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Abstract
Background: Current efforts in Metabolomics, such as the Human Metabolome Project, collect
structures of biological metabolites as well as data for their characterisation, such as spectra for
identification of substances and measurements of their concentration. Still, only a fraction of
existing metabolites and their spectral fingerprints are known. Computer-Assisted Structure
Elucidation (CASE) of biological metabolites will be an important tool to leverage this lack of
knowledge. Indispensable for CASE are modules to predict spectra for hypothetical structures.
This paper evaluates different statistical and machine learning methods to perform predictions of
proton NMR spectra based on data from our open database NMRShiftDB.

Results: A mean absolute error of 0.18 ppm was achieved for the prediction of proton NMR shifts
ranging from 0 to 11 ppm. Random forest, J48 decision tree and support vector machines achieved
similar overall errors. HOSE codes being a notably simple method achieved a comparatively good
result of 0.17 ppm mean absolute error.

Conclusion: NMR prediction methods applied in the course of this work delivered precise
predictions which can serve as a building block for Computer-Assisted Structure Elucidation for
biological metabolites.

Background
For successful pharmaceutical treatments the full knowl-
edge about the metabolic and regulatory networks of a
system is needed. Only if those pathways are known com-
pletely, can we hope to understand how an organism cir-
cumvents the blocking of a receptor in one pathway by
employing an redundant analog or why a drug not only
interacts with its intended target T but also with targets S,
I, D and E, thereby creating side effects.

Despite an ever growing number of known gene
sequences and elucidated protein structures the knowl-
edge of the molecular components of biological systems
remains incomplete. Even for simple model organisms,
only 20 – 50% of the metabolite structures are known [1].
For that reason, projects such as the Human Metabolome
Project [2] have been started to catalogue the metabo-
lomes of whole organisms.
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Nuclear Magnetic Resonance (NMR) is still the only ana-
lytical technology capable of giving enough information
for elucidating the molecular structure of an unknown
substance. This becomes especially important in metabo-
lomics research, where experiments – often measured
with the more sensitive mass spectrometry (MS) instru-
ments – detect differential mass signals, but in many cases
even tandem MS will not give enough information for a
de-novo characterisation of the metabolite.

Powerful chromatographic and spectroscopic methods
are available to alleviate this lack of knowledge on metab-
olite structures, but nothing close to an automatic method
with high throughput capabilities has yet been developed
[3,4]. Systems aimed at doing this are known as Computer
Assisted Structure Elucidation (CASE) systems. One way
to perform CASE is to generate putative molecules in
agreement with certain input data, predict spectra for each
of the candidates and rank them by similarity of predicted
and experimental spectra. A rudimentary prediction can
be done by database lookup, but since these can never
contain all possible structures, a prediction for arbitrary
structures is needed.

For spectrum prediction of 13C and other nuclei, an estab-
lished method dating back to 1978 are the Hierarchically
Ordered Spherical Environment (HOSE) codes [5]. For
proton 1H NMR spectra more elaborate algorithms have
been suggested. This is mainly justified by the strong
influence of 3D spatial effects on proton shifts, which are
not included in the original HOSE code specification.
Therefore methods using only 2D parameters are consid-
ered insufficient [6]. Stereochemical enhancements of the
HOSE code specification have been described in [7].

The first attempts towards proton NMR predictions were
based on string-based descriptions similar to HOSE codes
[8]. Commercial packages also use such methods, com-
bined with other strategies [[9,10], p. 80]. Later so-called
additivity rules were established, which are manually cre-
ated rules describing the effect of certain functional
groups. They were motivated mainly by the lack of suffi-
ciently large databases, which are needed for string-based
descriptions [11]. Finally machine learning methods,
most prominently neural networks, were used [9,12-14].

The problem of predicting spectra for arbitrary com-
pounds based on a collection of samples is a classic appli-
cation of machine learning methods. By including
descriptors reflecting distances in Euclidean space, stereo-
chemical information can be included easily by these
methods. In this paper, we perform a comparative study
of selected methods for the purpose of proton NMR spec-
trum prediction, we also include HOSE-code based pre-
diction for comparison.

Methods
In this section we first give a formal definition of the pre-
diction problem, then we describe the test- and training
set and the descriptors used to evaluate the machine learn-
ing algorithms.

An NMR spectrum can be modelled as a collection of indi-
vidual shifts of atoms. Figure 1 shows a graphical repre-
sentation of a molecule, the corresponding 1H spectrum
with the individual peaks and the assignment between
shifts and atoms.

In machine learning algorithms, the input is given as fea-
ture vector representing the properties of the atom
("descriptors"), and the output is either the target class
(classification) or a numerical target value (regression).

The mean absolute error (MAE) and the standard error
(SE) of the prediction are calculated as:

with exp being the experimentally observed chemical shift
of an atom, pred the predicted chemical shifts of the same
atom and n the number of data points. To estimate the
generalisation error, we performed a 10 fold cross valida-
tion by first applying a random permutation to the data
set, then dividing the data set into 10 equally sized dis-
junct partitions in terms of the total numbers of mole-
cules and in each iteration predicted one of the disjunct
partitions by the complementary remaining 9 partitions
in each iteration, constituting always an overlapping yet
different training set. Attention has to be paid to ensure
that all protons of the molecule under prediciton are
excluded from the training set. Otherwise, shifts would be
predicted based on inference from neighbouring protons,
resulting in overfitting.

