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Abstract

proposing novel methodologies.

activity profile.

Background: Applying machine learning methods on microarray gene expression profiles for disease classification
problems is a popular method to derive biomarkers, i.e. sets of genes that can predict disease state or outcome.
Traditional approaches where expression of genes were treated independently suffer from low prediction accuracy
and difficulty of biological interpretation. Current research efforts focus on integrating information on protein
interactions through biochemical pathway datasets with expression profiles to propose pathway-based classifiers
that can enhance disease diagnosis and prognosis. As most of the pathway activity inference methods in literature
are either unsupervised or applied on two-class datasets, there is good scope to address such limitations by

Results: A supervised multiclass pathway activity inference method using optimisation techniques is reported.
For each pathway expression dataset, patterns of its constituent genes are summarised into one composite
feature, termed pathway activity, and a novel mathematical programming model is proposed to infer this
feature as a weighted linear summation of expression of its constituent genes. Gene weights are determined
by the optimisation model, in a way that the resulting pathway activity has the optimal discriminative power
with regards to disease phenotypes. Classification is then performed on the resulting low-dimensional pathway

Conclusions: The model was evaluated through a variety of published gene expression profiles that cover different
types of disease. We show that not only does it improve classification accuracy, but it can also perform well in
multiclass disease datasets, a limitation of other approaches from the literature. Desirable features of the
model include the ability to control the maximum number of genes that may participate in determining
pathway activity, which may be pre-specified by the user. Overall, this work highlights the potential of building
pathway-based multi-phenotype classifiers for accurate disease diagnosis and prognosis problems.

Keywords: Disease classification, Microarray, Pathway activity, Mathematical programming, Optimisation

Background

The popularity of microarray technology as means of de-
riving a comprehensive view of gene expression under
particular environmental stimuli has necessitated the de-
velopment of computational strategies for linking expres-
sion patterns to sample phenotypes [1,2]. In charactering
disease, the gene expression matrix serves as input to a
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classification task where each sample is allocated to a rele-
vant phenotypic class via specific gene signatures or bio-
markers that can best differentiate between outcomes.
Such disease classification tasks have been successful in
deriving biomarkers for diagnosis [3], prognosis [4-7] and
response to treatment [8,9] in complex disorders.

Despite successful reports, disease classification is im-
peded by the so-called “large p small n” property, whereby
the number of samples (or instances) is typically several
orders of magnitude smaller than the number of genes
(or features), making it difficult to extract reliable informa-
tion from transcriptomic profiles [10]. Feature reduction
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methods are therefore employed as means of extracting a
smaller set of genes, able to discriminate between dis-
ease states. We note as example methods based on partial
least squares [11], heuristic breadth-first search algorithm
[12], and ensemble feature selection methods [13]. Subse-
quently, a classifier can be trained on the reduced feature
set to predict the disease status or prognostic characteris-
tic of any given samples [14-17].

Such diagnostic or prognostic profiles relate to genes
that do not act in isolation, but in fact work in concert,
forming sub-networks that collectively modulate or de-
termine cell fate. Accounting for such molecular synergies
in feature reduction and disease classification protocols
can also alleviate challenges of single-gene classifiers re-
lated to cellular heterogeneity in tissue, genetic heterogen-
eity among patients, measurement noise [18-20], thereby
leading to increased biological interpretability of bio-
markers and enhancing insights into the mechanisms of
the disease [21-23]. Therefore, feature selection and classi-
fication methods where all genes are treated independ-
ently are increasingly replaced by approaches where the
effects of groups of genes on disease prediction are consid-
ered simultaneously. Such gene sets can either reflect cu-
rated biochemical pathways or functional modules derived
from protein interaction networks [19,24-34].

The availability of pathway information from publc da-
tabases, for example Kyoto Encyclopedia of Genes and
Genomes (KEGG) [35], Gene Ontology (GO) [36] and
Reactome [37], provide the possibility of analysing func-
tional sets of genes that fall within common pathways
and identifying the disease-relevant pathways as bio-
markers. Initial efforts of gene-set based approaches in-
cluded gene set enrichment analysis [38], which calculates
to what extent a set of genes show statistically significant
difference between samples belonging to either of the two
phenotypes. Other similar computational tools have also
been reported [39-44]. However, those statistical frame-
works commonly assign one score for each set of genes to
quantify the deregulation of this gene-set under disease
status of interest, but do not provide more information on
the level of gene-set deregulation for each sample. It is ar-
gued that this drawback compromises their potential in
personalised pathway analysis [26].

Therefore, a more informative approach may be to as-
sign a score to each pathway and sample, which represents
the activity of that particular pathway for that sample
[19,25-28,45-47]. The mean and median expression value
across all constituent genes within a pathway, termed path-
way activity, has been proposed in [28]. Other studies
produce pathway activity measures based on principle
component analysis (PCA) to derive the top principle
component that captures the maximum variance in the
dataset [26,45,48,49]. More recently a supervised greedy
search algorithm was proposed that ranks genes according
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to their individual discriminative power and then searches
for a subset of highly ranked genes whose averaged ex-
pression profiles yield better discriminative power [19].
This method was modified so that it accounts for up- and
down-regulated genes by assigning positive sign and nega-
tive sign respectively [27]. Both methods are inherently
applicable to binary classification problems. A statistical
inference method [25] proposes to aggregate the probabil-
istic evidence of all genes within a pathway for predicting
a sample into one of the two phenotypes. Other relevant
studies based on the concept of pathway activity either re-
quire other biological information as prior, for example
copy number variation and protein interactions [20,47,50]
or are not designed for classification tasks [47,51].

