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Abstract
Background: Identifying quantitative trait loci (QTL) for both additive and epistatic effects raises
the statistical issue of selecting variables from a large number of candidates using a small number
of observations. Missing trait and/or marker values prevent one from directly applying the classical
model selection criteria such as Akaike's information criterion (AIC) and Bayesian information
criterion (BIC).

Results: We propose a two-step Bayesian variable selection method which deals with the sparse
parameter space and the small sample size issues. The regression coefficient priors are flexible
enough to incorporate the characteristic of "large p small n" data. Specifically, sparseness and
possible asymmetry of the significant coefficients are dealt with by developing a Gibbs sampling
algorithm to stochastically search through low-dimensional subspaces for significant variables. The
superior performance of the approach is demonstrated via simulation study. We also applied it to
real QTL mapping datasets.

Conclusion: The two-step procedure coupled with Bayesian classification offers flexibility in
modeling "large p small n" data, especially for the sparse and asymmetric parameter space. This
approach can be extended to other settings characterized by high dimension and low sample size.

Background
With the advent of high-throughput biotechnologies to
genotype dense molecular markers throughout the
genome, statistical methodologies are crucial in under-
standing the genetic architecture of complex traits, and in
locating genes underlying important traits. Since the pio-
neering statistical work by Lander and Botstein [1], much
effort has been devoted to improving the efficiency and
accuracy of QTL mapping. Traditional approaches to QTL
mapping test each of dense grid loci on chromosomes via
the likelihood ratios of linear regression models (see the
reviews by Doerge et al. [2] and Broman and Speed [3]),

and Wang et al. [4] also proposed a Bayesian shrinkage
estimation of QTL parameters allowing varying shrinkage
factors across different effects.

Epistases (that is, interactions between genes) are ubiqui-
tous in biological systems [5] and may even play a more
important role than additive effects, as have been shown
in human population [6,7] and other organisms [8-12].
However, even a moderate number of markers implies a
large number of pairwise combinations, thus creating sta-
tistical issues in QTL mapping. Due to the small sample
sizes and the lack of efficient statistical tools, the number
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of identified genes is limited although the existence of
epistasis has been recognized for nearly a hundred years
[13]. To detect epistatic effects, Kao and Zeng [14] pro-
posed modeling epistasis via orthogonal contrast scales
using Cockerham's model; Yi and Xu [15] developed a
Bayesian method to detect epistasis using reversible jump
Markov chain Monte Carlo (MCMC) algorithm; Yi et al.
[16-18] then proposed a Bayesian model selection
approach to detect genome-wide epistasis (with the soft-
ware described in [19]); Bogdan et al. [20] modified Baye-
sian information criterion (mBIC) to permit the
identification of additive effects as well as pairwise inter-
actions; and Cui and Wu [21] also proposed a statistical
framework to detect genetic interactions derived from dif-
ferent genomes in self-pollinated plants. Recently, Żak et
al. [22] developed a rank-based model selection and Shi
et al. [23] developed a LASSO-type penalized likelihood
method to locate interacting QTL while Bogdan et. al [24]
extended mBIC for strongly correlated markers and multi-
ple interval mapping.

Consider Yi as the trait value of strain i = 1, , n, and let

Xij be the genotypic value of marker j = 1, , pβ within the

i-th strain. Here we focus on the populations with binary
markers Xij (coded as -0.5 and 0.5), such as doubled-hap-

loid, backcross or recombinant inbred lines. With availa-
ble markers (either observed or imputed) densely located
on chromosomes, we assume the putative QTL co-trans-
mit with some of the markers. Let {X} denote the set
including all pairwise epistases of interest, and define Zij =

Xik Xil for the j-th candidate epistasis (k, l) ∈ {X}, j = 1,

, pγ. We investigate the additive effects of putative QTL

and the epistatic interactions between them through the
following multiple regression model,

where μ is the overall mean, βj is the additive effect of
marker j, γj represents the j-th epistatic effect, and εi is the
random error.