In order to compute the MAE and SE errors for the classi-
fication tasks, the response variable (shift in ppm) was
discretised into bins of size 0.1 ppm, resulting in 107 dif-
ferent classes ([0..10.7] ppm) (see Table 1).

Molecular and atomic descriptors
The proper choice of descriptors has a major influence on
the performance. To capture dependencies between the
shifts, the protons have to be described together with their
chemical context in the molecule. Descriptors can be
derived from atomic, bonding, and molecular properties
and should capture the atom and its environment at dif-
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ferent levels of structure resolution in addition to diverse
physicochemical properties of a compound.

416 descriptors in total were calculated using the QSAR
(Quantitative Structure Activity Relationship) package of
the CDK (Chemistry Development Kit) [15,16]. This
package implements a wide range of molecular and
atomic QSAR descriptors.

For our study we decided to combine the descriptors from
a study by Meiler, who used Artifial Neural Networks to
predict chemical shifts in proteins. [12] with most of

those from work by Aires-de-Sousa [9]. From [12] we
excluded those relating to the backbone structure, which
are not applicable to non-proteins.

An overview of the descriptors is shown in figure 2. A
more detailed description of the descriptors is shown in
table 1 of additional file 1. The calculated descriptors for
the whole database are available in  additional file 2.

In order to encode the 3-dimensional environment in the
descriptors of a particular atom (and not just the atom
itself) Meiler [12] suggests to calculate a set of 10 basic

An example of an assigned proton spectrum from the NMRShiftDB (molid 10019871)Figure 1
An example of an assigned proton spectrum from the NMRShiftDB (molid 10019871).

Table 1: Mean absolute error in ppm from a decision tree prediction by proton category classes.

aromatic  systems non aromatic- systems rigid aliphatic systems non rigid aliphatic systems

number of protons 4013 1279 5062 8318
mean abs. error 0.168 0.273 0.204 0.135
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descriptors for the atom the hydrogen is bound to and for
the 16 atoms closest by bond (topological) and for the 16
atoms closest in space (geometrical) (if not yet included),
thus producing a 3-dimensional basis. Calculating these
altogether 330 descriptors (2(16*10)+10) is relatively
easy since a small set of descriptors is repeatedly calcu-
lated for different atoms. As a notable difference to
Meiler's work, which tackles large proteins, in our case the
16 closest atoms by bond often already contain most or
all atoms of a small organic molecule.

The set of descriptors suggested by Aires-de-Sousa and
coworkers [9] has some descriptors being physico-chemi-
cal (charges, electronegativity) and additionally average/
minimum/maximum values of atoms in the spheres
round the proton are used. The radial distribution func-
tion (RDF) of several factors (charge, shielding, electronic
current in double bonds, etc.) adds sensitivity for the 3-

dimensional environment of the atom in question. RDFs
contain informations about the interatomic distances in a
molecule, unweighted or weighted by different atomic
properties such as atomic mass, electronegativity, van der
Waals volume and atomic polarisability [17]. Aires-de-
Sousa also suggests to divide the atoms into four groups:
protons attached to atoms in aromatic rings, non-aro-
matic p systems, rigid aliphatic systems and non-rigid
aliphatic systems.

The descriptors suggested by Meiler [12] were slightly
modified by taking first the 16 closest atoms in space and
then the 16 closest by bond, if not included in the first set
(the other way round than suggested), which we found to
give an improved result. From the measurement condi-
tions (temperature, solvent, frequency) only the solvent
was kept in the final feature set, however a large percent-
age of those entries were unknown solvents.

Hierarchy of the descriptor set, with proportion of typesFigure 2
Hierarchy of the descriptor set, with proportion of types. Taken from 1 = [9] and 2 = [12].
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Test- and training data set
Compounds for training and test data are taken from the
NMRShiftDB database, an open access, open submission,
open source database for small organic molecules and
their assigned NMR spectra [18,19]. The data quality in
NMRShiftDB has recently been evaluated in a separate
study based on cross validation with data from an external
data source [20]. All molecules shown in this paper can be
accessed via their molId on http://www.nmrshiftdb.org/
using the "Go directly to ID" function. The assignments in
NMRShiftDB are all hand-curated and checked by human
reviewers. At the time of writing it comprised 20199 struc-
tures with altogether 23722 spectra, of which 2983 were
proton spectra (some structures have multiple proton
spectra). Successful predictions previously reported were
done with much smaller data sets [[9], p. 81]. It should be
noted that the NMRShiftDB data have been collected over
time by different contributors, they are not in any way
selected for the purpose of prediction. To verify a broad
coverage of the known organic chemistry space we
mapped our data to a descriptor space defined by one of
the largest available collections of organic structures, the
Pubchem database [21], which we downloaded from ftp:/
/ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-
Full/SDF. The mapping was done by calculating for each
proton a selected set of atomic descriptors such as effective
polarisability, / partial charge and s electronegativity
for the proton itself, / electronegativity and partial
charge for the connected heavy atom, and similar descrip-
tors applied to spatially neighbouring atoms (see figure
2). The descriptor values from both data sets were ana-
lysed by PCA analysis, shown in figure 3. The NMR-
ShiftDB is by far smaller than Pubchem, but the main
clusters of the Pubchem data are represented in NMR-
ShiftDB as well.

