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Abstract

Background: Genes interact with each other as basic building blocks of life, forming a complicated
network. The relationship between groups of genes with different functions can be represented as
gene networks. With the deposition of huge microarray data sets in public domains, study on gene
networking is now possible. In recent years, there has been an increasing interest in the
reconstruction of gene networks from gene expression data. Recent work includes linear models,
Boolean network models, and Bayesian networks. Among them, Bayesian networks seem to be the
most effective in constructing gene networks. A major problem with the Bayesian network
approach is the excessive computational time. This problem is due to the interactive feature of the
method that requires large search space. Since fitting a model by using the copulas does not require
iterations, elicitation of the priors, and complicated calculations of posterior distributions, the need
for reference to extensive search spaces can be eliminated leading to manageable computational
affords. Bayesian network approach produces a discretely expression of conditional probabilities.
Discreteness of the characteristics is not required in the copula approach which involves use of
uniform representation of the continuous random variables. Our method is able to overcome the
limitation of Bayesian network method for gene-gene interaction, i.e. information loss due to binary
transformation.

Results: We analyzed the gene interactions for two gene data sets (one group is eight histone
genes and the other group is |9 genes which include DNA polymerases, DNA helicase, type B
cyclin genes, DNA primases, radiation sensitive genes, repaire related genes, replication protein A
encoding gene, DNA replication initiation factor, securin gene, nucleosome assembly factor, and a
subunit of the cohesin complex) by adopting a measure of directional dependence based on a
copula function. We have compared our results with those from other methods in the literature.
Although microarray results show a transcriptional co-regulation pattern and do not imply that the
gene products are physically interactive, this tight genetic connection may suggest that each gene
product has either direct or indirect connections between the other gene products. Indeed, recent
comprehensive analysis of a protein interaction map revealed that those histone genes are
physically connected with each other, supporting the results obtained by our method.
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Conclusion: The results illustrate that our method can be an alternative to Bayesian networks in
modeling gene interactions. One advantage of our approach is that dependence between genes is
not assumed to be linear. Another advantage is that our approach can detect directional
dependence. We expect that our study may help to design artificial drug candidates, which can
block or activate biologically meaningful pathways. Moreover, our copula approach can be
extended to investigate the effects of local environments on protein-protein interactions. The
copula mutual information approach will help to propose the new variant of ARACNE (Algorithm
for the Reconstruction of Accurate Cellular Networks): an algorithm for the reconstruction of

gene regulatory networks.

Background

Genes interact with each other as basic building blocks of
life, forming a complicated network. The relationship
between groups of genes with different functions can be
represented as gene networks. Recent developments in
microarray technology revolutionized research in the life
sciences, allowing researchers to measure tens of thou-
sands of genes simultaneously [1,2]. With the deposition
of huge microarray data sets in public domains, study on
gene networking is now possible. Reconstructing gene
networks from the microarray data will facilitate cellular
function dissection at the molecular level. Hence the
study will have a profound impact on biomedical
research, ranging from cancer research to disease preven-
tion [3].

There has been an increasing interest in the reconstruction
of gene networks from gene expression data. Recent works
include linear models [4,5], Boolean network models [6],
and Bayesian networks [3,7-10]. Bayesian networks seem
to be very effective in the construction of gene networks.
They can incorporate prior knowledge from biology into
their models and handle missing data effectively. In par-
ticular, dynamic Bayesian networks can learn a gene net-
work from time-course gene expressions. As noted in [9],
a major problem with Bayesian networks is the computa-
tion problem. Our motivation is to overcome this limita-
tion of Bayesian networks in gene interactions. For this
purpose, we introduce a simple method for constructing
gene networks based on copulas. Note that copulas can
model a variety of interactions.

In statistical literature, the general way to describe
dependence between correlated random variables is to use
copulas [11]. Copulas are multivariate distribution func-
tions whose one-dimensional margins are uniform on the
[0, 1] interval [12]. Copulas are useful for constructing
joint distributions, especially with nonnormal random
variables. The design, features, and some implementation
details of the R package copula can be easily extended in
multivariate modeling in many fields [13]. In finance,
copula functions are adopted to handle the interaction
between the markets and risk factors in a flexible way [14].

