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Abstract

Background: Metabolomics is a systems approach to the analysis of cellular processes through small-molecule
metabolite profiling. Standardisation of sample handling and acquisition approaches has contributed to reproducibility.
However, the development of robust methods for the analysis of metabolomic data is a work-in-progress. The tools
that do exist are often not well integrated, requiring manual data handling and custom scripting on a case-by-case
basis. Furthermore, existing tools often require experience with programming environments such as MATLAB® or R to
use, limiting accessibility. Here we present Pathomx, a workflow-based tool for the processing, analysis and visualisation
of metabolomic and associated data in an intuitive and extensible environment.

Results: The core application provides a workflow editor, IPython kernel and a HumanCyc™-derived database of
metabolites, proteins and genes. Toolkits provide reusable tools that may be linked together to create complex
workflows. Pathomx is released with a base set of plugins for the import, processing and visualisation of data. The
IPython backend provides integration with existing platforms including MATLAB® and R, allowing data to be
seamlessly transferred. Pathomx is supplied with a series of demonstration workflows and datasets. To demonstrate the
use of the software we here present an analysis of 1D and 2D 1H NMR metabolomic data from a model system of
mammalian cell growth under hypoxic conditions.

Conclusions: Pathomx is a useful addition to the analysis toolbox. The intuitive interface lowers the barrier to entry
for non-experts, while scriptable tools and integration with existing tools supports complex analysis. We welcome
contributions from the community.
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Background
Metabolomics is a systems approach to the analysis of
cellular processes through small-molecule metabolite
profiles of a cell, tissue, organ or organism that results
from the combined action of proteome, transcriptome
and genome [1]. Metabolomics can be split broadly into
targeted and untargeted approaches. Targeted metabolo-
mics uses focused study of known pathways, reactions
or metabolites in in vitro cell models and has been used
to gain insight into metabolic requirements and vulner-
abilities of cancer cells [2]. Untargeted metabolomics is a
hypothesis-forming approach in which datasets derived
from biological fluids are queried using multivariate
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analysis techniques, with the goal of identifying bio-
markers or metabolic changes that can inform future
study. This approach has been successfully employed for
the identification of novel disease markers [3].
The standardisation of sample handling and data

acquisition has contributed to improved reproducibility
in metabolomics [4]. Data analysis methods in contrast
are less well defined. Existing tools commonly build on
mathematical environments, such as MATLAB® or R and
require a level of familiarity not usually available in those
from non-mathematical backgrounds. The difficulties
moving data between these environments and associated
packages is a hindrance to an integrated workflow. In our
own group we have used this type of hybrid platform,
combining MATLAB®-based NMRLab and MetaboLab [5]
for processing and PLS Toolbox (Eigenvector Research,
Wenatchee WA USA) for multivariate analysis, with
Chenomx (Edmonton, Alberta, Canada) and the Human
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Metabolome Database [6] for metabolite identification. It
is our experience that the complexity of the analysis work-
flow acts as a significant barrier to the use of metabolomics
by non-experts, hinders discovery and slows throughput.
These issues are not unique to metabolomic analysis and

the preceding decade has seen work to address them
within the bioinformatics field. Scientific workflow tools
have emerged in recent years as a powerful and flexible ap-
proach to the analysis of large datasets [7]. Automation of
workflows can contribute to the reproducibility of analysis
and reduction in error, while simultaneously increasing
throughput. The major workflow analysis platforms in
current use are Taverna [8] and Galaxy [9], which have
established themselves as key tools in the bioinformati-
cians' toolkit. Both share a common approach of stepwise
workflow-construction paired with server-based batch pro-
cessing, yet differ on the level of abstraction of their com-
ponents. Taverna is a low-level workflow creator, offering
construction of complex functions from discrete algorith-
mic steps and with a particular focus on remote service in-
tegration. Galaxy in contrast offers high-level components
that perform common bioinformatics tasks wholesale, with
a focus on local-service integration and the need for no
programming experience. Both platforms have been devel-
oped with a focus on genomic and transcriptomics analysis
and lack support for the analysis of metabolomic data. The
batch-based processing paradigm also limits application to
the steps of analysis that can be fully automated while the
latter stages of metabolomic data analysis are typically
more exploratory, with iterative application of multivariate
techniques, interrogation of biological databases, and
pathway visualisation for interpretation of the data. Tools
are already available to aid in the various stages of meta-
bolomic data analysis, with MetaboAnalyst [10], a web-
based metabolomic analysis pipeline, being of particular
note. It includes modules for enrichment, pathway and
time-series analysis, and has a particular focus on usability
with the complete pipeline configurable through a simple
web-based interface. However, this simplicity does come
at the cost of the adaptability and automation that work-
flow analysis can offer. Further, the inability to adapt or
extend analysis modules means that complete analysis of a
dataset will often require other tools.
Recognising the benefits that workflow-based analysis

