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Abstract

Background: Aligning homologous non-coding RNAs (ncRNAs) correctly in terms of sequence
and structure is an unresolved problem, due to both mathematical complexity and imperfect
scoring functions. High quality alignments, however, are a prerequisite for most consensus
structure prediction approaches, homology searches, and tools for phylogeny inference.
Automatically created ncRNA alignments often need manual corrections, yet this manual
refinement is tedious and error-prone.

Results: We present an extended version of CONSTRUCT, a semi-automatic, graphical tool
suitable for creating RNA alignments correct in terms of both consensus sequence and consensus
structure. To this purpose CONSTRUCT combines sequence alignment, thermodynamic data and
various measures of covariation.

One important feature is that the user is guided during the alignment correction step by a
consensus dotplot, which displays all thermodynamically optimal base pairs and the corresponding
covariation. Once the initial alignment is corrected, optimal and suboptimal secondary structures
as well as tertiary interaction can be predicted. We demonstrate CONSTRUCT's ability to guide
the user in correcting an initial alignment, and show an example for optimal secondary consensus
structure prediction on very hard to align SECIS elements. Moreover we use CONSTRUCT to
predict tertiary interactions from sequences of the internal ribosome entry site of CrP-like viruses.
In addition we show that alignments specifically designed for benchmarking can be easily be
optimized using CONSTRUCT, although they share very little sequence identity.

Conclusion: CONSTRUCT's graphical interface allows for an easy alignment correction based on
and guided by predicted and known structural constraints. It combines several algorithms for
prediction of secondary consensus structure and even tertiary interactions. The CONSTRUCT
package can be downloaded from the URL listed in the Availability and requirements section of this

article.
Background Structure prediction may provide insight into RNA func-
Prediction of RNA structure as well as searches for homo-  tion, and pattern-based database searches [1,2] may reveal
logues in large genomic sequence databases play a prom-  new homologues, without the need for time-consuming
inent role in the era of non-coding RNAs (ncRNAs).  experiments. Prerequisite for these predictions and
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searches as well as for inference of phylogeny [3-5] is the
existence of an alignment of RNA homologues correct in
terms of both sequence and structure. Sequence align-
ment tools like CLUSTALW [6] often fail to align ncRNA
sequences correctly, especially when sequence homology
drops below 60 % [7]. One reason is that ncRNA
sequences evolve by compensatory base pair changes and
ncRNA homologues are more conserved in structure than
in sequence. For example, structural elements like ther-
modynamically extrastable tetraloops (UNCG, GNRA)
share no sequence similarity and therefore cannot be cor-
rectly aligned by pure sequence alignment programs. Even
structure alignment programs (e. g. DYNALIGN [8], FOL-
DALIGN [9], PMMULTI [10] or STEMLOC [11]) do not
necessarily produce high-quality alignments under all
conditions [7]. Moreover, these approaches are computa-
tionally extremely demanding, not only because they are
based on simplified versions of the Sankoff algorithm
[12]. Thus, automatically generated alignments often
need to be corrected or refined by hand, which is a com-
plex and tedious task. To ease this task a few sophisticated
RNA alignment editors exist, e. g. 4SALE [13], SARSE [14]
or S2S [15]. One of these tools is CONSTRUCT (construc-
tion of RNA consensus structures; [16]), which is not only
an RNA alignment editor but also allows for a variety of
consensus structure predictions.

Here we present the completely revised and largely
extended version of this tool and demonstrate some of its
new features. CONSTRUCT allows for generation of RNA
alignments, which are correct in terms of sequence and
structure, by combining thermodynamic RNA structure
prediction, several measures for covariation, and any
alignment method. By applying this combination, typical
shortcomings inherent to the single methods are elimi-
nated; that is, the need of covariation for many, suffi-
ciently divergent sequences is reduced, and the quality of
thermodynamic predictions is enhanced. In contrast to
tools, which predict a consensus structure automatically
from a fixed alignment (e. g. RNAALIFOLD [17] or ILM
[18]), CONSTRUCT allows for an interactive modifica-
tion and optimization of the alignment. The user is able
to modify the alignment similar to other RNA alignment
editors [19,13,14]; the consequences of any alignment
modifications are, however, immediately visible in a dot-
plot showing the probability of all base pairs of all RNA
structures of the alignment; i. e., the user is guided during
the alignment correction. In addition the user can account
for sequence and structure constraints during the correc-
tion process. Afterwards optimal and suboptimal consen-
sus structures and tertiary interaction can be predicted
using a variety of built-in methods and displayed in sev-
eral ways.

http://www.biomedcentral.com/1471-2105/9/219

ConStruct's approach to consensus structure prediction
In the following we will describe the basic approach of
CONSTRUCT (see Fig. 1).