In biology, a gaussian copula has been applied in quanti-
tative trait linkage. Copulas play an important role in
developing a unified likelihood framework to analyze dis-
crete, continuous, and censored traits [15]. In principle,
copulas can be used to model the joint distributions of
any discrete or continuous gene and even mixed continu-
ous and discrete genes. In [16], several measures of direc-
tional dependence in regression based on copula
functions were proposed. Recently, a sieve maximum like-
lihood estimation procedure for semiparametric multivar-
iate copula models has been proposed in [17]. The
proposed estimation achieved efficiency gains in finite
samples, especially when prior information of the mar-
ginal distribution is incorporated. In this paper, we adopt
a measure of directional dependence to investigate the
gene interactions for yeast cell cycle data. One advantage
of our approach is that dependence between genes is not
assumed to be linear. Moreover, our approach can detect
directional dependence. Hence our approach can provide
valuable biological information on the presence of direc-
tional dependence between genes.

Results and Discussion

In this section, we analyze yeast cell cycle regulation [18].
The data set is composed of measurements on 6221 genes
observed at 80 time points. 800 genes regulated by cell
cycle were identified. To compare our results with other
results in the literature, we selected two groups of genes
with known interaction patterns. Note that known inter-
actions are still incomplete at present. The first group
includes eight histone genes-HHT1, HHT2, HHF1, HHF2,
HTA1, HTA2, HTB1 and HTB2. These eight genes encode
for the four histones (H2A, H2B, H3 and H4). The his-
tones are used to form the fundamental packaging unit of
chromatin, called the code of nucleosome. Chromo-
somes, consisting of DNA and histones, need to be repli-
cated before cell division. Expression of the histone genes
should be regulated tightly for the proper functioning of
the replication process. Figure 1 shows the time-series plot
of genes in the histone group. It can be easily seen that the
eight genes in the histone group are highly correlated with
each other. Looking at Table 1 and Figure 2 for Group I
dataset, we can find that those AIC values have pretty low
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Table I: Estimates of ¢, £, 6 and proportions of variation for the directional dependence at Group |

FGM type Normal Type
~ . 2 ~ 2
Interacting genes AIC a B 0 pé p{ﬂv P\(/LU 0. Prorm
HHTI vs HHT2 -33.5084 1.0152 1.0199 1.0772 0.1048 0.1048 0.1048 0.832 0.67143
HHTI vs HHFI -329113 1.0152 1.0222 1.0772 0.1044 0.1044 0.1044 0.062 0.00350
HHTI vs HHF2 -34.7051 1.0152 1.0229 1.0772 0.1042 0.1043 0.1043 0.163 0.02428
HHTI vs HTAI -34.7998 1.0152 1.0162 1.0772 0.1054 0.1054 0.1054 0.243 0.05411
HHTI vs HTA2 -34.0483 1.0152 1.0218 1.0772 0.1044 0.1045 0.1045 0.135 0.01664
HHTI vs HTBI -34.0410 1.0152 1.0105 1.0567 0.1064 0.1064 0.1064 0.387 0.13831
HHTI vs HTB2 -31.1447 1.0152 1.0234 1.0772 0.1042 0.1042 0.1042 0.217 0.04310
HHT2 vs HHFI -29.5856 1.0199 1.0199 1.0964 0.1039 0.1040 0.1040 0.389 0.13976
HHT2 vs HHF2 -34.4365 1.0199 1.0229 1.0966 0.1034 0.1035 0.1035 0.752 0.54199
HHT2 vs HTAI -32.8950 1.0199 1.0162 1.0814 0.1046 0.1046 0.1046 0.745 0.53143
HHT2 vs HTA2 -32.3277 1.0199 1.0218 1.0966 0.1036 0.1037 0.1037 0.968 0.93103
HHT2 vs HTBI -32.6642 1.0199 1.0105 1.0567 0.1056 0.1056 0.1056 0.037 0.00124
HHT2 vs HTB2 -27.7089 1.0199 1.0234 1.0966 0.1033 0.1034 0.1034 0.935 0.86317
HHFI vs HHF2 -34.9456 1.0222 1.0229 1.1055 0.1030 0.1031 0.1031 0.054 0.00265
HHFI vs HTAI -32.8945 1.0222 1.0162 1.0814 0.1042 0.1043 0.1042 0.721 0.49612
HHFI vs HTA2 -32.4444 1.0222 1.0218 1.1041 0.1032 0.1033 0.1033 0.839 0.68354
HHFI vs HTBI -32.2815 1.0222 1.0105 1.0567 0.1052 0.1052 0.1052 0.178 0.02896
HHF1 vs HTB2 -31.6114 1.0222 1.0234 1.1055 0.1030 0.1030 0.1030 0.134 0.01639
HHF2 vs HTAI -34.6262 1.0229 1.0162 1.0814 0.1041 0.1041 0.1041 0.508 0.24056
HHF2 vs HTA2 -33.2097 1.0229 1.0218 1.1041 0.1031 0.1032 0.1032 0.707 0.47617
HHF2 vs HTBI -34.9285 1.0229 1.0105 1.0567 0.1051 0.1051 0.1051 0.203 0.03770
HHF2 vs HTB2 -31.5427 1.0229 1.0234 1.1083 0.1028 0.1029 0.1029 0.897 0.78898
HTAI vs HTA2 -34.1910 1.0162 1.0218 1.0814 0.1042 0.1043 0.1043 0.847 0.69754
HTAI vs HTBI -34.5808 1.0162 1.0105 1.0567 0.1062 0.1063 0.1062 0.247 0.05591
HTAI vs HTB2 -30.5148 1.0162 1.0234 1.0814 0.1040 0.1040 0.1041 0.389 0.13976
HTA2 vs HTBI -32.2491 1.0218 1.0105 1.0567 0.1052 0.1053 0.1053 0.370 0.12628
HTA2 vs HTB2 -31.1265 1.0218 1.0234 1.1041 0.1030 0.1031 0.1031 0.256 0.06009
HTBI vs HTB2 -30.8025 1.0218 1.0234 1.1004 0.1032 0.1032 0.1033 0.729 0.50774