QTL mapping with this multiple regression model can be
viewed as a model selection procedure [3,25-27]. How-
ever, several characteristics of the data complicate the
application of classical statistical methodologies. First, a
large amount of missing molecular markers, due to failure
in genotyping or selective genotyping, is common in prac-
tice. When markers are sparse, the missing genotype infor-
mation between markers must be inferred. Second, the

molecular markers in the same linkage group may be
highly correlated. Third, the total number of molecular
markers and putative epistases, i.e., p = pβ + pγ, is usually
much larger than the sample size n. Because of these
issues, the efficiency and accuracy are usually compro-
mised for easy development of statistical approaches.
Characteristics of the "large p small n" data with missing
values require further attention via extensions of tradi-
tional model selection approaches. We extend the Baye-
sian classification approach in Zhang et al. [28] to map
QTL with epistases. Spike and slab priors have been used
by, for example, Mitchell and Beauchamp [29], George
and McCulloch [30], and Ishwaran and Rao [31] to
develop Bayesian variable selection approaches. The spike
and slab priors consist of two components, with one
modeling zero coefficients and the other modeling non-
zero ones.

Furthermore, the mixing weight plays a crucial role in con-
densing the searchable parameter space and enforcing a
stochastic search within low-dimensional spaces. When
only a limited number of covariates are being investi-
gated, a uniform distribution on [0, 1] or even a fixed
value (e.g., 0.5) is usually chosen for the mixing weight.
However, when n << p, it is unrealistic to expect half of the
variables to be selected because the final model may still
be unidentifiable. Instead, we expect that, for a successful
variable selection, the prior distributions of the mixing
weights depend on both n and p.

We investigate the predictability of a model developed for
a dataset of sample size n, and tackle the aforementioned
issues. We then construct a two-step Bayesian variable
selection approach for model (1) in the case that n << (pβ
+ pγ). In the first step, we employ a restrictive prior for each
of the coefficients in model (1) in order to enforce sto-
chastic filtering of the large number of candidate varia-
bles. This prior also allows flexibility for the possible
different numbers and/or scales of positive and negative
coefficients (see [32] for more details on its advantage
over symmetric priors). A Gibbs sampling algorithm is
developed to compute the posterior distributions and to
implement the stochastic search. Only a limited number
of variables are filtered to go through the second step,
which repeats the first step but with much fewer candidate
variables. The second step is necessary to model (1) when
n << (pβ + pγ), as the priors in the first step could poten-
tially be too restrictive. The performance of our approach
is evaluated via a simulation study and application to real
datasets.

Results and Discussion
Simulation

Simulation studies were performed to evaluate the per-
formance of our method in the case of p Ŭ n. We simu-
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lated 56 markers across 3 chromosomes, with each having
10, 20, and 26 markers, and being 56.7 cM, 133.5 cM and

171.6 cM long respectively. We specify  = 0.5415, and

the locations of 28 markers are chosen based on the Dro-
sophila data [28], which include 221 inbred introgression
lines between two closely related species. The other 28
markers are chosen such that the neighboring markers are
at least 5 cM away. Table 1 shows the detailed information
of the non-zero effects specified in the simulation, includ-
ing two additive effects and three epistatic effects. To
assess whether our method is able to identify different
types of epistatic effects, we include all three possible
interactions in the simulation: (1) neither of the two
markers has additive effects (that is, 2–133.8 and 3–56.7);
(2) one of them has additive effects (that is, 1–24.7 and
2–47.8); (3) both have additive effects (that is, 2–47.8
and 3–141.5). All epistatic effects were set at the same size
to avoid its effects on detectability. Due to the intensive
computation involved in Gibbs sampling, a total of 100
complete data sets were simulated. Each of the 100 data
sets was analyzed using two models, one model with both
additive and epistatic effects while the other with additive
effects only. When mapping QTL with epistases, we have

a total number of 1596 variables (56 additive-effect loci
and 1540 epistases) versus 221 observations in the model.