1. First, an initial sequence alignment needs to be created
by means of an alignment program of the user's choice (e.
g. by a pure sequence alignment program like MAFFT [20],
by a sequence+structure alignment program like STRAL
[21] or STEMLOC [11], or by a pure structure alignment
program like PROFILE-DYNALIGN [22]).

2. "Thermodynamic base pairing probability matrices" of
all sequences in the alignment are automatically gener-
ated by means of a front-end program (CS_FOLD) to
RNAfOLD [23]. An alternative to these thermodynamic
approaches is creation of dotplots [24] with a minimum
length of helices and thermodynamic weighting of their
base-pair composition [25].

3. Gaps from the initial alignment (step 1) are inserted
into the matrices (step 2), resulting in identically sized
matrices that are superimposed, thus building a consen-
sus matrix. Ideally, homologous base pairs should now
possess identical positions. The base pair matrices for each
single sequence as well as the consensus matrix are dis-
played in a graphical user interface (GUI; see green and
blue dots in upper triangle of the consensus dotplots
shown in Fig. 1 and 2). The probability of a thermody-
namic consensus base pair (see red dots in the consensus
dotplots) is calculated such that noise from individual
base pairs not representing the consensus is reduced and
over-representation of sequence families is avoided (for
details see [16]). For an overview of colors used in CON-
STRUCT see Table S4 in Additional file 1.

4. The new version of CONSTRUCT now allows to com-
pute either the mutual information content (MI; [26]) or
the RNAALIFOLD covariation score [17] to measure the
amount of covarying positions (joined nucleotide substi-
tutions, compensatory base pair changes). The results are
displayed in the GUI (lower triangle of consensus dot-
plots in Fig. 1 and Fig. 2), can be filtered and normalized
(see below), and are later on used in conjunction with the
thermodynamic base pair matrices as the basis for consen-
sus structure prediction. The MI at two aligned nucleotide
positions i and j is defined as:

fij(XY)
fiX)£(Y)
where f;(X) and f,(Y) are the frequencies of the nucleotide
types X € {A/U,G,C}and Y € {AU,G,C} at aligned posi-
tions i and j, and f;;(XY) is the joint frequency of finding X
atiand Y atj. In addition, he user may apply a normaliza-

MI; = Zfij(XY) log,,
X,Y
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Flowchart and graphical user interface of ConStruct. Steps are numbered as in the text. The graphical user interface
(grey part) shows results of a structural alignment for IRES regions of CrP-like viruses [45]; for a full view and further details of
this alignment see Fig. 3. The main windows of CONSTRUCT are the "Consensus Dotplot" and the "Alignment Editor". The
top-right triangle in the consensus dotplot shows thermodynamic base pairing probability of individual sequences (blue/green)
and thermodynamic consensus matrix (red), the horizontal and vertical bars denote gaps; the lower-left triangle shows the Ml
(as a measure of covariance) normalized by pair entropy and a threshold of t-, = 50 % applied. Predicted structures may be dis-
played in several representations and formats. On the right side, two possible representations are shown. The Circles plot
(upper window) shows the consensus structure as predicted by maximum weighted matching (MWM); consensus pairing prob-
ability is color-coded from white to red. The crossing arcs represent pseudoknots. Below the "Structural Alignment Output" is
shown. From top to bottom: ten sequences [with background colors green for loops, red for consensus base pairs, pink for
consensus base pair changes (covarying pairs), and white for non-base pairs in paired regions], the consensus sequence, and the
consensus structure in bracket-dot notation and character-encoded (both with background colors from white to red propor-
tional to sequence conservation resp. pairing probability). For an overview of colors used in CONSTRUCT see Table $4 in
Additional file 1.