values. It means that our copula method for group I data-
set is appropriate. ;From Figure 3 and [see Additional file
1] for Group II dataset, we also find that those AIC values
have relatively inconsistent low values compared to
Group I dataset. It still means that our copula method for
group II dataset is also appropriate.

Because of the small number of gene data sets, the esti-
mates of FGM parameters and proportions for directional
dependence in Table 1 do not strongly support our claim
that each pair of these 8 histone genes are dependent on
each other in both directions. Figure 4 shows 3-dimen-
sional and contour plots for HTA1 vs HTB2, HTA2 vs
HTB1, HTA2 vs HTB2, and HTB1 vs HTB2. Irregularly
shaped contours indicate the existence of directional

dependence, i.e., the asymmetry of dependence. From the
plots, we see that the asymmetry of dependence is not
clear for each pair of genes. Contour plots for other pairs
of histone genes show similar patterns. Figure 4 together
with Table 1 tells us that the 3D and contour plots are rel-
atively symmetric which means a weak directional
dependence in this gene data set.

To further evaluate the performance of the FGM copula
model, we selected another group (Group II) which is
comparatively larger than the first group. This group con-
sisted of 19 genes which include DNA polymerases
(POL1, POL2, POL12, and POL30), DNA helicase
(HPR5), type B cyclin genes (CLB5 and CLB6), DNA pri-
mases (PRI1 and PRI2), radiation sensitive genes (RAD53
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and RAD54), repaire related genes (MSH2, MSH6, and
PMS1), replication protein A encoding gene (RFA3), DNA
replication initiation factor (CDC45), securin gene
(PDS1), nucleosome assembly factor (ASF1), and a subu-
nit of the cohesin complex (MCD1). These genes play
important role in the process of cell cycle which conducts
DNA replication initiation, DNA damage-induced check-
point arrest, DNA damage repair, formation of mitotic
spindle, and so on. However, similar to the histone genes,
their expression is also strictly regulated for the normal
cellular process [19]. The estimates of FGM parameters
and proportions for directional dependence [see Addi-
tional file 1] clearly support our claim that each pair of 19
genes are dependent on each other in both directions,

which is consistent with the observation from Figure 5
and Figure 6.

