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Abstract

Background: Cancer diagnosis and clinical outcome prediction are among the most important
emerging applications of gene expression microarray technology with several molecular signatures
on their way toward clinical deployment. Use of the most accurate classification algorithms
available for microarray gene expression data is a critical ingredient in order to develop the best
possible molecular signatures for patient care. As suggested by a large body of literature to date,
support vector machines can be considered "best of class" algorithms for classification of such data.
Recent work, however, suggests that random forest classifiers may outperform support vector
machines in this domain.

Results: In the present paper we identify methodological biases of prior work comparing random
forests and support vector machines and conduct a new rigorous evaluation of the two algorithms
that corrects these limitations. Our experiments use 22 diagnostic and prognostic datasets and
show that support vector machines outperform random forests, often by a large margin. Our data
also underlines the importance of sound research design in benchmarking and comparison of
bioinformatics algorithms.

Conclusion: We found that both on average and in the majority of microarray datasets, random
forests are outperformed by support vector machines both in the settings when no gene selection
is performed and when several popular gene selection methods are used.

Background

Gene expression microarrays are becoming increasingly
promising for clinical decision support in the form of
diagnosis and prediction of clinical outcomes of cancer
and other complex diseases. In order to maximize benefits
of this technology, researchers are continuously seeking to
develop and apply the most accurate classification algo-
rithms for the creation of gene expression patient profiles.

Prior research suggests that among well-established and
popular techniques for multicategory classification of
microarray gene expression data, support vector machines
(SVMs) have a predominant role, significantly outper-
forming k-nearest neighbours, backpropagation neural
networks, probabilistic neural networks, weighted voting
methods, and decision trees [1].
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In the last few years substantial interest has developed
within the bioinformatics community in the random for-
est algorithm [2] for classification of microarray and other
high-dimensional molecular data [3-5]. The random for-
est algorithm possesses a number of appealing properties
making it well-suited for classification of microarray data:
(i) it is applicable when there are more predictors than
observations, (ii) it performs embedded gene selection
and it is relatively insensitive to the large number of irrel-
evant genes, (iii) it incorporates interactions between pre-
dictors, (iv) it is based on the theory of ensemble learning
that allows the algorithm to learn accurately both simple
and complex classification functions, (v) it is applicable
for both binary and multicategory classification tasks, and
(vi) according to its inventors it does not require much
fine-tuning of parameters and the default parameteriza-
tion often leads to excellent performance [2]. Recent work
[5] reported an empirical evaluation of random forests in
the cancer microarray gene expression domain and con-
cluded that random forest classifiers have predictive per-
formance comparable to that of the best performing
alternatives (including SVMs) for classification of micro-
array gene expression data. In fact, the data in Table 2 of
[5] suggests that random forests on average across 10 data-
sets slightly outperform SVMs as well as other methods. If
true, this finding could be of great significance to the field,
because combined with prior results about SVM perform-
ance (e.g., [1]), this suggests that random forests offer clas-
sification accuracy advantages over "best of class"
classifier algorithms for this type of data.

However, closer inspection of this prior comparison [5]
reveals several important data analytic biases that may
have affected its conclusions: First, while the random for-
ests were applied to datasets prior to gene selection, SVMs
were applied with a subset of only 200 genes (the number
200 was chosen arbitrarily). Given that the number of
optimal genes varies from dataset to dataset, and that
SVMs are known to be fairly insensitive to a very large
number of irrelevant genes, such application of SVMs
likely biases down their performance. Second, a one-ver-
sus-one SVM algorithm was applied for the multicategory
classification tasks, while it is has been shown that in
microarray gene expression domain this method is infe-
rior to other multicategory SVM methods, such as one-ver-
sus-rest [1,6]. Third, the evaluation of [5] was limited only
to linear SVMs without optimizing any algorithm param-
eters such as the penalty parameter C that balances data fit
with insensitivity to outliers. Fourth, the performance
metric used in [5], proportion of correct classifications, is
sensitive to unbalanced distribution of classes and has
lower power to discriminate among classification algo-
rithms compared to existing alternatives such as area
under the ROC curve and relative classifier information
[7-10]. Fifth, no statistical comparison among classifiers
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has been performed. Finally, the prior comparison uses a
.632+ bootstrap error estimator [11] which is not the most
appropriate error estimator for microarray data where
powerful classifiers such as SVMs and RFs typically
achieve 0 training error and the .632+ bootstrap becomes
equivalent to repeated hold-out estimation that may suf-
fer from the training-set-size bias as discussed in [12]. Fur-
thermore, .632+ bootstrap is currently not developed for
performance metrics other than proportion of correct clas-
sifications.