For the model without epistases, both markers can be
detected in most of the 100 simulated datasets even when
the false discovery rate (FDR) is controlled as low as 0 (via
setting the Bayes factor higher than 3.2), see Table 2.
When modeling the epistases, all (additive and interac-
tion) effects are still detected in more than 90% of the data
sets for all levels of Bayes factor (BF) though the FDRs are
higher. For those data sets with any effect not identified,
the immediate neighbors of the corresponding marker
locus are mostly detected instead. As expected, it is more
difficult to detect epistases than to detect additive effects.
The epistasis of markers both having additive effects is the
easiest to be detected among all epistases. The true param-
eter values are included in their 95% credible intervals
with the associated posterior probabilities being very
close to one (results not shown).

Application
We apply the developed method to the simulans backcross
II (BS2) data and the mauritiana backcross II (BM2) data
[33,34]. An F1 population was first produced by females
from an inbred line of D. simulans and males from an
inbred line of D. mauritiana. Then the F1 females were
backcrossed to the parental line of D. simulans, which was
fixed for different alleles at 45 marker loci, to produce a
simulans backcross (BS) population. A mauritiana back-
cross (BM) population was also produced by backcrossing
the F1 females to the other parental line. Based on the two
different times of crossing, a total of four data sets were
obtained, namely, BS1 (n = 186), BS2 (n = 288), BM1 (n
= 192), and BM2 (n = 299). The phenotypic value of an
individual is a morphometric descriptor of the posterior
lobe, obtained by averaging both sides of the first princi-
pal component (PC1) of the Fourier coefficients of the

s e
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Table 2: Simulation results on the basis of model (1).

Model Marker(s) Mean SE BF ≥ 1 BF ≥ 3.2 BF ≥ 10 BF ≥ 100

Without Epistases 2–47.8 0.7453 0.1340 94 (5) 93 (5) 92 (5) 90 (3)
3–141.5 1.1222 0.231 100 (0) 100 (0) 100 (0) 100 (0)

FDR (additive) -- -- 0.0067 0 0 0

With Epistases 2–47.8 0.7610 0.1439 94 (6) 93 (6) 93 (6) 93 (6)
3–141.5 1.1316 0.1402 100 (0) 100 (0) 100 (0) 100 (0)

(1–24.7, 2–47.8) 1.5607 0.3921 92 (6) 91 (7) 91 (7) 90 (7)
(2–47.8, 3–141.5) 1.5558 0.3054 97 (3) 96 (4) 96 (4) 96 (4)
(2–133.8, 3–56.7) -1.6204 0.3875 92 (8) 92 (8) 92 (8) 90 (10)

FDR (additive) -- -- 0.0408 0.0333 0.0133 0.0067
FDR (epistatic) -- -- 0.4872 0.3251 0.2283 0.1122

Out of 100 simulated data sets, the total numbers of data sets that correctly identify the true additive and interaction effects (in the brackets, their 
neighboring ones when the true ones are missed) are counted respectively when thresholding the Bayes factor (BF) at different levels. Also listed 
are the mean and standard error (SE) of the estimated effect sizes.

Table 1: Design of the simulation studies.

Type of effect Marker(s) Effect size Heritability

Additive effect 2–47.8 0.8 0.0989
3–141.5 1.2 0.2225

Interaction effect (1–24.7, 2–47.8) 1.7321 0.1159
(2–47.8, 3–141.5) 1.7321 0.1159
(2–133.8, 3–56.7) -1.7321 0.1159

Each marker is referred by its chromosome index and its location on 
the chromosome.
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posterior lobe. The genotypes of males were determined at
each marker locus, and genetic map positions were esti-
mated from gametes produced by the F1 females in this
study. Further information about the data is referred to
Liu et al. [33] and Zeng et al. [34].

Employing multiple interval mapping (MIM) [25,35] to
the BS2 data, Zeng et al. [34] detected a total of 16 addi-
tive effects and no epistatic effect. Pooling all four data
sets, Zeng et al. [34] detected three extra additive effects
and six epistatic effects. These epistatic effects appeared to
be relatively unimportant for PC1 in the interspecific
backcross populations, which carried an observation diffi-
cult to interpret biologically. Of the 19 additive effects, 18
additive effect estimates have the same sign [34]. Zeng et
al. [34] explained this interesting phenomena as an unu-
sually strong directional selection, although Tanksley [36]
suggested that transgressive segregation usually followed a
mixture of plus and minus alleles in each species as dem-
onstrated by most previous analyses of quantitative traits.

