiclass rele-
vance units machine" that shows an excellent performance
on piRNA classification [21]. However, it focuses on algo-
rithm development and its software is not publicly avail-
able. proTRAC [22] and piClust [23] were developed to
display known piRNA clusters, but they cannot be used to
find new piRNAs.
Here, we present a new program, piRNA annotation

(Piano), to predict piRNAs using piRNA-transposon inter-
action information. A support vector machine (SVM) was
used to classify real piRNAs and pseudo piRNAs. Our
analysis of Drosophila melanogaster data shows that Piano
performs well in piRNA prediction, with over 90% pre-
diction sensitivity, specificity and accuracy. The SVM
classifier trained with Drosophila piRNA data can also
accurately identify piRNAs of other species such as
Homo sapiens, Mus musculus and Rattus norvegicus.
Using small RNA-Seq data, Piano was successfully used
to predict piRNAs for an important rice pest, the rice
striped stem borer, Chilo suppressalis.

Methods
Training and testing sets
Two datasets were built for D. melanogaster: one contained
real piRNAs and the other contained pseudo piRNAs.
We downloaded 987 piRNAs from the NCBI GenBank
database (GI: 157361675–157362817) [24] and 12,903
piRNAs from the NCBI Gene Expression Omnibus
with the accession number GSE9138 [14]. By using
short sequence alignment software, SeqMap [25],
highly similar sequences were removed. After removing
redundancy, 13,848 non-redundant piRNAs were kept.
We downloaded 261,500 Drosophila transposons from
the UCSC Genome Browser (Apr. 2006 dm3) [26]. We
aligned 13,848 piRNAs to the transposon sequences
using SeqMap with a maximum of three mismatches
allowed. Among 13,848 non-redundant piRNAs, 9,758
(70.4%) could be aligned successfully, suggesting that
they can target transposons.
Since DNA sequences are not random sequences, there

are some differences between coding and non-coding
RNAs. Because piRNAs are non-coding RNAs, we used
non-coding RNAs as a negative control to generate our
pseudo piRNA dataset. We downloaded 102,655 Drosophila
ncRNA sequences from the NONCODE v3.0 database
[27]. First, we removed all piRNAs from this dataset. We
then randomly selected one ncRNA sequence and ran-
domly cut out a short sequence of 20–30 nt as one candi-
date sequence. By this double-randomization process, we
were able to obtain about 200,000 candidate pseudo
piRNAs. Next, we mapped all these candidate sequences
to the transposons with a maximum of three mismatches,
and those sequences that did not map to the transposons
were removed from the candidate sequence dataset. Ac-
cordingly, we produced 38,919 non-redundant candidate
pseudo piRNAs. We then randomly selected some can-
didate pseudo piRNA sequences to simulate the length
distribution of real piRNAs. Finally, we obtained 9,240
sequences that formed the pseudo piRNA dataset as the
negative dataset for SVM classification.

Cross-species test set
We applied the SVM classifier trained with Drosophila
piRNAs to human, mouse and rat data. In total, 32,152
human, 75,814 mouse and 66,758 rat piRNAs were
downloaded from the NONCODE v3.0 database [27].
Transposons of the three species were downloaded from
the UCSC Genome Browser [26], including 8,537,572
human, 7,320,714 mouse and 6,380,192 rat transposons.

Structure-sequence triplet elements
The main function of piRNAs is to silence transposons.
To target transposons, piRNAs need to bind with their
target sequences. In piRNApredictor [18], 1,364 k-mer
strings (k = 1, 2, 3, 4, 5) were used to describe piRNA se-
quences. Although this k-mer approach is a good way to
characterize and extract sequence content features from
piRNAs, it is purely a mathematical method that might
lack biological insight and significance. In our program,
we analyzed piRNA-transposon interaction information



Figure 1 Principle of triplet elements.

Table 1 Datasets for SVM classification

Positive samples Negative samples

Training set 6,833 6,468

Validation set 1,950 1,848

Test set 975 924

Total number 9,758 9,240
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using RNAplex [28]. When a piRNA binds with a trans-
poson, there are two statuses for each nucleotide of the
piRNA, paired or unpaired (see Figure 1). The paired nu-
cleotides of piRNAs are indicated by opening brackets "("
whereas the paired nucleotides of transposons are indi-
cated by closing brackets ")". The unpaired nucleotides in
both piRNAs and transposons are indicated by dots “.”.
For any three adjacent nucleotides of a piRNA, there are 8
(23) possible structure compositions: "(((", "((.", "(..", "(.(", ".
((", ".(.", "..(" and "…". Combining the middle nucleotide of
each three adjacent nucleotides, we can form 32 (4 × 8)
different triplet elements that contain both structural in-
formation of transposon-piRNA alignment/pairing and
piRNA sequence information, which we call structure-
sequence triplet elements (see Figure 1). For instance, the
triplet element “(((U” indicates that three contiguous
piRNA nucleotides are aligned with a transposon and the
middle nucleotide is U.