Pathway activity-based classification approaches provide
competitive or higher prediction accuracy when compared
to traditional single genes-based classifiers [19,52], so
extending or refining their use is a promising avenue for
biomarker discovery. Despite rapidly increasing interest in
developing novel and robust pathway activity inference
methods, most of the existing methods still use rather
simple means of summarising the expression patterns of
either some or all constituent genes into the composite
pathway level attribute, for example the mean or median
value of sample expression across all or a subset of con-
stituent genes [19,28]. PCA-based methods [26,45,48,49]
calculate the first principal component, representing
the maximum variance of the data set, as pathway ac-
tivity. However such methods do not take into account
the phenotype information of samples. Furthermore, some
current pathway activity inference methods are con-
strained to two-phenotype (binary) classification problems
[19,20,25,27], disallowing their use in more complex prob-
lems of multi-phenotype classification.

In this work, we propose a novel multiclass method
that infers pathway activity in a supervised manner. The
proposed method summarises expression patterns of
constituent genes into pathway activity via weighted lin-
ear summation of gene expression. As opposed to some
methods in literature where gene weights are taken as a
prior, in our work gene weights are decided by the model,
so that the constructed pathway activity can optimally dis-
tinguish samples from different phenotypes. Furthermore,
the mathematical framework of this method offers the
ability to the user to explicitly constraint the maximum
number of constituent genes contributing to pathway ac-
tivity inference. Using a number of published gene expres-
sion profile datasets, we show that this pathway activity
inference method is robust in terms of the number of con-
stituent genes allowed to determine the pathway activity
metric. Comparative analyses show that the method is
an effective means of reducing classification features,
as it either outperforms or at least matches competing
pathway activity inference methods in two-phenotype
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disease classification problems, and provides significantly
better classification rates in multi-phenotype classification
problems.

Methods
Data sources
Complex diseases such as breast cancer and psoriasis are
the product of multiple gene interactions that collect-
ively contribute to the etiology of the disease through
largely unknown mechanisms [53]. Breast cancer is the
most frequently diagnosed malignancy and has been in-
tensively studied by gene expression profiling [4-6,54-57].
Psoriasis is a systemic, inflammatory skin disease with
autoimmune underpinnings affecting 2-3% of the world
population [58-60]. Prostate tumor is the most fre-
quently diagnosed cancer in American men [61] and
displays a broad range of clinical and histological be-
haviors [3,62]. Diffuse large B-cell lymphoma (DLBCL)
is the most common lymphoid malignancy in adults [63]
with less than 40% patients responding desirably to the
current therapy while the remainders succumb to the dis-
ease, highlighting the unidentified molecular heterogeneity
in the tumors [64].

A total number of 8 published microarray gene expres-
sion profiles were obtained that represent these diseases
(Table 1). In terms of disease phenotypes in these

Table 1 Datasets

Page 3 of 14

datasets, used as class outcomes in the relevant classifica-
tion tasks, for psoriasis samples are either lesional or non-
lesional tissue from psoriasis patients, as well as healthy
controls [65,66]. For breast cancer, 49 samples belong to
three disease classes, apocrine, basal and luminal [67];
139 samples are divided into healthy, luminal, ERBB2
and basal [68]; expression profiles of 230 breast cancer pa-
tients 48 of whom became residual invasive cancer free in
the breast or lymph nodes after a 6-month preoperative
chemotherapy and the remainder still had residual in-
vasive cancer after the treatment. Gene expression
data were generated using specimens of breast cancer
before any treatment [8]; lymph-node negative breast can-
cer patients with some of them diagnosed with distant
metastasis [4]. For prostate cancer, 102 expression profiles
are used to distinguish tumour samples from normal sam-
ples [3]. Finally, 77 expression profiles of patients either
diagnosed with diffuse large B-cell lymphoma or follicular
lymphoma (FL) are used [63].

All microarray datasets have been obtained on Affyme-
trix platforms. For each dataset, raw data have been down-
loaded and pre-processed using the Bioconductor package
LIMMA [69]. KEGG C2 functional gene sets have been
downloaded from MsigDB database (v3.0, Sep 2010) [70],
which included a total number of 186 curated pathways
and 5267 genes.

Dataset Disease Samples

Samples per phenotype Source

Swindell [65] Psoriasis 180

Yao [66] Psoriasis 82

Farmer [67] Breast cancer 49

Pawitan [68] Breast cancer 139

Singh [3] Prostate cancer 102
Shipp [63] DLBCL 77
Breast cancer 230

Popovici [8]

Desmedt [4] Breast cancer 198

Healthy control: 64; GSE13355
Psoriatic non-lesional skin: 58;
Psoriatic lesional skin: 58
Healthy control: 21; GSE14905
Psoriatic non-lesional skin: 28;
Psoriatic lesional skin: 33
Apocrine tumour: 6; GSE1561
Basal tumour: 16;
Luminal tumour: 27
Normal: 37; GSE1456
Luminal tumour: 62;
ERBB2: 15;

Basal: 25

Normal: 50; www.broadinstitute.org
Tumour: 52
DLBCL: 58; www.broadinstitute.org
Follicular lymphoma: 19
Residual invasive cancer: 182; GSE24061
No residual invasive cancer: 48
Metastatic: 51; GSE7390