We focused our analysis on the BS2 and BM2 data with
the standardized phenotypic values. Of the 19 putative
QTL reported by Zeng et al. [34], only nine are at least 1

cM away from the 45 marker loci. Therefore, we analyzed
both datasets with these 54 additive effects (nine putative
QTL and 45 markers) and all possible pairwise interac-
tions (that is, 1431 putative epistases). When controlling
BF ≥ 1, the analysis of the BS2 data reported a total of 25
additive effects (see Table 3), including all nine putative
QTL, but no epistatic effect. The analysis of the BM2 data
instead reported a total of 20 additive effects (see Table 4),
including three of the nine putative QTL, and 18 epistatic
effects (see Table 5). On the basis of the simulation study,
we may expect less than 0.67% FDR for those 17 and 16
additive effects reported with BF ≥ 100 in analyzing the
BS2 and BM2 data respectively. Similarly, three epistatic
effects reported in analyzing the BM2 data have BF ≥ 100,
less than 12% of which may be false discoveries.

Interestingly, the 25 additive effects detected from the BS2
data include all those detected by Zeng et al. [34] except
the 2–135, 3–5 and 3–83 (we consider the markers within
1 cM to be same), but the 20 additive effects detected from
the BM2 data only include nine of those detected by Zeng
et al. [34]. On the other hand, nine additive effects (i.e.,
2–28.53, 2–145.85, 3-0, 3–43.2, 3–49.99, 3–101.29, 3–
126.62, 3–134.6, 3–147.69) from the BS2 data are not
reported by Zeng et al. [34], and eleven additive effects
from the BM2 data (i.e., 1-0, 2–6.98, 2–67.96, 2–145.85,
3–14.33, 3–28.74, 3–43.2, 3–49.99, 3–126.62, 3–147.69,
3–161.43) are not reported by Zeng et al. [34]. Note that

Table 3: Additive effects with BF ≥ 1 in analyzing the BS2 data.

Marker Coefficient S.D. BF

1–3.6 -0.3797 0.0707 > 1000
1–23.4 -0.3462 0.0426 > 1000

2-0 -0.2284 0.0493 > 1000
2–17.08 -0.1906 0.1055 > 1000

2–27 -0.1262 0.1491 > 1000
2–28.53 -0.1618 0.1387 > 1000

2–69 -0.2969 0.1382 > 1000
2–113.92 -0.0682 0.0487 4.38

2–143 -0.0454 0.0592 1.72
2–145.85 -0.0322 0.0648 1.29

3-0 -0.1726 0.0880 > 1000
3–21.3 -0.3100 0.0569 > 1000
3–43.2 -0.1482 0.1052 > 1000
3–47 -0.1261 0.1571 > 1000

3–49.99 -0.2164 0.0992 > 1000
3–75 -0.4018 0.1072 > 1000
3–94 -0.2147 0.1360 > 1000

3–101.29 -0.0520 0.0904 2.03
3–117 -0.0941 0.0960 29.55

3–126.62 -0.0378 0.0780 1.20
3–134.6 -0.0724 0.1255 4.21
3–139 -0.2624 0.1604 > 1000

3–147.69 -0.0420 0.0833 1.29
3–160 -0.1847 0.1154 > 1000

3–171.22 -0.3295 0.0567 > 1000

The position of each significant additive effect is specified by an index 
of the corresponding chromosome and its location on this 
chromosome (cM). The estimated sizes of additive effects and the 
standard deviations of the Markov chains are also shown in the 
columns of coefficient and S.D., respectively.

Table 4: Additive effects with BF ≥ 1 in analyzing the BM2 data.