Support vector machine
Support vector machines (SVMs) have been widely ap-
plied in the classification of biological signals. For a
given dataset, xi ∈ Rn (i = 1,…N) with corresponding la-
bels yi (yi = +1 or −1, representing real and pseudo
piRNAs respectively in this work), SVM gives a decision
function
Z

xð Þ ¼ sgn
XN

i¼1
yiαiK x; xið Þ þ b

� �
, where αi

represents the coefficients to be learnt and K is the kernel
function. The LibSVM3.12 package (http://www.csie.ntu.
edu.tw/~cjlin/libsvm/) [29] was used to perform the ana-
lysis. For optimizing the SVM classifier, the penalty par-
ameter C and the RBF kernel parameter γ were adjusted
using the grid search strategy in LibSVM.
Prediction system assessment
Prediction accuracy (ACC), specificity (Sp), precision
(Pre) and sensitivity (Se) are widely used to evaluate the
algorithm performance. The equations for these parame-
ters are given below, with the following abbreviations:
false positive (FP), true positive (TP), false negative (FN)
and true negative (TN).

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Figure 2 10-cross-validation results.
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Se ¼ TP
TP þ FN

� 100%

Sp ¼ TN
TN þ FP

� 100%

Pre ¼ TP
TP þ FP

� 100%

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

� 100%

Results and discussion
SVM classification
We used a SVM to classify real and pseudo piRNAs
using 32-dimensional vectors of structure-sequence triplet
elements. The training dataset was randomly divided into
ten equally sized partitions. Each partition had the same
ratio of positive samples to negative samples. Seven
Figure 3 The distribution of triplet elements in two datasets (pseudo
partitions were merged together as the training data-
set. Two of the other partitions were merged together
to validate the classifier for model selection. The tenth
partition was used as the testing dataset. We used 10-fold
crossing validation to improve the reliability. The training
procedure was repeated ten times with different com-
binations of training set (seven partitions), validation
set (two partitions) and testing set (one partition)
(Table 1). We called our program that uses a SVM
classifier with structure-sequence triplet elements to
predict piRNAs, the piRNA annotation platform, ab-
breviated as Piano.
In one of these tests, Piano correctly recognized 935

out of 975 real Drosophila piRNAs, and detected 874
out of 924 pseudo piRNAs as negative cases (Additional
file 1: Table S2). We calculated the average value of ten
tests. Piano gives a sensitivity of 95.89 ± 0.50%, specificity
of 94.61 ± 0.81%, accuracy of 95.27 ± 0.34%, and precision
piRNA vs. real piRNA).



Table 2 Cross-species validation results

Test set Size ACC (%)

H. sapiens 7,140 93.7

M. musculus 14,495 89.1

R. norvegicus 14,195 89.7

Figure 4 The ROC curves of the two algorithms.
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of 94.95 ± 0.71% (Figure 2). The high performance of
Piano indicated that real and pseudo piRNAs are quite dif-
ferent in terms of structure-sequence triplet elements.
The triplet elements combine both structural information
of piRNA-transposon alignment/pairing and sequence in-
formation of the middle nucleotide of three contiguous
piRNA nucleotides. Such a structure-sequence triplet
element was previously used to classify real and pseudo
miRNAs [30], suggesting that this structure-sequence
feature might be common for small ncRNAs. Although
pseudo piRNAs are also antisense to transposons due
to their alignment (see Methods), they can be effect-
ively distinguished from real piRNAs by the triplet ele-
ments, demonstrating that piRNA-transposon interaction
information is an intrinsic characteristic of piRNAs.
We calculated the average frequencies of the 32 structure-

sequence triplet elements in the real piRNAs and pseudo
piRNAs. Our data analysis indicated that "(((G" and "(((C"
appear at higher frequencies in real piRNAs than in
pseudo piRNAs. The group of two-paired nucleotides and
one unpaired (e.g., "((.A") appears more often in pseudo
piRNAs than in real piRNAs (Figure 3). We calculated the
F-value to estimate the discriminative power of the differ-
ent triplet elements [31,32].

F xj
� � ¼ μþj − μ−j

σþj þ σ−
j

�����
�����

For each feature xj, j = 1, …, N, we calculated the mean
μþj (μ−j ) and standard deviation σþj (σ−j ) using positive or

negative examples, respectively. The results demon-
strated that “…G”, “(.(G”, “..(C”, “..(G”, and “(..C” are the
top five discriminative elements. Four of them contain
continuously unpaired nucleotides, suggesting that bind-
ing stability between piRNA-transposon interactions is
Table 3 Comparison between results from Piano and piRNAp

Species Method Dataset size

Positive Negativ

H. sapiens piRNApredictor 7,140 2,898

Piano

M. musculus piRNApredictor 14,495 2,564

Piano

R. norvegicus piRNApredictor 14,195 2,588

Piano
the key information in classifying real and pseudo
piRNAs (Additional file 2: Table S1).