For the shift prediction we extracted the protons directly
attached to a carbon. Shifts on hetero-atoms are much
more influenced by the experimental conditions [[9], p.
82]), which are not subject of our study. The resulting set
consists of 18692 measured 1H shift values from 0 to 10.7
ppm of 1829 different unique molecules with a mass
range of 20 amu to 2000 amu (figure 4).

The protons were categorised as suggested in [9]: a) aro-
matic rings 21%, b) non-aromatic  systems 7%, c) rigid
aliphatic systems 27% and d) non-rigid aliphatic systems:
45%.

For each proton we calculated the descriptors described in
table 1 of additional file 1. Attributes containing more
than 50% missing values (NA) were omitted from the
data set. This affected mainly the more distant sample
points of the RDF based descriptors and the higher ranks
of the 16 topologically closest atoms not contained in the

16 closest by distance. Numerical attributes containing
less than 50% NA values were imputed with their mean
values. NA values in categorial columns were treated as
independent values themselves and were not imputed.
After preprocessing the data set was of size 18672 * 246
attributes (207 numerical and 39 nominal). Normalising
the data was performed by scaling to the maximum value
attribute-wise for numerical attributes. Nominal
attributes were assigned integer values in increasing order
for distinct attribute levels and scaled accordingly to the
same range as the numerical attributes. For clustering and
regression purposes, and for computation of distance
matrices, we concentrated solely on the numerical
attributes. However, in terms of the classification tasks we
combined both nominal and numerical attributes.

Calculation of 3D coordinates
Three dimensional coordinates are often not available to
the experimentalist and are not included in NMRShiftDB.
They were calculated using the software package CORINA
(COoRdINAtes) (Molecular Networks GmbH, Erlangen,
Germany [22,23]), the industry standard for coordinate
generation. It respects stereo hints (wedge bonds) given in
the structures, so that conformations measured and
entered by the contributor are taken into account. When a
spectrum is measured in solution different conformations
usually contribute to the observed chemical shifts. This
situation makes the definition of the 3D environment of
a proton rather difficult. For the structures in NMR-
ShiftDB, where several conformations are possible a plau-
sible one of them was chosen by CORINA.

Algorithms for prediction
A large number of algorithms for classification tasks and
regression have been proposed in the past. We have used
algorithms integrated in the two open source projects R
2.5.1 [24] and Weka 3.5.6 [25] because the consistent pro-
gramming interfaces allowed to evaluate a broad range of
algorithms. As a result of preliminary tests we thoroughly
investigated the performance of the following algorithms
for the prediction tasks.

Instance based learners
Ibk [26] is an instance based learner with k being the
number of neighbours. It predicts new data by simply
considering the class values of the k nearest neighbours,
thereby using a statistical method to 'weed out' irrelevant
or noisy instances. It belongs to the class of so called lazy
learners, because no concepts are produced, it merely
stores the typical values without processing the data in
any way.

Support Vector Machines
Support vector machines are based on statistical learning
theory and belong to the class of kernel based methods
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[27]. The basic concept of SVMs is the transformation of
input vectors into a higher dimensional feature space
where a linear separation may be possible between the
class members. In this feature space the support vector
learning algorithm maximises the distance between the
class members of the training set in order to achieve a
good generalisation.

Decision Trees
Decision Trees recursively split attributes in a top-down
manner. The attribute with the highest normalised infor-
mation gain (based on the concept of entropy used in
information theory) is used to make the split decision.

The algorithm then recurses down the tree until a leaf with
the minimum desired number of instances is reached. A
well-known decision-tree algorithm is ID3 and its succes-
sor C4.5 [[28], p.115].

Random Forest
The random forest classifier was developed by Leo Brei-
man and Adele Cutler [29] and consists of many decision
trees. The algorithm combines Breiman's "bagging" [30]
idea and Ho's "random subspace method" [31] to con-
struct a collection of decision trees with controlled varia-
tions. A training set for a tree is constructed by choosing N
samples with replacement from all N available training

Coverage of chemical space by NMRShiftDBFigure 3
Coverage of chemical space by NMRShiftDB. A set of atomic descriptors were calculated for protons in Pubchem 
(50,000 structures/465,000 protons) (in black) and the protons with assigned shifts in the NMRShiftDB (in red, 1829 struc-
tures/18692 protons attached to carbons) and plotted using principal component analysis.
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cases (bootstrapping). At each node a random subset of
variables is used to determine the splitting decision.
Finally the mode of all classes by the individual fully
grown and unpruned trees is returned.

Bagging
Bagging (or Bootstrap and aggregating) was proposed by
Leo Breiman in 1994 to improve the classification by
combining classifications of randomly generated training
sets. Bagging can be used with any type of model. New
training sets are constructed by sampling uniformly from
the original training set with replacement. The models are
fitted using the bootstrap samples and combined by aver-
aging the output (in case of regression) or voting (in case
of classification).

Boosting
Boosting is a form of reinforcement learning [32]. For
each call a distribution of weights is updated to indicate
the importance of examples in the data set for the classifi-
cation. On each round, the weights of each incorrectly
classified example are increased, so that the new classifier
focuses more on those difficult examples.