Marker Coefficient S.D. BF

1-0 -0.2181 0.1426 > 1000
1–3.6 -0.1438 0.1506 920.66
1–23.4 -0.1909 0.0654 > 1000
2–6.98 -0.2393 0.0809 > 1000
2–27 -0.3361 0.0855 > 1000

2–67.96 -0.0561 0.1093 1.29
2–69 -0.1473 0.1146 > 1000

2–113.92 -0.2496 0.0509 > 1000
2–145.85 -0.1145 0.0856 79.06
3–4.99 -0.1973 0.0954 > 1000
3–14.33 -0.2855 0.0928 > 1000
3–28.74 -0.1754 0.0934 > 1000
3–43.2 -0.0586 0.1077 1.80
3–47 -0.2213 0.1648 > 1000

3–49.99 -0.1749 0.1355 > 1000
3–83.15 -0.5978 0.0781 > 1000
3–126.62 -0.1970 0.1066 > 1000
3–147.69 -0.0698 0.0826 3.05
3–161.43 -0.1982 0.0950 > 1000
3–171.22 -0.2385 0.1028 > 1000

The position of each significant additive effect is specified by an index 
of the corresponding chromosome and its location on this 
chromosome (cM). The estimated sizes of additive effects and the 
standard deviations of the Markov chains are also shown in the 
columns of coefficient and S.D., respectively.
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almost each additive effect uniquely detected by Zeng et
al. [34] has a neighboring one (within 10 cM) in our lists
except 2–135 and 3–94 for the BM2 dataset, and almost
each additive effect unique in our lists has a neighboring
one (within 10 cM) detected by Zeng et al. [34]. Per the
discussion on the precision of QTL location by Bogdan
and Doerge [37] and Bogdan et al. [24], these effects of
close neighbors may be due to identical QTL. Our analysis
reported R2 = 0.934 and R2 = 0.902 for the BS2 and BM2
data respectively.

Conclusion
This article extends the Bayesian framework in Zhang et al.
[28] to identify both additive and epistatic effects of QTL
based on model (1). The advantage of this approach
mainly lies in the flexible priors for the regression coeffi-
cients by accounting for some characteristics of "large p
small n" data, the predictability of a model constructed
with size n data, and the two step strategy for dimension
reduction. A Gibbs sampler is developed to draw Markov
chain samples from the posterior distributions, which can
be considered as a stochastic search for an optimal model.
Unlike information criteria based model selections which
require calculation of the effective sample size for incom-
plete data, missing values can be naturally imputed within
the Gibbs sampling scheme. The corresponding algorithm
has been implemented in Matlab and is available as QTL-
Bayes http://www.stat.purdue.edu/~zhangdb/QTLBayes/.

Bayesian variable selections can be viewed as penalized
likelihood approaches, which have been studied recently
[38,39]. With "large p small n" data, it is not clear how to
set up the penalty properly such that it will neither over-
penalize nor underpenalize the likelihood. An overpenal-
ized likelihood will lose some significant variables of
particular interest, while an underpenalized likelihood
will introduce false positives. The predictability of size n
data sheds light on the choice of this penalty. Since a size
n data set will allow us to understand the variation of the

trait explained by only pn = O( ) QTL with accuracy

O(n-1/2), selecting too many variables into the model will
ruin this practice of QTL mapping. As shown by Bogdan
and Doerge [37], severely biased estimates can be resulted
from large genome and/or marker number in QTL map-
ping. We propose a Bayesian framework to resolve the
bias problem. We have illustrated our approach by appli-
cation to the BS2 and BM2 data [33,34], both of which
have 45 markers observed across three chromosomes. The
disadvantage of this approach is the heavy computation
involved as the computation-intensive Markov chain
Monte Carlo algorithm is utilized. For example, the anal-
ysis of a dataset with more than 200 markers from 1,000
subjects take almost 24 hours using one Intel® Xeon™ CPU
at 2.80 GHz.

Coding binary markers with -0.5 and 0.5 has been com-
monly utilized in QTL mapping as it does not introduce
correlation between additive effects and interactive effects,
and such uncorrelation benefits the identification of addi-
tive effects. On the other hand, coding binary markers
with 0 and 1 introduces correlation and thus is not pre-
ferred for QTL mapping with epistases [40,41]. Although
developed for QTL mapping, this approach is completely
general and can be applied to other settings with "large p
small n" data, such as associating genomic features to clin-
ical outcomes or phenotypes of biological interest. Unlike
QTL mapping data with known missing structure from the
linkage information, genomic data with imaging and
microarray may require more information to impute
missing values because of the unknown missing mecha-
nism. Even though the missing values are usually imputed
with a nearest-neighbor approach [42], Gibbs samplers
allow natural multiple imputation under the assumption
of missing at random (MAR, see Little and Rubin, [43]).