We hypothesize that these apparent methodological
biases of prior work have compromised its conclusions
and the question of whether random forests indeed out-
perform SVMs for classification of microarray gene expres-
sion data is not convincingly answered. In the present
work we undertake a more methodologically rigorous
comparison of the two algorithms to determine the rela-
tive errors when applied to a wide variety of datasets. We
examine the algorithms both in the settings when no gene
selection is performed and when several popular gene
selection methods are used. To make our evaluation more
relevant to practitioners, we focus not only on diagnostic
datasets that are in general known to have strong predic-
tive signals, but also include several outcome prediction
datasets where the signals are weaker and larger gene sets
are often required for optimal prediction.

Results

Using full set of genes

The performance results of classification prior to gene
selection are shown in Figure 1 and Table 1. In total, SVMs
nominally (that is, not necessarily statistically signifi-
cantly) outperform RFs in 15 datasets, RFs nominally out-
perform SVMs in 4 datasets, and in 3 datasets algorithms
perform the same. The application of permutation-based
statistical comparison test with significance level o = 0.05
reveals that SVMs significantly outperform RFs in 7 data-
sets, while RFs do not significantly outperform SVMs in
any dataset. The permutation test applied to all 22 data-
sets shows that SVMs statistically significantly outperform
RFs on average over all datasets at the 0.05 o level (p-value
of the test = 0.008). It is also worthwhile to compare both
methods in terms of the average performance across data-
sets. The average performance of SVMs is 0.775 AUC and
0.860 RCI in binary and multicategory classification tasks,
respectively. The average performance of RFs in the same
tasks is 0.742 AUC and 0.803 RCI.

Using gene selection

Six classification performance estimates have been pro-
duced for each classifier and dataset (5 estimates corre-
sponding to various gene selection methods and one
estimate corresponding to using no gene selection). In
Figure 2 and Table 2 we present a comparison based on
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Table I: Comparison of classification performance of SVMs and RFs without gene selection.

Task & dataset Classification performance metric Classification performance Nominally superior method P-value
SYmMm RF
Dx-Alon AUC 0.867 0.867 - |
Dx-Ramaswamy2 AUC 0.821 0.767 SVM 0.409
Dx-Shipp AUC 0.992 0.973 SVM 0.500
Dx-Singh AUC 0.964 0.944 SVM 0.377
Px-Beer AUC 0.798 0.646 SVM 0.032
Px-Bhattacharjee AUC 0519 0.561 RF 0.546
Px-lizuka AUC 0.663 0.763 RF 0.061
Px-Pomeroy AUC 0.692 0.600 SVM 0.235
Px-Rosenwald AUC 0.689 0.629 SVM 0.140
Px-Veer AUC 0.747 0.754 RF 0.867
Px-Yeoh AUC 0.777 0.660 SVM 0.006
Dx-Alizadeh RCI 1.000 1.000 - |
Dx-Armstrong RCI 0.944 0.894 SVM 0.658
Dx-Bhattacharjee RCI 0.895 0.763 SVM 0.015
Dx-Golub RCI 0.939 0.934 SVM |
Dx-Khan RCI 1.000 1.000 - |
Dx-Nutt RCI 0.775 0.733 SVM 0.498
Dx-Pomeroy RCI 0.823 0.611 SVM 0.031
Dx-Ramaswamy RCI 0.905 0.861 SVM 0.010
Dx-Staunton RCI 0.770 0.819 RF 0.249
Dx-Su RCI 0.958 0910 SVM 0.004
Px-Veer2 RCI 0.451 0.304 SVM 0.004