Multivariate Linear Regression
This is a generalisation of a simple linear regression of two
variables. A continuous metric response variable y (i.e. the
shift) gets approximated through a linear combination of
n multiple influence quantities and has the form: y = a1 *
x1 + ... + an * xn + b + .

Feature selection
To reduce the number of input variables without a man-
ual (and error prone) choice, we used the variable impor-

PCA analysis of the numerical attributes in the descriptor setFigure 4
PCA analysis of the numerical attributes in the descriptor set. The symbols correspond to the four different proton 
categories suggested in [9]. "❍" for protons in aromatic rings, "�" for protons in non-aromatic  systems, "+" for protons in 
rigid aliphatic systems and "×" for protons in non-rigid aliphatic systems.
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tance measure as reported by random forest to select the
relevant features associated with the target class.

A random forest constructs N unpruned trees by drawing
N bootstrap samples. The variable importance measure-
ment is performed on the test set established by the boot-
strap method: Given a data set of d tuples the data set is
sampled d times with replacement constituting the train-
ing set. The data tuples that did not make it into the train-
ing set form the test set. The probability of not being
chosen is (1 - 1/d)d. If d is large, the probability
approaches e-1 = 0.368. Thus, 63.2% form the training set
and 36.8% form the test set. The random forest procedure
provides two importance measures:

• Mean Decrease Accuracy (%IncMSE): It is constructed by
permuting the values of each variable of the test set,
recording the prediction and comparing it with the unper-
muted test set prediction of the variable (normalised by
the standard error). For classification, it is the increase in
the percentage of times a test set tuple is misclassified
when the variable is permuted. For regression, it is the
average increase in squared residuals of the test set when
the variable is permuted. A higher %IncMSE value repre-
sents a higher variable importance.

• Mean Decrease Gini (IncNodePurity): Measures the
quality (NodePurity) of a split for every variable (node) of
a tree by means of the Gini Index. Every time a split of a
node is made on a variable the gini impurity criterion for
the two descendent nodes is less than the parent node.
Adding up the gini decreases for each individual variable
over all trees in the forest gives a fast variable importance
that is often very consistent with the permutation impor-
tance measure. A higher IncNodePurity value represents a
higher variable importance, i.e. nodes are much 'purer'.

The two variable importance measures are drawn sepa-
rately for each tree of the forest and finally are averaged
over all trees of the forest and there is no clear guidance on
which measure to prefer.

Results
Before applying the machine learning methods, we exam-
ined the characteristics of the molecular descriptors in our
evaluation data set.

Numerical attributes
We performed a PCA analysis of the 207 numerical
attributes. In figure 5 four major groups are visible. The
bulky group on the left side consists in fact of two sub-
groups, predominantly representing aromatic rings
including a heteroatom or protons contained in aliphatic
ring systems with adjacent p systems. The group in the
lower center contains e.g. aliphatic protons with adjacent

oxygens (aldehyde, etc.), whereas at the center to the right
there are mostly aliphatic ring systems with heteroatoms
and on the far right side predominantly alkyl-groups are
visible. Broadly speaking there is a strict linear separability
achievable by drawing a line from the top left-hand corner
to the bottom right-hand corner of the diagram. Even the
two groups on the left side are strictly linear separable.
Each proton in the diagram carries a symbol according to
its proton category and is coloured by its shift value. There
is a general trend for decreasing shift values from left to
right, but within groups variability is rather strong. Nota-
bly, the four different proton categories do not unambig-
uously reflect the visibly detectable groups. The
corresponding loadings plot is provided in figure 1 of
additional file 1, and reveals that especially the (spatially)
nearest heavy atoms influence the separation into the
groups shown.

Categorial attributes
Figure 6 shows a circle segments plot of the 39 nominal
attributes. The descriptors PkHybXspat and TopoPiCon-
tactXspat are two descriptors (hybridization and so-called
p contact [[12], p. 28]) calculated for the atoms around
the proton in increasing distance. It confirms common
NMR knowledge that the influence on the shift is less
prominent the further away an atom is. The circle seg-
ments plot shows that with less homogenous distributed
attribute levels. Within the PkHybXspat hybridisation
there is a strong decline of the influence from the fourth
neighbour. We are not aware of any physicochemical
effect which can explain this behaviour.

Machine learning comparison
We used the data set presented in the last section to eval-
uate the performance of the selected machine learning
methods and training strategies. The most simple
approach is the Multivariate Linear Regression based on
the numeric descriptors alone, which has an MAE of 0.29
ppm. Using the same descriptor set, but the non-linear
SVM regression, the result can be improved to 0.21 ppm.
The J48 and Random Forests use the categorial descriptors
in addition to the numeric features. An illustrative com-
parison of the actual versus the predicted shift values
using Random Forest can be found in figure 7.

The settings for the algorithms were mostly according to
default settings provided by the packages used in this
study. Best results for J48 were obtained for a minimum
number of two instances per leaf. A larger number of
instances deteriorated the performance slightly. For the
Random Forest we used an unlimited depth of trees and
the default number of trees (10). For the instance based
learners (IBk) the optimal number of neighbours was one,
larger number of nearest neighbours again worsen the
performance gradually. For the support vector regression
Page 8 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:400 http://www.biomedcentral.com/1471-2105/9/400
we utilised the radial basis kernel and a grid search for the
optimal parametrisation values.