Methods
Predictability and Sample Size
Suppose, for a sample of size n, we select up to pn (assum-
ing pn <n) significant variables into the following regres-
sion model,

n

Table 5: Epistatic effects with BF ≥ 1 in analyzing the BM2 data.

Markers Coefficient S.D. BF

(1–3.6, 3–14.34) 0.0601 0.1077 1.36
(1–3.6, 3–101.29) 0.0383 0.0994 1.05
(1–14.2, 2–28.53) 0.0156 0.0792 1.07
(1–14.2, 3–134.6) 0.2231 0.1552 116.30
(1–14.2, 3–139) 0.1689 0.1453 13.40

(2–17.08, 3–157.73) 0.3304 0.0806 > 1000
(2–28.53, 3–101.29) 0.2688 0.1063 > 1000
(2–34.72, 3–76.3) 0.1307 0.0960 5.34

(2–113.92, 3–83.15) 0.0779 0.0911 1.89
(2–138.82, 3–147.69) 0.1678 0.0943 12.23

(2–143, 3–101.29) 0.0463 0.0972 1.25
(2–145.85, 3–28.74) 0.0896 0.0909 2.61
(2–145.85, 3–43.2) 0.0330 0.0980 1.07

(2–145.85, 3–101.29) 0.0419 0.0921 1.29
(3–21.3, 3–76.3) 0.0797 0.0856 1.97

(3–28.74, 3–53.54) 0.0487 0.0999 1.19
(3–43.2, 3–123.32) 0.0400 0.1014 1.04
(3–53.54, 3–123.33) 0.1925 0.1226 43.36

The QTL positions of each significant epistatic effect are specified by 
the indices of the corresponding chromosomes and the locations on 
the chromosomes (cM). The estimated sizes of the epistatic effects 
and the standard deviations of the Markov chains are also shown in 
the columns of coefficient and S.D., respectively.
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where Yn is an n-dimensional column vector; Xn is an n ×

pn design matrix such that . The best linear

unbiased estimator (BLUE) of β is

Let  include pn predictors for  such

that . Since

trace  can be consistently estimated

by . When using  to predict , the mean squared

prediction error is

If pn = o(n), the mean squared prediction error asymptoti-
cally achieves the minimum variance, and thus the predic-
tion is asymptotically efficient.

This illustration implies that, with a sample of size n and

pn = O( ) predictors, the mean squared prediction error

can reach the minimum prediction error at rate O(n-1/2).
Suppose that all pn significant variables could be perfectly

selected out of p candidates, we still need pn = o(n) in order

to have a chance to correctly understand the variation of
the dependent variable explained by the selected predic-
tors. Therefore, we always assume that there are at most pn

= O( ) significant variables among a total of p candi-

dates in the case of p Ŭ n. Indeed, the study of consistency
in a triangular array setting for regression problems was
conducted by Huber [44-46]. In examining the underlying
theory of 'model-selection' and 'variable-selection' proce-
dures that choose pn explanatory variables from an initial

set of variables, Greenshtein and Ritov [46] proved that
one may expect consistency for the choice of pn with an

order between o( ) and o(n/log(n)). Our choice

of pn = O( ) satisfies the Greenshtein and Ritov [46]

conditions for consistency.

Bayesian Variable Selection

Here we propose a two-step Bayesian variable selection
approach to map QTL with epistases through model (1).

With the following Bayesian framework, we first select

c  out of pβ additive effects and c  out of pγ epistatic

effects (e.g., we use c = 2), respectively, using a restrictive
prior for each coefficient. We then apply the same Baye-
sian framework to stochastically select the filtered varia-
bles, using a non-restrictive prior for each coefficient.
Gibbs sampling algorithms are developed to stochasti-
cally search low-dimensional subspaces, as implied by the
predictability of a size n data set.