Note that the measures of dependence p¢, p&zl)v, and

p{P.,, have different scales from usual correlation coeffi-

cient. Since Pearson's correlation coefficient is based on
the assumption of normality and linearity of random var-
iables X and Y, the range of Pearson's correlation is usually
wider than that of our measures of directional depend-
ence. Furthermore, Pearson's correlation coefficient
depends on random variables X and Y, while the measures
of directional dependence depend on the joint function of
their Therefore,

cumulative distribution functions.
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Figure 2
AIC plots for Table I.

depending on the copula function adopted, the scales of
the measures can be different. Also, when we use the uni-
form distribution or exponential distribution for the
transformation of the marginal cumulative distribution
functions of X and Y, the measure of dependence can be
smaller than Pearson's Correlation coefficient. For a com-
parison of the measure of dependence of our FGM copula
model, we used the normal copula model which is one of
the representative copula models. If we look at the FGM
type and Normal type in Table 1 and [see Additional file
1], we find that depending on the gene data pair, the
measures of dependence using the normal copula has
more variation then the measures of dependence using
our proposed FGM copula. In light of these facts, our
results are valid and consistent. To support our results, we
also provided the matematical derivations of our pro-
posed FGM copula model in the method section.

The results from our method have been compared with
those from other methods such as PathwayAssist and
Chen's method [3]. PathwayAssist (version 3.0) is based
on a comprehensive gene (or protein) interaction data-
base compiled by a text mining tool from the entire
PubMed [20]. Our method found 28 edges among these 8
genes. From Table 2, we find that a PathwayAssist search
identified 13 edges and Chen's method identified 12
edges. However, because two copies of each core histone
i.e, H2A, H2B, H3 and H4, are assembled into an
octamer, all 8 core histones can interact with each other.
The 28 edges we found indicate that each histone gene is
connected with the remaining 7 histone genes. All possi-
ble pairs of interaction genes from the group II [see Addi-
tional file 2]. The reason is that by using the FGM copula

http://www.biomedcentral.com/1471-2105/9/225

model, we are better able to investigate the better direc-
tional interaction dependence compared to PathwayAssist
and Chen's method [3].

Although microarray results show a transcriptional co-reg-
ulation pattern and do not imply that the gene products
are physically interactive, this tight genetic connection
may suggest that each gene product has either direct or
indirect connections between the other gene products.
Indeed, recent comprehensive analysis of a protein inter-
action map revealed that those histone genes are physi-
cally connected with each other [19], supporting the
results obtained by our method. The findings of this study
may help to design artificial drug candidates, which can
block or activate biologically meaningful pathways. Fur-
thermore, our copula approach can be extended to inves-
tigate the effects of local environments on protein-protein
interactions. The copula mutual information approach
will help to propose a new variant of ARACNE: an algo-
rithm for the reconstruction of gene regulatory networks.

Conclusion

In this paper, we presented a new methodology for ana-
lyzing gene interactions based on copula functions. Our
method is shown to be useful in the construction of gene
networks through the analysis of yeast cell cycle data. Our
method may be able to overcome the limitation of Baye-
sian network method for gene-gene interaction, i.e. infor-
mation loss due to binary transformation. Since a copula
represents a way of extracting the dependence structure of
the random variables from the joint distribution function,
it is a useful approach to understanding and modeling
dependent structure for random variables. In our future
works on gene directional dependence, we will develop
hypothesis testing for directional dependence and formu-
late a network construction process using false discovery
rate.

Methods
For presentation, let us consider a bivariate case. All the
results in this section can be generalized to a multivariate
case. Consider a bivariate copula C : [0, 1]>—> [0, 1]
defined as

C(u, v) =Pr(U<u, V<v)

for 0 <u, v <1 where U and V are uniform random varia-
bles. Let X and Y be random variables with marginal dis-
tribution functions Fy and F . Then Fy (X) and F, (Y) have
uniform distributions. By Sklar's Theorem, due to [21],
there exits a copula C such that F (x, y) = C(Fx (x), Fy (y))
for all x and y in the domain of Fy and Fy, i.e. a bivariate
distribution function can be represented as a function of
its marginals joined by a bivariate copula. Hence different
families of copula correspond to different types of
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Figure 3
AIC plots for [see Additional file 1].

dependence structure. An example is the Farlie - Gumbel
- Morgenstern class defined as uv [1 + 6 (1 - u)(1 - v)] with
6> 0. See [12] for a general introduction to copulas.