Boosting had the largest impact on the J48 classifier, both
when used alone and in combination with feature selec-
tion. We also evaluated the Bagging (or Bootstrap aggre-
gating) training method, and achieved a marginally larger
error compared to boosting (data not shown).

The accuracy rate as given by the mean absolute error (ten
fold cross validated) of the prediction algorithms is
shown in figure 8. The mean absolute error varies between
0.15 ppm and 0.29 ppm depending on the method. Lin-

ear Regression, being a simple method, performs worst
(but still delivers reasonable results).

Figure 9 shows the first 30 features ordered by two specific
importance measures. For the training we have used the
best 25 descriptors from the the Mean Decrease in Accu-
racy. These cover both numeric and categorial attributes,
so we applied them to RF and J48 only.

Misclassifications
Diastereotopic protons attached to carbon atoms are top-
ologically equivalent but face different 3D environments
due to a single 3D conformation being more or less ran-

Histogram of the shift valuesFigure 5
Histogram of the shift values. Most prominent regions are aromatic and and aliphatic values at 1.3 and 7.4 ppm respec-
tively.
Page 9 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:400 http://www.biomedcentral.com/1471-2105/9/400
domly chosen for our computation. As has been stated
before, the use of a single 3D conformation is artificial
and introduces a potential source of error. A rigorous
treatment would create a set of the most frequent 3D con-
formation in solution as well as an assessment of their
likelihood of occurrence. Shifts would need to be pre-
dicted for each conformation and then averaged weighted
by their probability. This approach would a) generate
computation times rendering the application useless for
our purpose and b) require training data with measured
shifts for single conformations in solution – something
which is clearly not achievable but could be approximated
through rigorous ab-initio calculations of chemical shifts
for ensembles of conformations. For many methylene
proton pairs and any dimethyl group that is a rotatable
fragment, accounting for multiple conformations would

average out differences such as those seen figure 10
(Tables 3 and 4 provide further data for this, see legend).

There are a number of protons for which all of the inves-
tigated machine prediction algorithms (except HOSE
Codes) at a time fail to correctly predict the chemical shift
with an underlying error rate of > 0.5 ppm (which we call
'hard errors'). The shifts of these protons cannot accu-
rately be predicted with either a reduced or the full
descriptor set or any special settings for the algorithms.
Therefore they are affected by a fundamental problem. In
figure 11 the 'hard-error' – misclassifications contributing
to the overall error are displayed. From this plot one can
judge, that the 'hard-error' – misclassifications do not
arise because they are outliers. When scrutinising those
erroneous shift predictions in detail we encountered the

Circle Segments Plot of the categorial attributes in the descriptor setFigure 6
Circle Segments Plot of the categorial attributes in the descriptor set. The values in each of the segments are sorted 
increasingly according to the shift from the inner of the circle to the outer. The chemical shift in the range [0..10.7] is mapped 
to the coloured interval of size [0..100]. The number of the distinct attribute levels i is given in square brackets. Those values 
are mapped to the colour map as i/max(i) * 100. The influence of the dichotomous spatial variables PkHyb* and TopoPicontact* 
are less amenable with respect to the chemical shift, the farther the respective heavy atom is.
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following types of misclassifications (examples men-
tioned are shown in figure 10):

• Diastereotopic methyl-groups (moldID: 10019871 and
10021849).

• Methylene-protons in chains (moldID: 20062578 and
10027587).

• Methylene-protons in rigid rings (molID: 10021815 and
10022075).

• False entries such as (molID: 21156 and 21324). Here
virtually no systematic errors were detected.

In addition, training data may be imperfect due to missing
stereochemical information for diastereotopic protons. If
no stereochemistry is given in NMRShiftDB, the shifts are
randomly assigned to the atoms in space. If this assign-
ment is wrong and there are enough correct examples in
the database, the prediction may still be right, but differ-
ent from the actual assignment. An example for this are
most likely atomIDs 10335470 and 10335471 in Table 2.
We believe that those types of false assignments may be
encountered in the database to a not negligible amount.
Consequently, when applying feature selection a poten-
tial set of descriptors, possibly explaining the difference in
shifts, are clipped away, because due to the false assign-
ments they become meaningless. Note that in figure 11

Comparison of the real shift values and the predicted values on the data set (18672 protons) for a Random Forest with selected featuresFigure 7
Comparison of the real shift values and the predicted values on the data set (18672 protons) for a Random 
Forest with selected features.
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Mean absolute error of investigated Classifiers, the standard error (SE) is given in bracketsFigure 8
Mean absolute error of investigated Classifiers, the standard error (SE) is given in brackets. Classifiers trained 
with selected features are annotated with an additional #. Bagged Classifiers are annotated with an additional * and boosted 
classifiers carry an additional +- symbol. MAE/SE calculated with two decimal place for exp and one decimal place for pred in 
terms of classification.
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for the indices between approximately 12600 and 17200
there is only one single ('hard error') – misclassification.
This corresponds to the shift range of 6.9 ppm to 7.7 ppm,
where most of the protons are attached to aromatic six
membered rings.