Application of Piano to other species
To test the robustness of the program, we used the SVM
classifier trained using the aforementioned Drosophila
piRNA dataset to predict human, mouse and rat
piRNAs. After aligning 32,152 human, 75,814 mouse and
66,758 rat piRNAs to relevant transposon sequences,
7,140 human, 14,495 mouse and 14,195 rat piRNAs were
alignable and used in our cross-species application. The
SVM classifier correctly recognized 6,690 out of 7,140 hu-
man (93.7%), 12,915 out of 14,495 mouse (89.1%) and
12,737 out of 14,195 rat piRNAs (89.7%). This gives an
overall accuracy of 90.9% for the three cross-species data-
sets (Table 2).
The high accuracy in predicting mammalian piRNAs

achieved by the SVM classifier trained with Drosophila
piRNAs suggests that the structure-sequence triplet elem-
ent represents a conserved feature for piRNAs.
redictor

t-value Se Sp ACC

e

0 97.97% 8.20% 71.48%

- 93.67% 44.72% 79.54%

0 83.09% 9.52% 72.03%

- 89.10% 44.15% 82.34%

0 69.19% 8.42% 59.82%

- 89.65% 34.58% 81.16%



Figure 5 The length distribution of piRNAs in five species (D. melanogaster, C. suppressalis, R. norvegicus, M. musculus, and H. sapiens).
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Comparison with other methods
Piano was compared with piRNApredictor, which was
developed by Zhang et al. (2011). We used the same
datasets to test the performance of these two methods.
For each species, the testing data were composed of real
piRNAs and pseudo piRNAs, all of which were mapped
to the relevant transposon sequences (mismatch < =3).
When predicting mouse piRNAs, compared with the al-
gorithm proposed by Betel et al. (2007), piRNApredictor
had high precision, 95.53%, and the sensitivity was
72.47% with the default parameter (t = 2). This means
that piRNApredictor is good at recognizing positive but
Figure 6 Percentages of piRNAs paired with different kinds of transp
norvegicus, M. musculus, and H. sapiens).
not negative samples. When comparing Piano and
piRNApredictor with our datasets, Piano achieves higher
sensitivity, specificity and accuracy than piRNApredictor
(Table 3).
As shown in Table 3, using the same datasets for the

three species, Piano has prediction specificity of ~40%,
which is much higher than that of piRNApredictor
(~10%). Figure 4 shows the ROC curves (AUC) of
piRNApredictor and Piano. AUC is a global performance
measure because it integrates overall threshold values
[33]. Clearly, Piano achieves better performance than
piRNApredictor in identifying piRNAs.
oson in five species (D. melanogaster, C. suppressalis, R.
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Prediction of Chilo suppressalis piRNAs
Rice striped stem borer (SSB) is an important rice pest
that causes huge yield loss. To date, no piRNAs have
been reported in SSB. We applied our program to predict
piRNAs from small RNA-Seq data; 2,170,655 short se-
quences in total. From this data, 82,639 piRNAs were
predicted. The whole prediction procedure takes ~7 hours
on an Ubuntu server (Sugon X8DT6, 2 CPU processors,
each has 12 threads, 48 G memory). An interesting dis-
covery is that insect piRNAs might have a different
length distribution than mammalian piRNAs. The
mammalian piRNAs have a length peak at 29–30 nt,
whereas that in Drosophila is 24–26 nt and that in SSB
is 27–28 nt (Figure 5). These findings are consistent
with previous results [14].

piRNA target sequences
The main function of piRNAs is to target and silence
transposons. In this study, we analyzed piRNAs and their
target sequences in human, rat, mouse, fruit fly and rice
stem borer. We calculated the percentage of piRNAs tar-
geting different categories of transposons. Our data ana-
lysis indicated that the majority of human piRNAs (95.0%)
target SINE transposons. In mouse, 67.5% of piRNAs
target SINE and 24.9% target LINE transposons. In rat,
65.6% of piRNAs target SINE and 29.0% target LINE
transposons. In Drosophila, 66.8% of piRNAs target
LINE and 26.4% target LTR transposons. In SSB, 42.4%
of piRNAs target LINE and 44.0% target SINE transpo-
sons (Figure 6). These results indicate that piRNAs may
have somewhat different mechanisms of action in differ-
ent species [34,35].

Conclusions
In this study, we developed a novel program for piRNA
annotation called Piano. The program uses piRNA-
transposon alignment/pairing and piRNA nucleotide
content information (i.e., structure-sequence triplet ele-
ments) and achieves a high sensitivity, specificity and ac-
curacy of over 90%. To the best of our knowledge, this is
the best prediction performance achieved in comparison
with other tools, such as piRNApredictor. Piano can be
used not only for large-scale piRNA prediction from
small RNA sequencing data but also for genome-wide
annotation of piRNAs.

Additional files
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