could offer to metabolomics analysis while hoping to over-
come the limitations of batch-based processing, we devel-
oped Pathomx: a workflow-based tool for data analysis.
The software is designed to be adaptable, intuitive and
to integrate well with existing tools and pipelines, act-
ing as the essential glue in the metabolomics toolbox.

Implementation
Pathomx is an open source and cross-platform analysis
tool. It is developed in Python (v2.7; Python Software
Foundation) with a graphical user interface (GUI) based
on Qt (v5.1; Digia) and graphing powered by Matplotlib
(v1.1.1) [11]. The processing kernel is based on IPython
(v3.0.0).
In Pathomx nomenclature plugins provide tools that

are then used for construction of workflows. The soft-
ware ships with a base set of tools for data import, pro-
cessing, analysis, visualisation and export based on the
NumPy (v1.7.1), SciPy (v0.12.0) [12], Pandas (v0.14.1),
SkiKit-Learn (v0.15.1) [13] and NMRGlue (v.0.4) [14]
Python packages. Many of the algorithms in the default
toolkit have subsequently been released as standalone
Python packages to allow use outside Pathomx. These
include biocyc (v0.1.0) a Python BioCyc API, gpml2svg
(v0.3.0) a GPML renderer, icoshift (v0.6.0) a Python im-
plementation of the Icoshift algorithm [15], metaboviz
(v0.0.3) a metabolic pathway drawing package utilising
the pydot (v1.0.28) interface to Graphviz (v2.12) [16]
and pathminer (v0.0.2) a metabolic pathway mining al-
gorithm. The functionality described in this paper relates
to the base plugins provided with Pathomx 3.0.
Data analysis workflows are constructed using a

drag-and-drop interface. Dragging a tool from the
toolkit creates a new tool in the workflow. Selecting
the tool allows configuration options to be changed,
data sources to be configured and the tool code to
be run. Inputs can also be managed directly from the
workflow editor by dragging the output of one tool
into the appropriate input of another. Recalculation
and regeneration of figures is dynamic and the current
run-state is visualised within the editor (blue =
complete, red = error, green = active). The default toolkit
makes extensive use of Pandas DataFrames and standard
structures to allow tools to communicate easily. Tools can
make use of parallel processing to allow efficient execu-
tion of complex workflows on large datasets on a standard
modern desktop machine. Errors are flagged with both
descriptive text and kernel backtraces for debugging pur-
poses. Source code is available for all tools and can be
modified using the inline editor to tweak behaviour.
Resulting workflows can be exported as standalone scripts
to run independently of the Pathomx environment.
Figures can be exported as high-resolution TIF files for
publication. Interfaces to both MATLAB® and R are avail-
able through the IPython backend allowing data to be
passed between environments as required. Data may be
imported from a number of other tools and public data-
bases, including Metabolights [17] and Gene Expression
Omnibus (GEO) [18].
Pathomx includes a subset of the HumanCyc™ Homo