The performance is estimated using area under ROC curve (AUC) for binary classification tasks and relative classifier information (RCI) for
multicategory tasks. See subsection "Statistical comparison among classifiers" for the description of statistical test employed to compute reported

p-values. P-values shown with boldface denote statistically significant differences between classification methods at the 0.05 a. level.

the best performing gene selection method for each algo-
rithm and dataset combination under the operating
assumption that practitioners will optimize choice of the
gene selection method for each dataset separately (using
cross-validation or other suitable protocols). The results
in Figure 2 and Table 2 thus better mirror the actual prac-
tice of data analysis.

According to the results in Figure 2 and Table 2, in 17
datasets SVMs nominally outperform RFs, in 3 datasets
RFs nominally outperform SVMs, and in 2 datasets algo-
rithms perform the same. Furthermore, SVMs outperform
RFs statistically significantly (at the 0.05 o level) in 1 data-
set. There is no dataset where RFs outperform SVMs with
statistically significant difference. The permutation test
applied to all 22 datasets shows that SVMs statistically sig-
nificantly outperform RFs on average over all datasets at
the 0.05 a level (p-value of the test = 0.001). A compari-
son of the average performance across datasets also sug-
gests superiority of SVMs: the average performance of
SVMs is 0.787 AUC and 0.875 RCI in binary and multi-
category classification tasks, respectively; while the aver-
age performance of RFs in the same tasks is 0.759 AUC
and 0.828 RCI.

The number of genes selected on average across 10 cross-
validation training sets is provided in Table 3. We note
that in the present comparison we focus exclusively on
classification performance and do not incorporate
number of selected genes in the comparison metrics
because there is no well-defined trade-off between
number of selected genes and classification performance
in the datasets studied. Nevertheless, the detailed classifi-
cation results for all gene selection methods, classifiers,
and datasets are provided in the Additional File 1.

Discussion

The results presented in this paper illustrate that SVMs
offer classification performance advantages compared to
RFs in diagnostic and prognostic classification tasks based
on microarray gene expression data. We emphasize that
when it comes to clinical applications of such models,
because the size of the patient populations is typically very
large, even very modest differences in performance (e.g.,
at the order of 0.01 AUC/RCI or even less) can result in
very substantial differences in total clinical outcomes
(e.g., number of life-years saved) [13].