Non-metastatic: 147
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Pathway activity-based classification procedure

An overview of the computational procedure developed
for pathway activity-based disease classification is illus-
trated in Figure 1. A microarray gene expression profile
and a set of pathways with their constituent genes form
the input to create pathway-specific gene expression
matrices. For each pathway, m denotes member genes, s
samples and A, the expression value of gene m in sample
s. Ay, are standardised to Gy, by subtracting the popula-
tion mean from the raw value and then dividing by the
standard deviation. The first stage of our computational
procedure derives a new composite feature, pathway
activity pa,, from the standardised pathway specific gene
expression profile G,,. In the second stage of our proto-
col, the inferred pathway activities for all pathways are
assembled to form a pathway activity profile matrix, on
where a classifier is trained to predict the phenotype of a
new sample. In next section, we present a novel mathem-
atical model, which infers pathway activity with optimal
classification accuracy.
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A novel mathematical programming formulation to infer
pathway activity

The indices, parameters and variables used in the model
to infer pathway activity for each pathway are described
here and are listed in Additional file 1. Two sets of posi-
tive variables rp,, and rn,, are introduced, quantifying
the positive and negative weights of gene m towards
pathway activity inference. For sample s, pathway activ-
ity, pas, is defined as the summation of the standardised
gene expression values, G, multiplied by the gene
weight (rp,,,-rn,,) over all member genes:

M
pas = Gon(rp,—11y) Vs=1,2,..S (1)
m=1

where M is the total number of member genes for this
particular pathway and S is the total number of samples.
Both positive and negative weights of a gene m are de-
fined as positive continuous variables; their values are
determined by the optimisation model. One set of binary
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Figure 1 Schematic flow chart of the DIGS-based approach for multiclass disease classification problems. Pathway specific gene expression
profiles are created by integrating gene expression profile and pathway information. For each pathway, build pathway activity as a weighted (variables)
linear summation of expression of member genes, with the objective function maximising the number of samples whose pathway activity are inside
the range of their own classes. The maximum number of member genes in a pathway allowed to have non-zero weights is explicitly constrained in
the model by specifying the parameter NoG. Create pathway activity profile by assembling all pathway activities and a classifier is trained on the
pathway activity profile and predicts the class label of a new sample. It is important to note that training procedure, ie, inferring pathway
activity and training a classifier, is always blind to testing samples to achieve an objective evaluation of classification performance.
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variables, L,,, which takes values of either 0 or I has been
introduced, while equations (2) and (3) below ensure that
for each gene m at most one of rp,, and rn,, can take posi-
tive values:

D, <L Vm=1,2,...M (2)

r,<l-L, Vm=1,2,..M (3)

When L,, = 1, rp,, can take any value between 0 and 1
while rn,, is forced to be equal to 0; otherwise when L,,, =
0, rp,,, is forced to be equal to 0 while r#,, can be between
0 and 1. In either case, both rp,, and rn,, can be equal
to 0, which means this particular gene has zero weight in
inferring pathway activity. Overall, a gene can have posi-
tive, negative or zero weight towards the composite feature
construction. For normalisation purpose, the summation

of absolute gene weights should be equal to one:
M

S 1y + 1) = 1 (4)
m=1
Inspired by Lee et al. [19], where a small subset of
member genes is selected (usually less than 7) to con-
struct pathway activity, we add constraints to limit the
number of genes having non-zero weights in inferring
pathway activity. Thus a new set of binary variables, W,,,,
are introduced to the model to indicate whether a mem-
ber gene m is active, i.e. having non-zero weights in con-
structing pathway activity or not:
rp,, + rng,<W,, Vm=1,2,...M (5)

If W, takes the value of 0 then both positive weight (rp,,,)
and negative weight (rn,,,) of gene m are forced to be equal
to 0, while when W,,, is equal to I, gene m is allowed to take
any weight (rp,,-rn,,) between -1 and I. The next equation
restricts the maximum number of genes allowed to have
non-zero weights to a manually specified value (NoG):

M
Z W.,.<NoG (6)
m=1

In the case where NoG is equal to or larger than the
number of member genes available in the pathway, the
constraint is redundant as all the member genes will be
allowed to take any weight (rp,,-rn,,) between -1 and 1.
We aim to construct pathway activity as a feature with
good discriminative power, which can separate samples
from different phenotypes as much as possible.

For each phenotype/class ¢, two continuous variables
have been introduced as LO, and UP,, denoting the lower
and upper bound respectively, of the range of pathway ac-
tivity for phenotype c. In addition, a set of binary variables,
E,, have been introduced, defined by:
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together with the following constraints:

0<pas,—LO, + U(1-E;) Vs=1,2,...,5, ¢ (7)

pa,;~UP,~U(1-E;)<0  V¥s=1,2,...,S,¢c, (8)

where ¢; is the phenotype for sample s and U is an arbi-
trarily large positive number. On the constructed path-
way activity, ranges of different classes are not allowed
to overlap. A set of binary variables, Y, have been intro-
duced as follows:

1, if upper bound of range for class k is lower than

lower bound of range
for class ¢ on pathway activity;
0, otherwise

Yie =

The additional two sets of constraints have been intro-
duced to guarantee the non-overlapping condition:

UPy+e<LO, + U(1-Yy,) Vk < c 9)