HOSE codes
To compare the machine learning algorithms with a fun-
damentally different approach, we used HOSE (Hierarchi-
cally Ordered Spherical description of Environment)
codes for the prediction (figure 12). Table 5 illustrates the
connection of HOSE codes and chemical shifts. HOSE

codes [5] are a well established method for prediction of
especially 13C-NMR spectra. Their use for 1H spectra is dis-
couraged since they do not include three-dimensional
information. However, we wanted to see how they per-
formed and did a cross-validation with HOSE codes on
the same data set as used for the other methods with a six
sphere fall back. This means that we created a six-sphere
HOSE code for each atom in the test set and tried to match
this HOSE code in the "training" set (a real training proc-
ess is obviously not involved). If one or more values were
found the average was considered for prediction. If no
matches were found, we backed up sphere by sphere until

Mean Decrease Accuracy (%IncMSE) and Mean Decrease Gini (IncNodePurity) (sorted decreasingly from top to bottom) of attributes as assigned by the random forestFigure 9
Mean Decrease Accuracy (%IncMSE) and Mean Decrease Gini (IncNodePurity) (sorted decreasingly from top 
to bottom) of attributes as assigned by the random forest. The abbreviations of the descriptors can be found in table 
1 of additional file 1. For the mean decrease in accuracy the most relevant descriptors either relate to the proton or the car-
bon it is connected to or to atoms close to this. The most important types of descriptors are hybridisation, electronegativity, 
distances and whether the proton is joined to a conjugated  system.
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Figure 10 (see legend on next page)
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a hit was found. In the worst case it will be found in
sphere one, since that contains the atom neighbour and
the bond order, which for protons is always a single-
bonded carbon (since we only predict protons on car-
bons). Alternatively, an averaging of the lexicographically
next neighbors in the next sphere could be employed. To
our surprise, HOSE codes produced the lowest mean
absolute error of 0.154 of all methods tested (figure 8).

Conclusion
We have applied a selection of machine learning algo-
rithms to one of the largest public available data sets of 1H
NMR spectra with the goal of predicting spectra for the use
in Computer-Assisted Structure Elucidation of biological
metabolites. This result will enable the implementation of
open tools for the elucidation of unknown compounds
with high-throughput NMR analysis of biological sys-
tems.

The best predictions were obtained with HOSE codes,
Random Forests, J48 decision trees for mixed categorial/
numerical features and Support Vector Machine regres-
sion if only the numerical features were used. More

important than the choice of the machine learning algo-
rithm is the selection of the molecular descriptors. We
were able to drastically improve the overall accuracy by
reduction of the full descriptor set from [9] and [12] to the
first 25 descriptors shown in figure 9. Instead of a manual
(and potentially biased) selection scheme we used the
most predictive descriptors reported by the Random For-
est. With less input variables the machine learning meth-
ods create more compact models and are less prone to
over-fitting problems. Furthermore, we found that Bag-
ging and Boosting increased the prediction rate through-
out all the predictors for both the regression and
classification tasks. We discussed different sources of
errors which are mostly related to stereochemical proper-
ties of the protons and possible mis-assignments in the
data set. In this respect machine learning methods help to
discover inconsistencies in large databases to improve the
overall data quality.

HOSE codes leading to the best prediction results cer-
tainly came as a surprise for proton spectrum prediction
because common wisdom expects a significant depend-
ence of proton spectra on 3D effects which are not explic-

Representative examples for typical misclassifications ('hard errors')Figure 10 (see previous page)
Representative examples for typical misclassifications ('hard errors'). NMRShiftDB-molid: 10019871, atomID: 
10189925 at heavy atom nr. 16 (0.62 ppm), atomID: 10189928 at heavy atom nr. 17 (0.27 ppm). NMRShiftDB-molid: 
10021849, atomID: 10324987 at heavy atom nr. 22 (0.73 ppm), atomID: 10324990 at heavy atom nr. 23 (0.27 ppm). NMR-
ShiftDB-molid: 20062578, atomID: 20958256 at heavy atom nr. 17 (3.53 ppm), atomID: 20958257 at heavy atom nr. 17 (2.72 
ppm). NMRShiftDB-molid: 10027587, atomID: 11110950 at heavy atom nr. 7 (2.11 ppm), atomID: 11110951 at heavy atom nr. 
7 (1.45 ppm). NMRShiftDB-molid: 10021815, atomID: 10323000 at heavy atom nr. 13 (1.96 ppm), atomID: 10323001 at heavy 
atom nr. 13 (1.11 ppm). NMRShiftDB-molid: 10022075, atomID: 10335470 at heavy atom nr. 13 (3.61 ppm), atomID: 
10335471 at heavy atom nr. 13 (2.90 ppm). NMRShiftDB-molid: 21156, atomID: 283794 at heavy atom nr. 1 (8.21 ppm). NMR-
ShiftDB-molid: 21324, atomID: 296084 at heavy atom nr. 2 (6.73 ppm). Provided shift values are experimental and not pre-
dicted shifts. Predictions are given in table 2. The corresponding descriptor set is provided in table 2 of additional file 1. The 
HOSE codes of these atoms are shown in table 4. The  different descriptor sets for atoms 10189925 and 10189928 are shown 
in  table 3.