The reasons for superior classification performance of one

universal approximator classifier over the other in a

Page 3 of 10

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:319

Binary classification tasks

http://www.biomedcentral.com/1471-2105/9/319

Multicategory classification tasks

100 & & < 100
095 = C1RFs SRR S 3 L 2 095
090 — osVMs [ | @ 2 M 090
0gs @ — - — ‘— 085
0s0 | @ — & r~E 1 e —u— 080
075 H —1H1 ] & AT = ] 075 3
G 070 H — — — ¢ 11— 1 HHH- — M 070 £
2 _ [
2065 H — — — = — 1A — 065 8
g 060 1 — AT 060 g
2oss M 10000 0r 1nnrrrrrrn 055 &
S 050 HHHHHFY"™1HH H H “HHHHHHHHH 050 =
x T
s 045 A M “HHHHHHHHHF®] o045 &
(%]
B o040 HHHHHHHHHH H “HHHHHHHHH 040 &
= (&)
® 035 HHHHHHHHHHH H H H AHHHHHHHH H 035 o
@ 2
<030 HHHHHHHHHH H “HHHHHHHHEHPFT o030 %
025 A MMt AR H 02 &
0200 HHMHHHH— H M H H “HHHHHHHHHHH 020
O e B e B e I e Y e ) s B e B s I e B “HHHHHHHHHEHH o1s
010 HHMHHMHHMHHH H H “HHHHHHHHHMFHH o010
005 HHMHMHEMHEHAHHA M H T HHHHHHHHEHH oos
000 000
oL & NS SN IS SN X D2 P LSS RN QSN
+’v\o &'z’@ '\Q\Q < +’Q’0 vé\ & 6‘?"\ © +’A® +'*e ~«\?be ’éo(\ 'z>& 60\\) SR ey &7’@ & ¥ A“”é
Q ((\,bfg 0+ 0+ N ’6"b(1 Q+ +§2° Q\OC,Q’ ] N3 .‘:?\\ ‘\((\L’ ’é‘,b(\,o 0-\3 Q+ Q+ ,QO& > b\,’b Q 3
L@ &° ¥ © <>+’v < o &
oF < ¥ o
Figure |

Classification performance of SVMs and RFs without gene selection. The performance is estimated using area under
ROC curve (AUC) for binary classification tasks and relative classifier information (RCI) for multicategory tasks.

domain where the generative functions are unknown are
not trivial to decipher [2,14]. We provide here as a starting
point two plausible explanations supported by theory and
a simulation experiment (in Additional File 2). We note
that prior research has established that linear decision
functions capture very well the underlying distributions in
microarray classification tasks [15,16]. In the following
two paragraphs we first demonstrate that for such func-
tions SVMs may be less sensitive to the choice of input
parameters than RFs and then explain why SVMs model
linear decision functions more naturally than RFs.

The simulation experiment described in Additional File 2
demonstrates high degree of sensitivity of RFs to the val-
ues of input parameters mtry (i.e., number of genes ran-
domly selected at each node) and ntree (i.e., number of
trees) even in the case of linear decision function when
complicated decision surface modelling is not required.
The experiment shows that the choice of RF parameters
creates large variation in the classifier performance

whereas the choice of the main SVM parameter has only
minor effects on the error. In practical analysis of microar-
rays this means that finding the RFs with optimal error for
the dataset may involve extensive model selection which
in turn opens up the possibility for overfitting given the
small sample sizes in validation datasets.

A second plausible explanation is that decision trees used
as base learners in the RF algorithm cannot learn exactly
many linear decision functions in the finite case. Specifi-
cally, if the generative linear decision function is not
orthogonal to the coordinate axes, then a decision tree of
infinite size is required to represent this function without
error [17]. The voted decision function in RFs approxi-
mates linear functions based on rectangular partitioning
of the input space, and this "staircase" approximation can
capture a linear function exactly when the number of deci-
sion trees can grow without bound (assuming that each
tree is of finite size). SVMs on the other hand use linear
classifiers and thus can model such functions naturally,
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Table 2: Comparison of classification performance of SVMs and RFs with gene selection.

Task & dataset Classification performance metric Classification performance Nominally superior method P-value
SYmMm RF

Dx-Alon AUC 0.938 0917 SVM 0.626
Dx-Ramaswamy2 AUC 0.821 0.781 SVM 0.624
Dx-Shipp AUC 0.992 0.975 SVM 0.502
Dx-Singh AUC 0.964 0.972 RF 0.812
Px-Beer AUC 0.798 0.648 SVM 0.016
Px-Bhattacharjee AUC 0519 0.561 RF 0.550
Px-lizuka AUC 0.713 0.763 RF 0.750
Px-Pomeroy AUC 0.692 0.629 SVM 0.506
Px-Rosenwald AUC 0.689 0.631 SVM 0.128
Px-Veer AUC 0.758 0.754 SVM 0.954
Px-Yeoh AUC 0.777 0.716 SVM 0.082
Dx-Alizadeh RCI 1.000 1.000 - |
Dx-Armstrong RCI 0.944 0911 SVM 0.624
Dx-Bhattacharjee RCI 0.895 0.817 SVM 0.125
Dx-Golub RCI 0.953 0.934 SVM |
Dx-Khan RCI 1.000 1.000 - |
Dx-Nutt RCI 0.812 0.733 SVM 0.220
Dx-Pomeroy RCI 0.823 0.688 SVM 0.079
Dx-Ramaswamy RCI 0.911 0.880 SVM 0.066
Dx-Staunton RCI 0.876 0.856 SVM 0.626
Dx-Su RCI 0.958 0.922 SVM 0.078
Px-Veer2 RCI 0.451 0.371 SVM 0.262