UP, + e<LO; + UYye Vk <c (10)

where ¢ is an arbitrarily small positive number ensuring that
pair-wise classes do not share a border. Equations (9) and
(10) are generated for each pair of classes. The objective of
the optimisation problem is to infer the pathway activity
such that it is as discriminative as possible, i.e. as many
samples as possible can fall within the range of its corre-
sponding classes (E; = ). In other words, the objective func-
tion is to minimise the number of misclassified samples:

s
minZ(l—Es)
s=1

The resulting mathematical programming-based for-
mulation for inferring pathway activity is summarised
below:

(11)

Objective function (11)

Subject to:

Pathway activity definition (1)

Positive and negative gene effect constraints (2) and (3)
Normalisation constraint (4)

Restriction of the number of active genes (5) (6)
Pathway activity enclosing constraints (7) and (8)
Non-overlapping constraints for ranges of different
classes (9) and (10)

Lmv Es7 Wma che{()? 1}7 me, rnm ZO;pdsa LOC7 UPC
: unrestricted

1, if activity value of sample s falls within the lower and upper bounds of

E; = ( its class range;

0, otherwise
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The proposed mathematical programming formulation
consists of a linear objective function and a number of
linear constraints. The linearity and presence of binary
and continuous variables define a mixed integer linear
programming (MILP) model, named DIGS (DlIfferential
Gene Signatures) here, and can be solved to global opti-
mality using some of the standard algorithms like branch-
and-bound.

To facilitate the use of DIGS, we make available the
GAMS executable, example input files and user guide at
www.ucl.ac.uk/~uceclap/DIGS.

Comparison of the DIGS model with genes-based methods
and other pathway activity inference methods

To compare the results obtained with the DIGS model,
we have implemented a number of pathway activity
methods from the literature (summarised in Table 2). In
overview, these methods include: i) the method that uses
the microarray gene expression profile without pathway
information, for example SG; ii) the method that utilises
pathway information but is based on the pathway spe-
cific gene expression profile instead of inferring pathway

Table 2 Overview of Evaluated Methods
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activity, for example per_pathway, and iii) those that take
advantage of pathway information and infer pathway ac-
tivity, for example [19,28,45].

In detail, comparative results are presented by imple-
mentation of the following methods: i) a genes-based ap-
proach has been implemented for comparison where,
given a whole gene expression profile, a feature selection
[71] method is applied to select a subset of top genes
with the best discriminative power for classification. The
multiclass feature selection method [71] used here
employs a distance metric, for example weighted L; metric
or K-L divergence and gives a subset of top attributes/
genes with respect to the aggregated pair-wise class
distances, where the number of attributes in the subset
obtained is pre-set by the user. A classifier is then trained
using only the small subset of discriminative genes for
disease classification problems; ii) the Ainali et al. [72]
method, where each pathway-specific gene expression
profile is treated independently, i.e. training and testing
are conducted for each pathway-specific expression profile
separately and classification accuracies across all pathways
are averaged to obtain the final classification rate (referred

Guo et al. [28] Abbreviation: Mean
Computational basis: Pathway activity
Description: Create pathway-specific gene expression profiles; for each pathway, pathway activity for sample is its mean
expression value among all member genes; a classifier is trained on pathway activity profile.
Guo et al. [28] Abbreviation: Median
Computational basis: Pathway activity
Description: Create pathway-specific gene expression profiles; for each pathway, pathway activity for sample is its median
expression value among all member genes; a classifier is trained on pathway activity profile.
Bild et al. [45] Abbreviation: PCA
Computational basis: Pathway activity
Description: Create pathway-specific gene expression profiles; for each pathway, top principal component is
calculated as the pathway activity; a classifier is trained on pathway activity profile.
Lee et al. [19] Abbreviation: CORGs

Computational basis: Pathway activity

Description: Create pathway-specific gene expression profiles; for each pathway, apply t-test to rank genes and
perform a greedy search to find a subset of genes whose averaged expression values is locally maximal in t-test
value; a classifier is trained on pathway activity profile; only applicable for two-class problems.

Ainali et al. [72] Abbreviation: Per_pathway

Computational basis: Single genes

Description: Create pathway-specific gene expression profiles; a classifier is trained on each pathway-specific gene expression
profile separately, and prediction rates achieved by all pathway classifiers are averaged as the final prediction rate.

Single Genes Abbreviation: SG

Computational basis: Single genes

Description: Apply [71] to select a subset of top genes; a classifier is trained on reduced gene expression profile

Proposed in this work  Abbreviation: DIGS

Computational basis: Pathway activity

Description: Create pathway-specific gene expression profiles; Apply the proposed DIGS model to construct pathway activity
as weighted linear summation of gene expressions; a classifier is trained on pathway activity profile.
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as per_pathway), and iii) the two methods from Guo et al.
[28] (referred as mean and median, respectively), which
take either the mean or median gene expression values of
all genes within a pathway for each sample. The Bild et al.
[45] approach (referred as PCA) of using the first principal
component as representation of pathway activity, which
represents a family of principal component analysis-based
methods [26,48,49]. The Lee et al. [19] method, which
identifies and averages a subset of condition-responsive
genes (referred as CORGs), which has been implemented
only for two-phenotype disease classification problems, as
it is not suited to multi-class problems.