tion method [27], which enhances separation of truly cor-  tion of the RNAALIFOLD covariation measure we refer to
related positions from background correlations. That is ~ [17] and [30].

done by dividing the MI by the joint entropy

5. The alignment of the sequences is displayed in a sepa-
rate window (see alignment editor in Fig. 1). Position of
base pairs from the dot plots is coupled with the position
of the corresponding nucleotides in the alignment; i. e.,
the upper bound of the MI. For statistical analysis of the ~ pointing with the mouse to a consensus base pair high-

hy = ;fﬁ(xn logy, f;;(XY),

MI, maximum likelihood or unbiased probability estima-  lights the corresponding base pairs in the alignment with
tion [28] in nits (b = e) [26] or bits (b = 2) [29] are availa- a color from white to red according to the individual base
ble. pairing probabilities (see also Fig. 2); pointing to a base-

paired nucleotide in the alignment changes the color of
In comparison to the MI, the covariation score imp]e- the corresponding base pair in the dot plOt. A selected

mented in RNAALIFOLD measures compensations in  Tregion of a single sequence or multiple sequences, with a
Watson-Crick and wobble base-pairs [17] only, which is gap at either side, may be moved with the mouse towards
advantageous during search for helices. The meaningful-  the gap, and the dot plots are updated correspondingly.
ness of this score can be further improved by taking stack- Helices not superimposed are easily detectable. Thus, the
ing into account (as shown in [30]), which is also a built- ~ user is guided during the alignment correction. These
in option of CONSTRUCT. For a comprehensive descrip- ~ functions of the GUI are extremely helpful while correct-
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Figure 2

Visualization of alignments by ConStruct. An alignment of SECIS elements created by CLUSTALW (A) and after manual
optimization/correction using CONSTRUCT (B). In both cases predicted consensus structures and CONSTRUCT's GUI are
shown. For an overview of colors used in CONSTRUCT see Table S4 in Additional file |. Top left: Corresponding drawings
of consensus structures (annotated with the consensus sequence) generated by CONSTRUCT; consensus base pairing proba-
bility is color-coded from white to red. Top right: Corresponding dotplots: the base pairing probability of individual
sequences (dark blue for the selected sequence M_janaschii_sps and green for others) is shown top-right in CONSTRUCT's
main window; yellow to red dots show the consensus pairing probability; white to light blue bars denote gaps. The lower-left
triangle shows the M| normalized by pair entropy with a threshold of t-, = 30 % in rainbow-colors from yellow to red. The
cursors in A and B (arrow in thermodynamics part and black square in Ml part) point to a similar position. Bottom: Corre-
sponding alignment windows. Nucleotides participating in a base pair to which the cursor points in the dotplot are automati-
cally highlighted [colored by pairing probability from p = 0 (black) to p = | (red)]. The motif GAA (turquoise background),
which is conserved in the internal loop, has been highlighted using the built-in regular expression search. Clicking with a mouse
button to position 3 and to position 25 of the last sequence (M_jannaschii_fmfdh_B; see red cursors) in the alignment editor
selects this subsequence; clicking once with left or right mouse button to the double-headed arrow moves the subsequence
towards 5' or 3' end, respectively, by one position; in the top-right dotplot the corresponding base pairs are automatically posi-
tioned. Similarly, clicking to a 5' and a 3' nucleotide of two different sequences (for an example see blue cursors) selects all cor-
responding subsequences from the sequence range; if none of the subsequences ends in a gap and all are followed by a gap, the
subsequence range is moved towards the gap by clicking to the double-headed arrow.

ing positions of structural elements, which were mis-
aligned during the initial sequence alignment (step 1).

6. Consensus structure prediction is now based upon the
weighted and filtered summation of the thermodynamic
consensus dotplot (step 2) and the covariation dotplot
(step 4), whereas the previous version of CONSTRUCT
used the unfiltered thermodynamic consensus dotplot
alone.

The probability p, of a thermodynamic consensus base
pair at positions i and j is given by

3
Zé\il W ~p5(i,j)l /3
AR

pe(irj) =

where N is the total number of sequences and 0 <w, <1 is
the user-defined weight of sequence s. This weighting can
be used to avoid over-representation of a closely related
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sequence family in comparison to other sequences. The
exponentiation helps to reduce low pairing probabilities
from individual sequences.