The performance is estimated using area under ROC curve (AUC) for binary classification tasks and relative classifier information (RCI) for
multicategory tasks. See subsection "Statistical comparison among classifiers" for the description of statistical test employed to compute reported

p-values. P-values shown with boldface denote statistically significant differences between classification methods at the 0.05 a. level.

using a small number of free parameters (i.e., bounded by
the available sample size).

We note that regardless of the specific reasons why RFs
may have larger error on average in this domain, it is still
important to be aware of the empirical performance dif-
ferences when considering which classifier to use for
building molecular signatures. It may take several years
before the precise reasons of differences in empirical error
are thoroughly understood, and in the meantime the
empirical advantages and disadvantages of methods
should be noted first by practitioners.

Data analysts should also be aware of a limitation of RFs
imposed by its embedded random gene selection. In order
for a RF classification model to overcome the trap of large
variance, one has to use a large number of trees and build
trees based on a large number of genes. The exact values
of these parameters depend on both the complexity of the
classification function and the number of genes in a
microarray dataset. Therefore, in general, it is advisable to
optimize these parameters by nested cross-validation that
accounts for the variability of the random forest model
(e.g., the selected parameter configuration is the one that

performs best on average over multiple validation sample
sets).

Finally, it is worthwhile to mention the work by Segal [18]
who questioned Breiman's empirical demonstration of
the claim that random forests do not overfit as the
number of trees grows [2]. In short, Segal showed that
there exist some data distributions where maximal
unpruned trees used in the random forests do not achieve
as good performance as the trees with smaller number of
splits and/or smaller node size. Thus, application of ran-
dom forests in general requires careful tuning of the rele-
vant classifier parameters. These observations may suggest
future improvements of RF-related analysis protocols.

Conclusion

The primary contribution of the present work is that we
conducted the most comprehensive comparative bench-
marking of random forests and support vector machines
to date, using 22 diagnostic and outcome prediction data-
sets. Our hypothesis that in previously reported work,
research design limitations may have biased the compari-
son of classifiers in favour of random forests, was verified.
After removing these benchmarking limitations, we found
that, both on average and in the majority of microarray
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Classification performance of SVMs and RFs with gene selection. The performance is estimated using area under
ROC curve (AUC) for binary classification tasks and relative classifier information (RCI) for multicategory tasks.

datasets, random forests exhibit larger classification error
than support vector machines both in the settings when
no gene selection is performed and when several gene
selection methods are used.

The quest for high performance classifiers with microarray
gene expression and other "omics" data is ongoing. Ran-
dom forests have appealing theoretical and practical char-
acteristics, however our experiments show that currently
they do not exhibit "best of class" performance. Our data
also points to methodological limitations of prior evalua-
tions and thus emphasizes the importance of careful
design of bioinformatics algorithm evaluation studies.