Evaluation of classification performance

The performance of the various pathway activity metrics
is evaluated by the classification accuracy achieved
across the eight disease datasets. For each dataset, sam-
ples are split randomly in training and testing sets of 70
and 30% respectively and this procedure is repeated fifty
times. Composite features are constructed using Mean,
Median, CORGs, PCA and DIGS on the training samples,
resulting in low dimensionality matrix of samples across
pathway activities, on which five popular classifiers SMO
[73], Neural Network (NN) [74], K-Nearest-Neighbours
(K-NN) [75], Logistic Regression (Logistic) [76] and Hyperbox
(HB) [77] are trained. The classifiers are then tested on
the testing sample set and the prediction accuracy is cal-
culated as the number of correctly classified samples di-
vided by the total number of testing samples, averaged
across the fifty training/testing sets.

The above procedure is modified where pathway activities
are not used, i.e. in the SG and per_pathway approaches. In
the genes-based approach, the feature selection method
[71] has been applied using training samples only and the
top genes are selected. The number of top genes is set to
be identical to the number of pathways (i.e. 186) in order
to derive comparable dimensionalities between the path-
way activity-based and the genes-based approach. For the
per_pathway approach, each of the 5 classifiers have been
trained using training samples only and then validated on
the testing samples sets for each pathway separately.

Overall, 8 microarray gene expression profiles (dataset),
7 competing methods (method) and 5 classifiers (classi-
fier) are employed in our study. For each combination of
dataset, method and classifier, classification accuracies
over 50 individual testing sets are averaged as the predic-
tion accuracy for this combination. It is important to note
that Lee et al. [19] is applicable for only two-phenotype
problems, therefore we divide the 8 datasets into a group
of 4 binary datasets and the other group of 4 multiclass
datasets. For the binary classification comparison, for
each method we average the prediction accuracies over
all 4 binary datasets and all 5 classifiers, which gives a
comprehensive indication of the efficiency of the evaluated
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methods (i.e. Mean, Median, PCA, CORGs, per_pathway,
SG and the proposed DIGS). For the multiclass case, the
same analysis is applied and all comparative analyses are
discussed in the next section.

The DIGS model has been implemented in the General
Algebraic Modelling System (GAMS) [78] using the CPLEX
MILP solver in a CentOS 5.2 64 bit Unix computer envir-
onment. The optimality gap is set as 0. Computational re-
source limit is set as 200 seconds per run. Among the 5
classifiers SMO, NN, K-NN and Logistic have been imple-
mented in WEKA machine learning software [79] with
the following parameters for NN: hidden layers 2, learning
rate 0.1, momentum 0.2, training time 10000; and for
K-NN: the number of nearest neighbours is selected as 5.
For other classifiers, their default settings have been
retained. HB has been reproduced in GAMS accord-
ing to its original publication [77].

Results and discussion

In this work, we propose an optimisation-based model
that infers a pathway activity metric as a weighted linear
combination of the constituent gene expression values.
The DIGS model can identify a subset of pathway con-
stituent genes with cardinality no more than the user-
specified value, NoG, whose expression can be combined
via different weights to best separate samples from differ-
ent phenotypes. The effect of NoG is illustrated through
sensitivity analysis below, followed by a comparison of the
model against a variety of disease classification strategies,
including both single-gene and pathway activity based
approaches.

Sensitivity analysis for NoG, influencing the number of
active genes in constructing pathway activity

Parameter NoG determines the maximum number of
pathway member genes that have non-zero weight in ac-
tivity inference. Tuning this parameter is important as a
small value may not fully utilise the discriminative mem-
ber genes, while an excessively large value may potentially
cause over-fitting, i.e. in the case where too many genes
are allowed to take non-zero weights for pathway activity
against a relatively small number of training samples, lead-
ing to decreased prediction accuracy.

Here, the DIGS model is applied to infer pathway activity
with NoG set to 5, 10, 15 and 20, followed by training and
testing using a range of classifiers for each microarray data-
set. As a comparison, DIGS is also run with NoG set equal
to the number of member genes for each pathway, so as to
allow all member genes in a pathway to take non-zero
weights for pathway activity inference. The prediction rates
achieved by these different values of NoG are denoted by
DIGS_5, DIGS_10, DIGS_15, DIGS_20 and DIGS_ALL
and are shown in Figure 2A and B with SMO and NN clas-
sifiers and other classifiers in Additional file 2.
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DIGS model is applied to infer pathway activity while setting NoG, i.e. the maximum number of member genes in a pathway allowed to have
non-zero weights, to 5, 10, 15 and 20. In addition, DIGS model is also applied with NoG set to equal to the number of available member
genes in a pathway, ie. all member genes can take non-zero weights to construct pathway activity. A classifier is trained using the pathway
activity profiles and tests the prediction accuracy. For both SMO (A) and NN (B) classifiers, it is clear that the proposed DIGS model is robust to the
parameter NoG during the tested ranged 5 to 20. Furthermore, constraining the maximum number of active constituent genes appears to
generally improve classification accuracy as DIGS_ALL usually leads to lower prediction rate compared with the others.
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Generally, the DIGS model is robust with respect to
parameter NoG, as in the range of 5 to 20, classification
prediction performance is found to be mostly stable, with
some improvement observed between NoG 5 and 20.
Overall, it is noted that prediction performance is case-
dependent, not only depending on the dataset under in-
vestigation, but also varying with the particular pathway
in question (e.g. number of member genes per pathway).
In some cases, some improvement is observed against
the case of no selection, for example on Yao, Farmer and
Pawitan datasets with SMO classifier classification rates
increase from 83.7%, 88.3% and 92.9% to 89.5%, 97.6%
and 98.8% (NoG = 5) respectively (Figure 2A).