Prior Specification
For a two-state marker system, both additive effects βj, j =
1, , pβ, and epistatic effects γj, j = 1, , pγ, are the primary
focus of QTL mapping. As is often the case p = (pβ +pγ) Ŭ
n, many of these coefficients are zero, either because the
variation of the trait can be explained by only a few QTL
or because the limited sample size precludes selecting too
many variables (otherwise the constructed model is not
reliable as shown in the previous section). It is also possi-
ble that the number and/or scale of the positive coeffi-
cients may be different from those of the negative ones. To
account for these properties, a three-component mixture
prior is specified for each coefficient βj or γj. More specifi-
cally,

where δ (·) is a Dirac function with mass one at zero;

N+(μ, σ2) and N-(μ, σ2) positively and negatively truncate

the normal distribution, i.e., N(μ, σ2), respectively. There-
fore, wβ+ (or wβ-) is the probability for any single marker,

and wγ+ (or wγ-) is the probability for any pair of markers

in {X}, to have positive (or negative) interactive effect
on the trait.

The hyperparameters,  and , are

assumed to have priors as inverse gamma distributions,

that is, IG(θβ+, φβ+), IG(θβ-, φβ-), IG(θγ+, φγ+), and IG(θγ-, φγ-
), respectively (e.g., setting θβ+ = θβ- = θγ+ = θγ- = 0.1 and φβ+

= φβ- = φγ+ = φγ- = 10). As a result, the prior on β (and γ) is

essentially a mixture of a point mass at zero and some
truncated t-distributions, which shrinks the smaller effects
towards zero and allows sufficient flexibility for non-zero
effects. Furthermore, t-type prior distributions yield Bayes
rules with desirable decision-theoretic frequentist proper-

ties [47]. The hyperparameters, μβ+, μγ+, μβ- and μγ-, are
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assumed to have diffuse priors, and the prior distribution

for  is proportional to 1/ .

As suggested by the predictability of a size n data set, we

expect to select at most pn = O( ) out of the p variables

for the final model. Therefore, we specify the priors for
(wβ+, wβ-) and (wγ+,wγ-) as

that is, expecting at most c  significant additive effects

and epistatic effects, respectively. Gaffney [48] and Yi et al.
[17], among others, employed similar ideas to rescale the
priors based on the number of possible effects. Appar-

ently, when n << (pβ + pγ), either c /pβ or c /pγ is very

small, which implies a restrictive prior on each corre-

sponding coefficient. Therefore, we usually select c

additive effects and c  epistatic effects during the first

run of Bayesian analysis. We then apply the same Bayesian
analysis to these pre-selected variables. The second run of
Bayesian analysis has both wβ+ + wβ- and wγ+ + wγ-, a priori,

uniformly distributed on [0, 1].

Likelihood

Let Yn be the column vector including the trait values of all

strains under investigation, let Xi be the vector of all

marker values of the i-th strain and ,

and let Zi be the vector of all epistatic candidate values of

the i-th strain. Denote the marginal distribution of A as
[A], and the conditional distribution of A given B as [A|B].
With data (Yn, Xn) and the prior specification in Section

3.1, we have the likelihood function, that is, the joint dis-

tribution function of the data (Yn, Xn), the parameters (μ,

β, γ), , and all hyperparameters

The distribution of Xn can be specified based on the avail-

able linkage map information [2]. The conditional distri-

bution of  is a product

of the prior distribution for each βj. Similarly, the condi-

tional distribution of  is

a product of the prior distribution for each γj. The priors

of the hyperparameters, θβ+, θγ+, φβ+, φγ+, θβ-, θγ-, φβ- and φγ-
, are specified to be as noninformative as possible.

Gibbs Sampling

Since the specified priors are conditionally conjugate,
Bayesian variable selection can be implemented with a
Gibbs sampling algorithm. We initialize the algorithm by
imputing missing genotypic values based on the observed

genotypes and linkage information. The initial value of μ
is set as the mean of the observed trait values. Then, with
individuals having fully observed trait values, each com-

ponent of β and γ is initially estimated using recursive uni-
variate regression. Other parameters,

 and , are simply initialized

based on the initial value of β, and similarly, the initial

values for , and  can be speci-

fied using the information from γ. For example, we can

initialize  with an estimate from the initial

value β, and then use max{#{j : βj > 2σβ+}, 1}/pβ to initial-

ize wβ+.
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Let Xi,-j be Xi excluding the j-th component, and define β-j
and γ-j similarly. Based on the likelihood function in (4),
the Gibbs sampler can be developed by recursively draw-
ing the missing genotypic values, the missing trait values,
and the model parameters from their full conditional pos-
terior distributions as follows.