Methods

Microarray datasets and classification tasks

Gene expression microarray datasets used in the present
work are described in Table 4. All 22 datasets span the
domain of cancer; 14 datasets correspond to diagnostic
tasks (and denoted with prefix "Dx") and 8 are concerned

with clinical outcome prediction (and denoted with
"Px"). Out of 22 datasets, 11 are binary classification
tasks, while the other 11 are multicategory tasks with
3-26 classes. The datasets contain 50-308 samples and
2,000-24,188 variables (genes) after data preparatory
steps described in [1]. All diagnostic datasets were
obtained from http://www.gems-system.org[1] and from
the links given in the primary study for each dataset. Sim-
ilarly, all prognostic datasets were obtained from the links
given in the primary study for each dataset. A list of refer-
ences to the primary study for each dataset is provided in
the Additional File 3. Notice that the dataset collection
used in this work contains all datasets from the prior com-
parison [5].

Cross-validation design

We used 10-fold cross-validation to estimate the perform-
ance of the classification algorithms. In order to optimize
algorithm parameters, we used another "nested" loop of
cross-validation by further splitting each of the 10 original
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Table 3: Number of genes selected for each microarray dataset and gene selection method.

Task & dataset No gene selection RFE RFVSI RFVS2 Kw S2N
Dx-Alizadeh 4026 12 62 73 19 15
Dx-Alon 2000 105 16 3 15 13
Dx-Armstrong 11225 74 709 57 106 48
Dx-Bhattacharjee 12600 289 27 I5 1864 653
Dx-Golub 5327 12 456 336 42 4
Dx-Khan 2308 28 17 18 15 I
Dx-Nutt 10367 1598 126 101 476 926
Dx-Pomeroy 5920 186 34 16 70 435
Dx-Ramaswamy 15009 3346 966 411 8248 10277
Dx-Ramaswamy2 13247 1576 12 4 4129 1364
Dx-Shipp 5469 8 15 6 13 89
Dx-Singh 10509 157 58 21 22 38
Dx-Staunton 5726 169 152 73 93 97
Dx-Su 12533 2429 845 320 1318 1927
Px-Beer 7129 201 15 7 953 1380
Px-Bhattacharjee 12600 21 46 7 138 6l
Px-lizuka 7070 103 38 7 168 185
Px-Pomeroy 7129 70 29 13 445 439
Px-Rosenwald 7399 2338 124 27 3201 3897
Px-Veer 24188 1056 124 20 5388 4405
Px-Veer2 24188 491 149 39 1194 1764
Px-Yeoh 12240 1187 21 6 3077 1869

Average number of genes selected over 10 cross-validation training sets.

training sets into smaller training sets and validation sets.
For each combination of the classifier parameters, we
obtained cross-validation performance and selected the
best performing parameters inside this inner loop of
cross-validation. Next, we built a classification model
with the best parameters on the original training set and
applied this model to the original testing set. Details
about the "nested cross-validation" procedure can be
found in [19,20]. Notice that the final performance esti-
mate obtained by this procedure will be unbiased because
each original testing set is used only once to estimate per-
formance of a single classification model that was built by
using training data exclusively.

Support vector machine classifiers

Several theoretical reasons explain the superior empirical
performance of SVMs in microarray data: e.g., they are
robust to the high variable-to-sample ratio and large
number of variables, they can learn efficiently complex
classification functions, and they employ powerful regu-
larization principles to avoid overfitting [1,21,22]. Exten-
sive applications literature in text categorization, image
recognition and other fields also shows the excellent
empirical performance of this classifier in many more
domains. The underlying idea of SVM classifiers is to cal-
culate a maximal margin hyperplane separating two
classes of the data. To learn non-linearly separable func-
tions, the data are implicitly mapped to a higher dimen-
sional space by means of a kernel function, where a

separating hyperplane is found. New samples are classi-
fied according to the side of the hyperplane they belong to
[22]. Many extensions of the basic SVM algorithm can
handle multicategory data. The "one-versus-rest" SVM
works better for multi-class microarray data [1,6], so we
adopted this method for the analysis of multicategory
datasets in the present study. In summary, this approach
involves building a separate SVM model to classify each
class against the rest, and then predicting the class of a
new sample using the SVM model with the strongest vote.