sapiens pathway data available under license from SRI
International [19]. Database cross-referencing is supported
for KEGG [20], HMDB [6] and other databases, generated
from BioCyc annotations and the MNXref database [21].
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Results and discussion
To demonstrate the use of the Pathomx software we
here present a sample workflow and metabolomic data-
set. Sample data are derived from the culture of the
THP-1 human macrophage cell line under 20% and 1%
O2 conditions for 24 hours. Intracellular metabolites
were isolated by standard methods [22] and 1D and 2D
J-resolved (JRES) 1H NMR spectra subsequently ac-
quired on a 600 MHz B600 Bruker Avance III spectrom-
eter with TCI 1.7 mm z-PFG cryogenic probe. 2D JRES
spectra were quantified and metabolites identified using
the Field Independent Metabolite Analysis (FIMA) Bir-
mingham Metabolite Library (BML) [23] at bml-nmr.
org. The resulting data files were loaded into Pathomx
and a workflow constructed using the default toolkit
(Figure 1A and Figure 1B). Data files and workflows are
provided with this paper (Additional file 1, Additional
file 2, Additional file 3 and Additional file 4).
Spectral processing
Prerequisite to the analysis of 1D NMR data are a num-
ber of spectral processing steps that ensure that any ob-
served variation in the data is reflective of biology. An
example 1D NMR analysis workflow is included that
performs these steps with the included Bruker-format
NMR output. 1D NOESY 1H NMR spectra are first
peak-aligned using a TMSP reference peak and then
Figure 1 Graphical representation of the Pathomx workflows used in
workflow. B. 2D JRES BML-NMR analysis workflow. Both workflows are inclu
supplementary data. Workflows are constructed through a drag-and-drop i
spectra were further aligned using the Icoshift
correlation-shifting segmental alignment algorithm. Spec-
tra were then binned at 0.015 ppm and assigned to ex-
perimental groups (Figure 1).
Metabolite identification
Identification and quantification of the 2D JRES data
was performed using the BML-NMR service and the
resulting data can be loaded automatically into Pathomx.
Identification of metabolites in 1D data is typically more
involved and Pathomx includes support for both manual
peak assignment and automated peak-metabolite quanti-
fication with Chenomx. However, in the provided work-
flow we have used MetaboHunter [24] a free remote
web service which identifies metabolites using peak-
matching to the HMDB (Figure 4A).
Multivariate analysis
Metabolomic datasets are commonly analysed using
multivariate methods. Pathomx provides support for two
common methods: principal components analysis (PCA)
and partial least squares discriminant analysis (PLS-DA).
PLS-DA is suited to the analysis of distinct groups as in
this dataset—20% O2 (N), 1% O2 (H) — and is included
in both the 1D and 2D workflows. The resulting loadings
plot show the contributions of each peak, metabolite or
the generation of the outputs. A. 1D 1H Bruker NMR analysis
ded in the additional resources and may be used to re-process the
nterface.
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region of spectra to the separation between the groups
(Figure 4).

Metabolic pathway analysis
Metabolic pathway analysis allows changes in metabo-
lites to be mapped onto pathways for visualisation and
interpretation. To generate pathway maps, fold change
values for identified metabolites were calculated between
20% O2 and 1% O2 cultures. These can be visualised dir-
ectly on standard GPML/Wikipathways pathway maps
(Figure 3B). In experiments where the pathway changes
cannot be predicted, the included pathway mining tools
can be used to select and visualise the most up- and
down- regulated pathways from the data. This uses the
included BioCyc API and cached data to map quantified
metabolites to relevant pathways. The resulting top 5
pathways are visualised in the MetaboViz automated
pathway-drawing tool, with fold-change data for each
metabolite represented on a blue-red colour scale (Figure 5).
Under normal oxygenated conditions, glucose is metabo-
lised through the glycolytic pathway ending in the produc-
tion of pyruvate, which can in turn feed into the TCA
cycle. The TCA cycle, while not oxygen dependent itself,
requires recycling of NADH to NAD by the oxygen-
dependent electron-transport chain to maintain function.
Figure 2 Example outputs from the 1D processing workflow. A. Raw 1

are excluded. D. PQN normalisation. E. Spectral binning to 0.06 ppm. F. Mapped
hypoxia (blue).
In the absence of oxygen, NADH is not recycled and the
TCA cycle is impeded. The Pathomx pathway-mining
analysis of our model-system correctly identifies this
regulation, ranking the TCA cycle as most-altered path-
way in the system. Pathway-based visualisation shows
down-regulation of a majority of TCA cycle metabolites,
together with low NAD concentration as an indicator of
oxygen-dependent electron-transport chain failure. In
the absence of the feed forward into the TCA cycle, ex-
cess pyruvate is excreted as lactate.