Now we discuss the concept and measures of directional
dependence briefly. One may consider two types of direc-
tional dependence between two random variables U and
V in regression: ry); (u) = E[V|U = u] and ry, (v) = E[U[|V
= v] for the Rodriguez-Lallena and Ubeda-Flores family of
copula in the form of

Clu, v) = uv + flu)g(v), (1)
where E[V|U = u] is the conditional expectation of V given
that U = u [22]. Note that a specific functional form of f
and g determines the corresponding family of bivariate
distributions of (U, V). If f and g are different, then the
copula is not symmetric, in which case the form of the
regression functions for V and U will be different. Hence
one might consider two types of directional dependence,
i.e. one in the direction from U to V and the other in the
direction from V to U. Since directional dependence can
arise from marginal or joint behavior or both, one may

consider the following general measure of directional
dependence defined as

k
B ry|x (X)-ElY] |
Ur(Y)
H iy ()-8 |
HE(X)

P&kLY =

if 1, (Y) = E[Y — E[Y]]* #0;

k
Pglx =

if 4, (X) %0,
(2)

where pg(kLY is the proportion of the k-th central moment
of Y explained by the regression of Y on X. For example,
pgay can be interpreted as the proportion of variation

explained by the regression of Y on X with respect to total
variation of Y. For more details, see [16].

Finally, let us introduce the FGM distributions and meas-
ures of directional dependence for our data analysis. We
consider the following type of FGM distributions in the
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3D and contour plots for selected pairs of histone genes.
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Interacting genes (locus name)

Our Method

PathwayAssist Chen's method Ref.

HTA2(YBLO03C) — HTAI(YDR225W)
HTA2(YBLO03C) — HHT2(YNL031C)
HTA2(YBLO0O3C) — HTB2(YBLO02W)
HTA2(YBLO03C) — HHT I (YBRO10W)
HTA2(YBLO03C) — HHF I (YBR009C)
HTA2(YBLO03C) — HHF2(YNLO30W)
HTA2(YBLO03C) — HTBI(YDR224C)

0000000

x x x000O0
x x x00O0O0

HTB2(YBLO02W) — HTAI(YDR225W)
HTB2(YBLO02W) — HHT2(YNLO31C)
HTB2(YBLO02W) — HHT I (YBRO10WV)
HTB2(YBLO02W) — HHF I (YBR009C)
HTB2(YBLO02W) — HHF2(YNLO30W)
HTB2(YBLO02W) — HTBI(YDR224C)

000000

O x 0O %x x x
O x 0O x x x

N.A.

HHT2(YNLO31C) — HTAI(YDR225W)
HHT2(YNLO31C) — HHTI(YBROIOW)
HHT2(YNLO31C) — HHFI (YBRO09C)
HHT2(YNLO31C) — HHF2(YNLO30W)
HHT2(YNLO31C) — HTBI(YDR224C)

HHFI(YBRO09C) — HTAI (YDR225W)
HHF I (YBRO09C) — HHT I (YBRO10WY)
HHF I (YBRO09C) — HHF2(YNLO30W)
HHFI(YBRO09C) — HTBI (YDR224C)

00000

0000

N.A.

x O x x x

x QO x x O
_—_ N =

x O 0 x
x O 0 x
[ NG —

HHF2(YNLO30W) — HTAI(YDR225W)
HHF2(YNLO30W) — HHT I (YBRO10W)
HHF2(YNLO30W) — HTBI(YDR224C)

HTAI(YDR225W) — HHT I (YBROIOW)
HTAI(YDR225W) — HTBI (YDR224C)

00O

x OO0
oo

N.A.

x
O x

2,3

HHTI(YBROIOW) — HTBI(YDR224C)
form of the Rodriguez-Lallena and Ubeda-Flores copula
family in (1):