We used SVM implementation in the libSVM software
library [23]http://www.csie.ntu.edu.tw/~cjlin/libsvm
with polynomial kernel. Recall that the SVM polynomial
kernel can be defined as: K(x, y) = (v xTy + r)4, where x and
y are samples with gene expression values and v, r, d are
kernel parameters. The parameters y and r were set to
default value 1. The kernel degree d together with the SVM
penalty parameter C were optimized by nested cross-vali-
dation over d values {1, 2, 3} and Cvalues {0.01, 1, 100}.

Random forest classifiers

Random forests (RF) is a classification algorithm that uses
an ensemble of unpruned decision trees, each of which is
built on a bootstrap sample of the training data using a
randomly selected subset of variables [2]. As mentioned
in the Background section, this algorithm possesses a
number of properties making it an attractive technique for
classification of microarray gene expression data.
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Task & dataset Number of classes Number of genes

Number of samples

Prediction task

Dx-Alizadeh 3 4026 62
Dx-Alon 2 2000 62
Dx-Armstrong 3 11225 72
Dx-Bhattacharjee 5 12600 203
Dx-Golub 3 5327 72
Dx-Khan 4 2308 83
Dx-Nutt 4 10367 50
Dx-Pomeroy 5 5920 90
Dx-Ramaswamy 26 15009 308
Dx-Ramaswamy2 2 13247 76
Dx-Shipp 2 5469 77
Dx-Singh 2 10509 102
Dx-Staunton 9 5726 60
Dx-Su I 12533 174
Px-Beer 2 7129 86
Px-Bhattacharjee 2 12600 62
Px-lizuka 2 7070 60
Px-Pomeroy 2 7129 60
Px-Rosenwald 2 7399 240
Px-Veer 2 24188 97
Px-Veer2 3 24188 115
Px-Yeoh 2 12240 233

Diffuse large B-cell lymphoma, follicular lymphoma, chronic
lymphocytic leukemia

Colon tumors and normal tissues

AML, ALL and mixed-lineage leukemia (MLL)

4 lung cancer types and normal tissues

Acute myelogenous leukemia (AML), acute lymphoblastic
leukemia (ALL) B-cell and ALL T-cell

Small, round blue cell tumors of childhood

4 malignant glioma types

5 human brain tumor types

14 various human tumor types and 12 normal tissue types
Metastatic and primary tumors

Diffuse large B-cell lymphomas and follicular lymphomas
Prostate tumor and normal tissues

9 various human tumor types

I'l various human tumor types

Lung adenocarcinoma survival

Lung adenocarcinoma 4-year survival

Hepatocellular carcinoma |-year recurrence-free survival
Medulloblastoma survival

Non-Hodgkin lymphoma survival

Breast cancer 5-year metastasis-free survival

Breast cancer 5-year metastasis-free survival, metastasis
within 5 years, germline BRCA| mutation

Acute lymphocytic leukemia relapse-free survival

The reference paper for each dataset is provided in the Additional File 3.

We employed the state-of-the-art implementation of RF
available in the R package randomForest [24]. This imple-
mentation is based on the original Fortran code authored
by Leo Breiman, the inventor of RFs. Following the sug-

gestions of [24,25] and http://www.stat.berkeley.edu/
~breiman/RandomForests/, we considered different

parameter configurations for the values of ntree = {500,
1000, 2000} (number of trees to build), mtryFactor ={0.5,
1, 2} (a multiplicative factor of the default value of mtry
parameter denoting the number of genes randomly
selected at each node; by default muy =

Jnumber - of - genes ), and nodesize = 1 (minimal size of

the terminal nodes of the trees in a random forest) and
selected the best-performing configuration by nested
cross-validation. Note that the above parameter values are
also consistent with the recommendations of the study

[5].