The model performs well even in the case where the
number of genes is not reduced (see DIGS_ALL in Figures 2
and Additional file 2), indicating that, although reducing
the total number of genes per pathway through parameter
NoG may be beneficial to a particular application, it is by
no means compulsory. Therefore, NoG offers the flexibil-
ity of feature reduction, if looking into the effect of a sub-
set of genes is desired, without imposing any additional
limitations that would stem from cases where parameter
specification would be mandatory. For the implementa-
tions discussed below, NoG equal to a value of ten was

chosen as a sensible compromise of the effects discussed
above.

Classification rate comparison across other methods

The performance of the proposed DIGS model against
other competing methods in literature is compared and
discussed here. As described in the Methods section, ex-
tensive comparisons were implemented across 8 datasets
(collectively referred to as dataset) and 7 competing methods
(method). To also account for the effect of classifier
choice in the computational procedure, we tested the
DIGS model across 5 classifiers (classifier). The results
across all dataset, method and classifier combination
are illustrated in Figure 3A and B (for 5-NN and Neural
Network classifiers) and in the Additional file 3 (for SMO,
HB and logistic).

It is obvious from Figure 3A that using 5-NN as classi-
fier DIGS-based classification approach achieves higher
classification rates than other pathway activity inference
methods, including Mean, Median, PCA, CORGs. On all
8 datasets, DIGS model inferring pathway activity has al-
ways outperformed other pathway activity inference
methods. It is not a surprise as DIGS seeks to infer path-
way activity as of optimal discriminative power. It is also
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Figure 3 Classification accuracy comparison of 7 competing methods using 5-NN (A) and NN (B) classifiers. The proposed DIGS pathway
activity inference method is compared against other pathway activity inference methods (Mean, Median, PCA and CORGs) and also genes-based
methods (SG and per_pathway). Classification accuracy is summarised as average prediction rates over 50 runs of random partition of datasets

into a 70% training set and a 30% testing set. With 5-NN classifier (A), it is evident that DIGS outperforms other methods by some distance as
topping the chart on 6 datasets (Singh, Popovici, Desmedt, Swindell, Farmer and Pawitan) while being tied 1°* on the other 2 datasets (Shipp
and Yao). Prediction rates achieved by DIGS are generally high, over 80% in most datasets, which facilities its application in real world. With NN
classifier (B), the same trend can be observed that prediction accuracies achieved by DIGS at least matches the state-of-the-arts methods in
literature for binary disease classification problems, while consistently outperforms the competing methods for multi-phenotype problems.

true that DIGS-based pathway activity classification
approach results in higher prediction accuracy than
Per_pathway, where pathway-specific gene expression
profiles are trained and tested independently without con-
structing pathway activity features. Lastly, the same obser-
vation can be made when comparing DIGS to SG, where
186 genes of best discriminative power are selected for
classification. DIGS leads to better classification rates than
SG on six occasions (Singh, Popovici, Desmedt, Swindell,
Farmer and Pawitan), while being tied with SG on Yao
and trailing SG by marginal extent on Shipp. Overall it is
evident that the proposed DIGS-based classification ap-
proach leads to more robust and accurate classification
than other state-of-the-arts approaches in literature.

With regards to the actual prediction rates, the com-
bination of DIGS model inferring pathway activity and
5-NN classifier offers prediction rates of above 90% for 4
out of 8 employed datasets, including Singh, Shipp, Yao,
Farmer, around 80% for another 3 datasets, including
Popovici, Swindell and Pawitan, while still managed 70%
for the last dataset Desmedt. The generally high predic-
tion rates demonstrate the applicability and efficiency of
the proposed DIGS model in practice.

To show that the desirable prediction rates achieved
by DIGS-based approach is not due to a specific bias of
DIGS model with 5-NN classifier, we present the classifi-
cation accuracy comparison using Neural Network classi-
fiers in Figure 3B. According to Figure 3B, when employing
Neural Network classifier, DIGS-based disease classifica-
tion approach again shows great competitiveness in 4 bin-
ary datasets that it gives the highest classification rate in
Popovici; is tied as the top method in Singh with single
genes-based approach and in Desmedt with CORGs; in
Shipp DIGS trails the most accurate approach only mar-
ginally. In terms of 4 multiclass datasets, DIGS-based clas-
sification approach dominates in all of them. The same
phenomenon can be observed using the other 3 imple-
mented classifiers that DIGS model either provides com-
petitive classification accuracies or gives the highest
classification rate (See Additional file 3 for more details).

To obtain an overview of how our methodology com-
pares across all combinations of dataset, method and clas-
sifier, we used a simple normalisation procedure where for
each pair of dataset and classifier the actual prediction
rates for every method is divided by the highest prediction
rates achieved throughout all methods. In other words,
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Table 3 Mean normalised classification rates over 4 two-phenotype datasets according to performance

Two-class DIGS SG Mean [28] Median [28] Per_pathway [72] PCA [45] CORGs [19]
5-NN 0.9988 0.9071 0.8737 0.8751 0.8903 0.8389 0.9371
NN 0.9973 0.9584 0.9323 0.9004 0.9041 0.9480 0.9769
SMO 0.9757 0.9474 0.9435 0.9225 09325 0.9704 0.9645
HB 0.9835 0.9730 0.8819 0.8707 0.8547 0.8402 0.9595
Logistic 09318 0.9816 0.8902 0.8789 0.8632 0.8482 0.9684
Mean 0.9774 09535 0.9043 0.8895 0.8890 0.8891 09613