Table 2: Predictions of hard errors for all classifiers in ppm.

atomID shift LR HOSE J48 J48+ J48* J48#+ J48#* J48# RF RF# RF+ IBk SVM

10189925 0.62 0.91 0.85 0.90 0.80 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.87 0.91
10189928 0.27 0.94 0.85 0.80 0.90 0.90 0.90 0.90 0.90 0.80 0.90 0.90 0.78 0.94
10324987 0.73 1.05 0.95 0.80 0.80 0.80 0.80 1.10 0.80 0.80 0.80 0.80 0.82 0.87
10324990 0.27 1.16 0.95 0.90 0.90 1.10 1.00 0.80 0.80 1.10 0.80 1.10 1.33 0.79
20958256 3.53 2.43 3.01 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.72 2.82
20958257 2.72 2.43 3.01 2.70 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.53 2.91
11110950 2.11 1.68 2.24 1.40 1.40 1.40 2.30 2.30 1.40 2.00 1.40 1.40 1.45 2.24
11110951 1.45 1.96 2.24 2.10 2.10 2.10 2.30 2.30 2.10 2.00 2.10 2.10 2.11 2.33
10323000 1.96 1.79 1.52 1.40 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.45
10323001 1.11 1.82 1.52 1.40 2.00 2.00 2.00 2.00 1.40 2.00 2.00 2.00 1.96 1.48
10335470 3.61 2.92 2.91 2.90 2.90 2.90 2.90 2.80 2.90 2.90 2.90 2.90 2.90 3.06
10335471 2.90 2.87 2.91 2.90 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.61 3.08

283794 8.21 7.28 8.04 7.00 7.50 7.00 7.20 7.20 6.70 7.60 8.00 7.50 7.47 7.29
296084 6.73 7.33 7.52 7.70 7.50 7.40 8.10 7.60 7.60 8.10 7.60 7.40 7.38 7.53
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itly taken into account. A downside of HOSE code might
be the reliance on a lookup table which requires a large
sample set for meaningful predictions. Strictly speaking,
HOSE codes cannot be considered as being a predictive
classifier, but more rather an elaborated 'look-up-proce-
dure', comparable to the instance based lazy learners like

IBk. Compared to HOSE codes, the prominent advantage
of the machine learning methods is certainly that they
revert to an mathematical model as the underlying predic-
tive basis. Also, three dimensional molecular properties
are involved in the prediction.

ACD labs http://www.acdlabs.com/products/spec_lab/
predict_nmr/chemnmr/ report a standard error of 0.22
ppm for their software ACD/HNMR 8.0 [33], and Cam-
bridgeSoft ChemDraw 8.0 reports 0.45 ppm, while we
achieve an intermediate result of 0.31 ppm for the best
classifier. Both are computed on a database size of approx-
imately 50,000 shift values, which is not available to the
public. A direct quantitative comparison of our results
and the commercial software is not possible since (i) size
and quality of the data sets differ and (ii) the results are
obtained with different evaluation methods (e.g. ACD
used a leave-one-out test, while we used a 10 fold cross
validation, resulting in a distinct bias-variance ratio). Like
any other more or less randomly collected dataset, the
NMRShiftDB will face a certain amount of duplication of
certain frequently occuring cases. These cases have an
increased likelyhood of occuring unchanged in both train-
ing and prediction set and may therefore bias the results
of especially the HOSE code prediction. This bias is
reduced if the number of spheres taken into account
increases.

The results we have presented were obtained using
straight forward molecular descriptors and proven
machine learning methods. For the given data set they can
be considered as a baseline system, against which future
shift prediction systems can be compared.

Authors' contributions
SK was lead developer of the NMRShiftDB database and
performed the work on descriptor calculation. BE and SN
performed the data mining experiments and provided

Table 4: HOSE Codes for given atomIDs (hard errors)

atomIds Hose Code

10189925 H-1;C(HHC/HCC/HHC,HHH)HCN/=OO,HS/
10189928 H-1;C(HHC/HCC/HHC,HHH)HCN/=OO,HS/
10324987 H-1;C(HHC/HCC/HCN,HHH)HHO,CC/&,=OC,=O&/
10324990 H-1;C(HHC/HCC/HCN,HHH)HHO,CC/&,=OC,=O&/
20958256 H-1;C(HCC/HCN,*C*C/HHO,CC,H,H,*C,*C)&,=OC,=O&,H,H,*C,*&/,,=CC,,H*&/
20958257 H-1;C(HCC/HCN,*C*C/HHO,CC,H,H,*C,*C)&,=OC,=O&,H,H,*C,*&/,,=CC,,H*&/
11110950 H-1;C(HCC/=CC,HHC/CC,CCC,=CC)HHC,HHH,HC&,HHH,HHH,HC,HHH/HH&,HHC,HHC/
11110951 H-1;C(HCC/=CC,HHC/CC,CCC,=CC)HHC,HHH,HC&,HHH,HHH,HC,HHH/HH&,HHC,HHC/
10323000 H-1;C(HCC/CCC,HHC/H,H,C,C,C,C,HHH,HC&)H,H&,C,C,C,HH,HH&,&,CCC/,HH,HH,C,C,HHH,H&C,HHC,HHH/
10323001 H-1;C(HCC/CCC,HHC/H,H,C,C,C,C,HHH,HC&)H,H&,C,C,C,HH,HH&,&,CCC/,HH,HH,C,C,HHH,H&C,HHC,HHH/
10335470 H-1;C(HCC/HCC,*C*C/=O&,HHH,*C,*C,*C,&),*C*C,H,H*C,*&/,H,H*C,*&,*&O/
10335471 H-1;C(HCC/HCC,*C*C/=O&,HHH,*C,*C,*C,&),*C*C,H,H*C,*&/,H,H*C,*&,*&O/

283794 H-1;C(*C*C/*C*N,H*C/*C*S,*C,H*&)H*&,*&,*&S/,=O=OC/
296084 H-1;C(*C*C/*CC,H*C/H*C,H=N,*&C)H*&,C,H=N/,HHC,C/

Table 3: The set of descriptors with distinctive values for the 
atomIds of CH3 protons from NMRshiftDB-molid: 10019871 at 
heavy atom 16 and 17, from figure 10 (topleft).