Gene selection methods

Even though both SVM and RF classifiers are fairly insen-
sitive to very large number of irrelevant genes, we applied
the following widely used gene selection methods in
order to further improve classification performance:

¢ Random forest-based backward elimination procedure
RFVS [5]: The RFVS procedure involves iteratively fitting

RFs (on the training data), and at each iteration building
a random forest after discarding genes with the smallest
importance values. The returned subset of genes is the one
with the smallest out-of-bag error. We used the varSelRF
implementation of the RFVS method developed by its
inventors and applied it with the recommended parame-
ters: ntree = 2000, mtryFactor = 1, nodesize = 1, frac-
tion.dropped = 0.2 (a parameter denoting fraction of genes
with small importance values to be discarded during back-
ward elimination procedure), and c.sd = 0 (a factor that
multiplies the standard deviation of error for stopping
iterations and choosing the best performing subset of
genes). We refer to this method as "RFVS1."

¢ RFVS procedure as described above, except for c.sd = 1
(denoted as "RFVS2"): This method differs from RFVS1 in
that it performs statistical comparison to return the small-
est subset of genes with performance statistically indistin-
guishable from the nominally best one.

¢ SVM-based recursive feature elimination method RFE
[26]: This is a state-of-the-art procedure for gene selection
from microarray data that involves iteratively fitting SVM
classification models (on the training data) by discarding
the genes with the small impact on classification and
selecting the smallest subset of genes that participate in
the best performing classification model (as assessed in
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the validation data). Even though RFE was originally
introduced as a method for binary classification prob-
lems, it can be trivially extended to multiclass case by
using binary SVM models in "one-versus-rest" fashion
(e.g., see [27]). Finally, to be comparable with the RFVS
method, we used the fraction of genes that are discarded
in the iterative SVM models equal to 0.2.

e Backward elimination procedure based on univariate
ranking of genes with "signal-to-noise" ratio [1,21,28]
(denoted as "S2N"): This procedure first ranks all genes
according their signal-to-noise value with the response
variable, and then performs backward elimination using
SVM classifier (fit on the training set and evaluated on the
validation set) to determine the best performing smallest
subset of genes. Similarly to RFE and RFVS, we perform
backward elimination by discarding 0.2 proportion of
genes at each iteration.

e Backward elimination procedure based on univariate
ranking of genes with Kruskal-Wallis one-way non-para-
metric ANOVA [1] (denoted as "KW"): This procedure is
applied similarly to the S2N method except for it uses dif-
ferent univariate ranking of genes.

We emphasize that all gene selection methods were
applied during cross-validation utilizing only the training
data and splitting it into a smaller training and validation
set if necessary.

Classification performance evaluation metrics

We used two classification performance metrics. For
binary tasks, we used the area under the ROC curve (AUC)
which was computed from continuous outputs of the clas-
sifiers (distances from separating hyperplane for SVMs
and outcome probabilities for RFs) [8]. For multicategory
tasks, where classical AUC is inapplicable, we employed
the relative classifier information (RCI) [7]. RCI is an
entropy-based measure that quantifies how much the
uncertainty of a decision problem is reduced by a classifier
relative to classifying using only the prior probabilities of
each class. We note that both AUC and RCI are more dis-
criminative than the accuracy metric (also known as pro-
portion of correct classifications) and are not sensitive to
unbalanced distributions [7-10]. Both AUC and RCI take
values on [0, 1], where 0 denotes worst possible classifica-
tion and 1 denotes perfect classification.

Statistical comparison among classifiers

When comparing two classifiers, it is important to assess
whether the observed difference in classification perform-
ance is statistically significant or simply due to chance. We
assessed significance of differences in classification per-
formance in individual datasets or in all datasets on aver-
age using a non-parametric permutation test [29] based

http://www.biomedcentral.com/1471-2105/9/319

on the theory of [30]. The null hypothesis of this test is no
difference between performance of SVM and RF classifiers.
The test was applied with 100,000 permutations and two-
sided p-values were computed as described in [29]. We
used a significance level a = 0.05 for this test.
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