Sample missing values: Sample each missing genotypic
value Xij from its full conditional posterior distribution,

and then sample each missing trait value Yi from its full

conditional posterior distribution [Yi|Xi, μ, β, γ, ].

Sample μ: Sample μ from its full conditional posterior
distribution,

Sample β and γ: Sample each βj and γj from their full con-
ditional posterior distributions,

where , and  are speci-

fied in the APPENDIX. In addition,

, and  can be obtained

similarly.

Sample wβ+, wγ+, wβ-, and wγ-: These parameters can be
sampled from the conditional posterior distributions,

where  = #{βj > 0 : 1 ≤ j ≤ pβ} and  = #{βj < 0 : 1 ≤

j ≤ pβ};  = #{γj > 0 : 1 ≤ j ≤ pγ} and  = #{γj < 0 : 1 ≤

j ≤ pγ}.

Sample , and : With conditionally

conjugate priors, the posterior for all variance parameters
are still inverse gamma distributions. Specifically,

Bayesian Inference
For each variable in model (1), one pair of parameters is
used to select the corresponding variable. They are, for the
j-th additive effect, the posterior probabilities wβ j+ = P (βj
> 0|Yn, Xn) and wβ j- = P (βj < 0|Yn, Xn). With the full con-
ditional posterior distribution of βj and all the notations
in the APPENDIX, we have

Therefore, the two parameters wβ j+ and wβ j- can be esti-

mated with the Markov chains of  and  drawn

from the above Gibbs sampler. If and only if both wβ j+

and wβ j- are less than 0.5, the median of the posterior dis-

tribution of βj is zero. Similarly, the posterior probabilities

wγ j+ = P (γj > 0|Yn, Xn) and wγ j- = P (γj < 0|Yn, Xn) can be esti-

mated with the Markov chains of  and  drawn

from the above Gibbs sampler.

We propose to select variables twice under the above
Bayesian framework for model (1). At the first step, we use
a restrictive prior for each coefficient to ensure an identifi-
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able Bayesian model and enforce to stochastically search
for an optimal low-dimensional parameter subspace. We
then rank the j-th additive effect based on max{wβ j+, wβ j-

}, and rank the j-th epistatic effect based on max{wγ j+, wγ

j-}. The top c  out of pβ additive effects, and the top

c  out of pγ epistatic effects are selected, respectively. At

the second step, we select variables out of those selected

c  additive effects and c  epistatic effects, under the

above Bayesian framework for model (1). Obviously, we
have a non-restrictive prior for each coefficient at the sec-
ond step, and therefore avoid possible over-penalization
due to restrictive priors.

Following Jeffreys [49,50], we test the hypothesis H0 : βj =
0 vs. H1: βj ≠ 0 on the basis of the Bayes factor, which was
defined as

where π (βj = 0) and π (βj ≠ 0) are the a priori probabilities,

and the last equality follows the fact that π (βj = 0) = π (βj

≠ 0) at the second step of our Bayesian Classification. As

suggested by Jeffreys [50], a B10 (βj) with value between 1

and  ≈ 3.2 provides "not worth more than a bare

mention" evidence against H0; a B10 (βj) with value from

 to 10 provides "substantial" evidence against H0; a

B10 (βj) with value from 10 to 100 provides "strong" evi-

dence against H0; and a B10 (βj) with value larger than 100

provides "decisive" evidence against H0. Similarly, we can

test the hypothesis H0: γj = 0 vs. H1: j ≠ 0 using the follow-

ing Bayes factor
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Appendix
Fully Conditional Posterior Distribution of βj

For each j = 1, , pβ, the fully conditional posterior distri-
bution of βj is

where the updated parameter values are
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