10189925 10189928

PkcPeriod12spat 20.00 40.00
PkcPeriod13spat 40.00 20.00
PkcPeriod15spat 20.00 40.00

PkcPiEN16spat 16.57 0.00
PkcSigmaEN12spat 73.73 79.00
PkcSigmaEN13spat 78.73 73.60
PkcSigmaEN15spat 80.59 97.03

PkcValenceelectrons12spat 14.29 57.14
PkcValenceelectrons13spat 57.14 14.29
PkcValenceelectrons15spat 14.29 85.71

PkcVdwradius12spat 57.14 80.95
PkcVdwradius13spat 80.95 57.14
PkcVdwradius15spat 57.14 72.38

PkHyb15spat 0.00 100.00
SpaMindistToHy08spat 38.80 29.55
SpaMindistToHy12spat 42.07 29.40
SpaMindistToHy14spat 42.40 36.07
SpaMindistToHy15spat 37.96 25.46
SpaMindistToHy16spat 39.37 29.20

SpatAvdistohy12spat 44.16 37.44
SpatAvdistohy14spat 44.58 37.87
SpatAvdistohy15spat 43.27 34.91
SpatAvdistohy16spat 42.74 36.12

SpatDisttoatom12spat 42.70 36.98
SpatDisttoatom14spat 44.74 37.29
SpatDisttoatom15spat 43.94 37.62
SpatDisttoatom16spat 41.95 35.81

TopoBondsToAtom08spat 15.79 21.05
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Effect of feature selection on quality of predictionFigure 11
Effect of feature selection on quality of prediction. Protons in black are those correctly classified by at least one classi-
fier, the misclassified protons ('hard errors') are shown in red with the corresponding atomID. Left: unreduced descriptor set. 
Right: reduced descriptor set after feature selection. The protons are sorted increasingly according to the shift value [0..10.7] 
ppm. On the y-axis the Manhattan distance to the nearest neighbour (NN) proton in the numeric descriptor space is shown.

Table 5: A lexicographically ordered section of NMRShiftDB's table of HOSE codes and assiciated shifts to illustrate the connection 
between similar HOSE codes and similar NMR shifts.

Hose Code Shift

H-1;C(*C*C/*CC,*CO/*CO,CCC,*&C,H)H*&,H,HHH,HHH,HHH,CCC/,HHH,HHH,HHH/ 6.89
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,CC,H=C,HHC/,HHC,*C*C,%N,CC,HHC/ 7.88
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,CC,H=C,HHC/,HHC,*C*C,%N,HC,HHC/ 7.88
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,CCC,HHC/,HHC,*C*C,HHH,HHH,HHH,HHC/ 7.19
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=C,=OC/,=OC,*C*N,HC,,HHH/ 7.18
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=C,HHC/,HHC,*C*C,CC,HHC/ 7.14
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=C,HHC/,HHC,*C*C,HC,HCC/ 7.14
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=C,HHC/,HHC,*C*C,HC,HHC/ 7.13
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=C,HHC/,HHC,*N*N,HC,HHC/ 7.13
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=C,HHC/,HHC,=OO,HC,HHC/ 6.99
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=C,HHH/,HHH,*C*C,HC/ 7.10
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=O,HHC/,HHC,*C*C,,HCC/ 7.20
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=O,HHC/,HHC,*C*C,,HHC/ 7.16
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,H=O,HHC/,HHC,=OC,,HHC/ 7.35
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&C,C)H*&,C,HC,HHH,HHC/,HHC,*C*C,HCC/ 7.19
H-1;C(*C*C/*CC,*CO/*CO,H=C,*&Y,C)H*&,C,HC,,HHC/,HHC,*C*C,HHC/ 6.89
H-1;C(*C*C/*CC,*CO/*CO,H=C,H*&,C)H*&,C,CC,HHC/,HHC,*C*C,%N,HHC/ 7.10
H-1;C(*C*C/*CC,*CO/*CO,H=C,H*&,C)H*&,C,CC,HHH/,HHH,*C*C,%N/ 7.20
H-1;C(*C*C/*CC,*CO/*CO,H=C,H*&,C)H*&,C,HC,HHC/,HHC,*C*C,HHC/ 7.13
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expertise on artificial intelligence. CS conceived and
supervised the research project. All authors contributed to
the manuscript.
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Descriptor set. The data provides the complete set of descriptor values in 
matrix form for the H-NMR shifts upon the prediction is based.
Click here for file
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Principle of HOSE codesFigure 12
Principle of HOSE codes. The HOSE code is built sphere-
wise around the atom described; the carbon shown would 
have the HOSE code (four spheres): C-
arom;*C*CC(*C,*C,=OC/*CX,*&,,CC/&C,,CN,C).
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