The highest classification rate achieved across all competing methods is highlighted as bold for each classifier.

the normalised prediction rates, scaled between 0 and 1,
reflect the relative performance of a particular method
compared against the best performance across all methods
for this specific combination of method and classifier. For
example, on the Popovici dataset with 5-NN as classifier,
the highest prediction rate across all 7 methods (achieved
by DIGS as 80.14%) is given a score of 1 and for all other
methods their prediction rates are divided with the highest
prediction rate (in this case for DIGS), to express the rela-
tive performance of that method to the best, e.g. raw
prediction accuracy of 75.13% achieved by CORGs is
normalised to: 75.13%/80.14% = 0.9375. For each com-
bination of method and classifier, normalised prediction
rates are averaged over 4 binary datasets and 4 multiclass
datasets and are shown in Tables 3 and 4 respectively.

In terms of binary datasets, Table 3 clearly indicates
that DIGS pathway inference model comes at the top of
all methods. This is true in the case of most classifiers
used and it is only when using with logistic as classifier
where DIGS is outperformed by CORGs and SG. For
multi-class datasets (Table 4) DIGS is the best method
throughout, indicating the strength of our proposed meth-
odology for the most challenging cases where multiple
outcomes need to be predicted. This highlights that one of
the contributions of this work is to design, according to
the authors’ best knowledge, the first supervised pathway
activity inference method applicable to both binary and
multiclass datasets.

DIGS release significant disease relevant pathways
Besides the high classification rates achieved by the pro-
posed DIGS model, we have also identified a number of

breast cancer pathways that may indicate pathway bio-
markers. For Pawitan, where around 90% classification
rates can be achieved using DIGS with all 5 classifiers, we
employed an information gain feature ranking method in
WEKA to rank the constructed pathway activities for each
random training set. We record 11 pathways that are
ranked more than 20 times as the most discriminative. As
we have constrained the proposed DIGS model to allow
only 10 genes per pathway to participant in pathway activ-
ity inference, we further extract for each identified signifi-
cant pathway the set of constituent genes included in the
active genes more than 10 times.

The set of pathways and genes that are found as most
discriminant with our method are listed in the Table 5
below. Apart from obvious links to cancer pathways,
such as prostate cancer, and other well-known signalling
pathways that are known to be deregulated in tumori-
genesis (Wnt signalling [80,81]), we note deregulation of
nitrogen metabolism that has recently been linked to
breast cancer [82,83]. Ubiquitin-mediated proteolysis is
also identified, in accordance to previous reports about
the importance of this pathway in disease [84] and is
linked to poor survival in breast cancer [85]. Glycosyla-
tion is also known to be altered in cancer cells where
overexpression of large glycoproteins such as mucins
has been characterized [86]. Enzymes from the family of
GALNT6 and GALNT14 that we have identified were
found to be elevated in breast and gastric carcinomas
[87]. We also identify the adherens junction complex,
that comprises of cadherins and the catenins, is a major
adhesion structure in endothelial cells and has been im-
plicated in playing a fundamental role in controlling the

Table 4 Mean normalised classification rates over 4 multi-phenotype datasets according to performance

Multiclass DIGS SG Mean [28] Median [28] Per_pathway [72] PCA [45]
5-NN 1 0.9532 0.8126 0.8090 0.8158 0.8696
NN 1 0.9488 0.9402 0.9334 0.8322 0.9585
SMO 1 09335 0.9372 0.9246 0.8521 0.9452
HB 1 0.9241 0.7518 0.7639 0.7893 0.8043
Logistic 1 0.8290 05614 0.5440 0.5589 0.6450
Mean 1 091772 0.80064 0.79498 0.76966 0.84452

The highest classification rate achieved across all competing methods is highlighted as bold for each classifier.
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Table 5 Significant pathways and constituent genes identified by the proposed DIGS model for Pawitan

Pathway name

Significant constituent genes

PROSTATE CANCER

UBIQUITIN MEDIATED PROTEOLYSIS
WNT SIGNALING PATHWAY

O GLYCAN BIOSYNTHESIS

EGFR, TCF7L1, GSTP1, PDGFRA, CCNET, CHUK, PIK3R3, ERBB2, PIK3R1

UBE2E3, MID1, SKP2, BRCA1, WWP1

FZD7, SOX17, TCF7L1, SKP1, SFRP1, FZD8

GALNT3, GALNT7, GALNT11, GALNT6, GCNT3, BAGALTS, GALNTS, C1GALT1, GALNT12, GCNT4, GALNT14,

GALNT10, GALNT2, ST3GAL2, GCNTT1, ST3GALT, C1GALT1C1, GALNT1

ADHERENS JUNCTION
ERBB SIGNALING PATHWAY

NITROGEN METABOLISM
HAL, CA4, ASNS, CPS1

DORSO VENTRAL AXIS FORMATION

EGFR, ERBB2, TCF7L1, TCF7L2, MET, RAC3, SMAD3, MLLT4, RHOA
EGFR, NCK2, ERBB2, AKT3, PAK4, EREG, MAPK9, AKT2
CA12, CA5A, CA9, GLUL, CA3, CA14, CA8, CA7, CA5B, GLUDI1, CA2, AMT, CA6, CA1, CTH, GLS2, GLUD2,