Clu, v)=uv+ Ouv(l-u)*(1-v)fforO<uy,v=1and o
>1, (3)

where 6 « and g are parameters. C(u, v) defined in (3) is
a copula function for satisfying

(g
|55

Let X;and Y;bei.i.d. copiesof X and Y fori=1, ..., n. Then
U, = Fy (X;) and V; = F, (Y;) are the empirical marginal dis-
tribution functions of Fy and F;. Note that U; and V; have

0 <6 £min (aﬂ
o-1

see [23].

uniform distributions on (0, 1). The empirical likelihood
is

L(6;U, V) o ﬁc(Ui,Vi), (5)

i=1

whereU = (U, ..., U,)'and V = (Vy, ..., V,)". From (3), the
empirical likelihood function is

10w, v) e [ 11 +60 -, + )l - ) 1= w,(1+ B - )P},

i=1

Solving

dlogL(6;u,v) _

nd dlog L(6;u,v) _ 0
ox

0
a 2B
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subject to &, f> 1, one obtains the estimates of « and g
denoted by & and ﬁ . Since log L(& u, v) is a linear func-
tion of & with known & and B , there is no closed form

solution for MLE from the partial derivative function with
respect to 6. As an alternative, we used a grid search over

the range of Owith o= @ and = .

f(u)=vou-u)* and
g(v) = - v)ﬂ . The directional dependence from U

to Vand from V to U are given as

For (3), we have

() = % —6Beta(2, + 1)(1 - v)P 1= (1 + B)y]

and
ro(u) = % —0Beta(2, B +1)(1 - )*1 - (1 + a)u],

where Beta(-,-) is the beta function defined by

Beta(a, b) = jol (1= 1) fora, b> 0.

By considering the proportion of variation for the direc-
tional dependence, two types of measure can be derived.
From (2) with k = 2, we have

(2)

oy = 120%[Beta(2, B +1)]*(Beta(l, 20t — 1)
—2(1 + &)Beta(2, 2 — 1) + (1 + &r)* Beta(3, 2a — 1)), and
pP.y = 1202(Beta(2, 00 +1)|2(Beta(1, 28 — 1)

—2(1+ B)Beta(2,28 —1) + (1 + B)?Beta(3,23 - 1)),
where Spearman's correlation coefficient, p,, is
1 p1
pe = IZJ j (C(u, v) — uv) dudv =126 Beta(2, o + 1)Beta(2, B +1).
04J0

Also, the following is a good case of extracting depend-
ence information from a bivariate normal distribution
function with respect to p. The relation is

9D (x,y;
IOELP) _ g5, y:p)
p
where
2 2
1 =-2pxy+
oxyp) = zexp{ T }
27r\/1—p 2(1-p“)

http://www.biomedcentral.com/1471-2105/9/225

and

O(x,y; p) = J:i J‘: o(u, v; p)dudv.

We consider a parameterized copula which has 6. ¢(®-1
(u), @ (v); @ 6.) instead of Guv(1 - u)(1 - v)Pat (3).

The form is as follows:

C(u, v) =uv + 6. (@ (u), & (v); @ 6.) for0<u, v<1,
(6)

where 6. is a parameter, « satisfies the following relation

00
o(x,y;0.) = ,y:00,)4 1+
(x,7:6.) = o(x.y ){ o202

s

[aa(l —a202)+ 1)1+ 202) — b, (x> +y2)]},

and

2 2
1 X =20.xy+
T
21 1—9* 2(1_9* )
;From (6), the form of Spearman's correlation coefficient
is

1 p1 6 9*
Prorm = 12J. j C(u, v)dudv -3 = arcsin( )
0Jo Y4 2

(7)

We use Akaike's information criterion (AIC) [24] for cop-
ula defined as

AIC=-2logL (6 u, V) +2v,

where v is the number of parameters of the model pro-
vided in [25]. Akaike developed a decision-making strat-
egy based on the Kullback-Leibler information measure,
arguing that his measure provides a natural criterion for
ordering alternative statistical models for data [24].
Instead of comparing plots or p-values for the methods, in
the case of the parametric approach of maximum likeli-
hood, we can compare the value of the negative log-likeli-
hood functions. The value of AIC contains the
information which estimator fits better. The lower the
AIC, the better the model.
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