Conclusions
Pathomx is a workflow-based tool for the exploration of
metabolomic data. It supports a complete processing
workflow through data import, processing, analysis and
visualisation. It is open source and features a plugin sys-
tem that can be readily extended with new features and
integrates readily with existing tools. Workflow con-
struction requires no prior programming knowledge but
can utilise it where available. The resulting workflows
can be shared and re-used or exported as standalone
Python scripts. Plugin development is supported through
a simple, well-documented Python-based API. We wel-
come contributions of plugins and workflows from the
community.
H NMR spectra. B. Aligned using Icoshift. C. TMSP and water regions
to appropriate classification groups by spectra number - normoxia (orange)



Figure 3 Metabolite identification generated from MetaboHunter and BML-NMR. A. 1D NMR spectra with peaks matched to HMDB
identifiers by MetaboHunter. B. 2D JRES BML-NMR quantified metabolites. The default toolkit also supports manual peak assignment and
import of quantification data from Chenomx. Identified metabolites can be annotated onto all subsequent plots and used for pathway
analysis.
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Availability and requirements
Project name: Pathomx
Project home page: http://pathomx.org
Platform: Binaries are available for download on Win-
dows and MacOS X. Installation on Linux (Ubuntu) is
supported via PyPi. Source code is available.

http://pathomx.org


Figure 4 The default toolkit includes support for multivariate analysis. A. A PLS-DA showing separation between the two groups in the 2D
JRES PQN dataset, showing normoxia (orange) hypoxia (blue) class groups. The first two latent variables are shown alongside, with metabolite
annotations visible. THP-1 cells under hypoxia produce more lactate. B. GPML/WikiPathways pathway of the TCA cycle showing fold-change differences
between normoxia and hypoxia visualised on a red-blue scale showing up and down-regulated metabolites respectively.

Figure 5 Pathway mined metabolites as visualised by MetaboViz plugin. Pathways identified by the Pathway Mining plugin and rendered
using the included MetaViz plugin. Changes are visualised on a red-blue scale, showing up- and down-regulated metabolites respectively. Analysis
shows down-regulation of TCA cycle metabolites, together with low NAD as an indicator of oxygen-dependent electron-transport chain failure.
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Programming language: Python 2.7, Qt 5.2
Other requirements: Package binary contains all
requirements
License: GNU GPL v3.0
Any restrictions to use by non-academics: N/A

Additional files

Additional file 1: 1D THP-1 Pathomx analysis workflow. Pathomx
analysis workflow for 1D 1H Bruker NMR data, acquired from the THP-1
normoxia (N) and hypoxia (H) experiment. This file contains the settings for
each processing step and workflow connections between them. Loading
the relevant data into this workflow will result in the same outputs presented
in the paper, which can be explored in further detail.

Additional file 2: 1D Raw Bruker NMR dataset – THP-1 N&H.
Experimental data from THP-1 normoxia (N) and hypoxia (H) experiment
acquired by 1D 1H NOESY NMR on Bruker spectrometer.

Additional file 3: 2D THP-1 Pathomx analysis workflow. Pathomx
analysis workflow for 2D BML-NMR processed data, acquired from the
THP-1 normoxia (N) and hypoxia (H) experiment . This file contains the
settings for each processing step and workflow connections between
them. Loading the relevant data into this workflow will result in the same
outputs presented in the paper, which can be explored in further detail.

Additional file 4: 2D Processed NMR dataset – THP-1 N&H.
Experimental data from THP-1 normoxia (N) and hypoxia (H) experiment
acquired by 2D 1H JRES NMR on Bruker spectrometer and processed via the
BML-NMR web service.
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