EGFR, NOTCH1, GRB2, MAPK3, NOTCH3, SOS1, CPEBT1, PIWIL2 ETS2, MAPK1, NOTCH4,

ETV6, PIWILT, MAP2K1, NOTCH2, SOS2, ETST, ETV7, KRAS

ENDOMETRIAL CANCER
NON SMALL CELL LUNG CANCER
PANCREATIC CANCER

EGFR, TCF7L1, ERBB2, TCF7L2, MLHT, ELK1, NRAS, AKT3, ARAF, CTNNA2, PIK3CB, AKT2, CCND1, FOXO3, LEF1
EGFR, AKT3, E2F3, ERBB2, BAD, E2F1, RARB, CDKN2A, PLCG2, GRB2, HRAS, MAPK3, PIK3CD, RXRG, TGFA
EGFR, ERBB2, AKT3, CDKN2A, MAPKY, PLD1, RAC3, RALA, CCNDT1, E2F3, JAKT, PIK3R1

transport across the endothelial barrier and in regulating
angiogenesis [88] and has been shown to be affected in
invasive breast cancer [89].

We also draw pathway activity heat maps for the signifi-
cant pathways identified in Pawitan. In Figure 4, pathway
activities are inferred using all samples. Pathways are clus-
tered based on similarity of activities on Euclidean distance.

It is clear from Figure 4 that pathways are divided into
two main clusters, showing distinct patterns of expression.
Ubiquitin mediated proteolysis pathway, Erbb signalling
pathway, O glycan biosynthesis pathway, Dorso ventral
axis formation pathway and prostate cancer pathway are
shown to be associated with up-regulation in Luminal
tumour, and down-regulation in Basal tumour. The other

Color Key
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of their activities.

.

Figure 4 Pathway activity of the significant pathways in Pawitan. Pathway activities are inferred with DIGS model using all samples.
Red/green blocks indicate up-/down- regulation of pathways (rows) in samples (columns). Pathways are clustered according to similarity
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significant pathways appear to have the opposite regula-
tion mechanism, i.e. they are down-regulated in Luminal
tumour and up-regulated in Basal tumours.

We repeat the same analysis of identifying significant
pathways and genes for Popovici dataset [8] and Swindell
[65] where desirable classification rates can be achieved.
The significant pathways/genes and heat map can be
accessed at Additional files 4, 5, and 6.

Conclusions

Incorporating pathway information as biological priors into
microarray gene expression profile has been demonstrated
to be a promising alternative to conventional genes-based
approach in various disease classification problems. How-
ever to the authors’ best knowledge there are no super-
vised pathway activity inference methods for multiclass
disease classification problems. In this work, a novel su-
pervised pathway activity inference method for both bin-
ary and multiclass disease classification problems, DIGS,
has been proposed using mathematical programming
optimisation techniques. For each pathway, a new com-
posite feature, called pathway activity, is constructed as a
weighted linear summation of expressions of member
genes. In each pathway the number of member genes con-
tributing to pathway activity inference by taking non-zero
weights is constrained explicitly. The proposed DIGS
model provide three main benefits over the existing path-
way activity inference methods in literature: (a) the
weights of constituent genes in building pathway activity
are optimised by DIGS in order to maximise the discrim-
inative power of the pathway activity; (b) the maximum
number of constituent genes taking non-zero weights
when building pathway activity can be explicitly specified
by user; (c) the proposed pathway activity inference model
is applicable to both binary and multiclass disease classifi-
cation problems.

A total number of 8 microarray gene expression pro-
files totalling 877 samples and ~100,000 genes have been
used to demonstrate the applicability and efficiency of
the proposed pathway activity inference scheme. The
classification results show that for 4 two-class problems
DIGS-based classification approaches lead to higher nor-
malised classification performance compared to other
existing pathway-based approaches as well as genes-
based approaches. In terms of multiclass classification
problems, mathematical programming inferring pathway
activity here gives consistently the highest prediction ac-
curacies that with the same classifier DIGS always out-
performs others by distance.

Additional files

[ Additional file 1: Notations for mathematical model. ]
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Additional file 2: Sensitivity analysis of parameter NoG for DIGS
model with 5-NN (A), HB (B) and Logistic regression (C) classifiers.
For each of the 8 datasets, the proposed DIGS model is applied to infer
pathway activity while setting NoG, i.e. the maximum number of member
genes in a pathway allowed to have non-zero weights, to 5, 10, 15 and
20. In addition, DIGS model is also applied with NoG set to equal to the
number of available member genes in a pathway, i.e. all member genes can
take non-zero weights to construct pathway activity. A classifier is trained
using the pathway activity profiles and tests the prediction accuracy.

Additional file 3: Classification accuracy comparison of 7 competing
methods using SMO (A), HB (B) and Logistic regression (C) classifiers.
The proposed DIGS pathway activity inference method is compared against
other pathway activity inference methods (Mean, Median, PCA and CORGs)
and also genes-based methods (SG and per_pathway). Classification accuracy
is summarised as average prediction rates over 50 runs of random partition
of datasets into a 70% training set and a 30% testing set.

Additional file 4: Significant pathways and constituent genes for
Popovici dataset.

Additional file 5: Significant pathways and constituent genes for
Swindell dataset.

Additional file 6: Pathway activity of the significant pathways in
Swindell dataset. Pathway activities are inferred with DIGS model using
all samples. Red/green blocks indicate up-/down- regulation of pathways
(rows) in samples (columns). Pathways are clustered according to similarity
of their activities.
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