The linear combination of the thermodynamic and the
covariation pairing probabilities

{pc(i' ]) ifpc(if ]) > tTD
Wrp -

Pij) =

0 otherwise

CVi; if Cv; i >ty
+ wCV : .

0 otherwise

allows for thresholds t and a relative weighting (wp + wey
= 1) of thermodynamics and covariation. The thresholds
serve to further reduce the statistical noise and to suppress
false positive base pairs and can be adjusted by the user.
According to our experience, use of only thermodynamics
with wp, = 1.0 and t;, = 0.03 already results in sensitive
and specific predictions of secondary structures. The MI
will only give additional information when the alignment
contains many and divergent sequences. For tertiary struc-
ture predictions or detection of non-canonical base pairs
[31], however, the MI must be reasonably high, since ther-
modynamic data alone are not sufficient.

Prediction of secondary structure is performed by
dynamic programming [32] maximizing the weighted
combination of the thermodynamic and covariation pair-
ing probability. The new version of CONSTRUCT also
allows to predict suboptimal structures [33,34]. More
importantly, routines for predicting tertiary interactions
(pseudoknots, triple pairs) by maximum weighted match-
ing (MWM) [35] are now built into CONSTRUCT. Exam-
ples for both prediction types are given in the Results
section.

The predicted consensus structures can be viewed directly
or be stored in several formats (RNAVIZ [36], CONNECT
[37] or RNAML [38]). Another newly added feature is the
support for structure logos [39], which can be directly
requested from within CONSTRUCT. Three different
graphical representations are supported:

¢ The first representation is basically an alignment of the
sequences, where the background of the nucleotides is
colored according to the nucleotide's structural features
(for examples see bottom of "Structure Prediction" in Figs.
1 and Fig. 3C). An additional text output describes the
structural alignment in numerical form (numbers of base
pairs, consensus base pair changes, mismatches, consen-
sus base pairing probability, MI per helical position, and
statistical significance of MI values by 42 test).

http://www.biomedcentral.com/1471-2105/9/219

¢ The consensus structure-annotated by an individual
sequence or the consensus sequence with or without
alignment gaps-can be displayed in different, SQUIG-
GLES-like ways (for examples see structures in Fig. 2 left).
Overlapping of helical regions may be avoided by user
interaction; each helix is selectable by the mouse and may
be rotated around the upstream loop. Base pair connec-
tions can be color annotated according to their probabil-

1ty.

e The consensus structure-annotated by an individual
sequence or the consensus sequence—can be viewed as a
circular graph (circles plot) with nucleotides as edges and
base pairs connected by probability-annotated arcs (for
examples see "Structure Prediction" in Fig. 1 and Fig. 3B).
Such a plot allows for representation of tertiary interac-
tions; i. e., crossing arcs denote pseudoknots. If chemical
or enzymatic mapping data are available, the accessibility
of nucleotides can be marked with small triangles.

The two time consuming steps 1 and 2 are executed only
once, whereas the remaining steps are computed on the
fly. Handling of less than 100 sequences of length below
500 nucleotides is done fluently on a standard desktop
PC.

Results and Discussion

The tool CONSTRUCT combines thermodynamic and sta-
tistical methods to predict the consensus structure of a set
of homologous RNA molecules. In this respect it is similar
to, for example, RNAALIFOLD [17] or ILM [18]. Yet, these
programs use fixed alignments as input for structure pre-
diction, whereas CONSTRUCT also allows to correct
potentially incorrect alignments beforehand. CON-
STRUCT's graphical user interface (GUI) guides the user in
optimizing/correcting the alignment with respect to a
consensus structure by displaying all base pair probabili-
ties corresponding to the alignment in a consensus dot-
plot.

Most functions used in CONSTRUCT to extract a consen-
sus structure from a given alignment are well known from
the literature [32,33,26,35,17,30]. Given a reasonably
good structural alignment CONSTRUCT is able to extract
the correct consensus structure even without user inter-
vention. Usually almost optimal results can be obtained
by using thermodynamic pairing probabilities alone. If an
alignment contains 5-10 sequences with an average pair-
wise sequence identity below ~70 %, then sensitivity as
well as specificity [40] for secondary structure predictions
are above 80 % (see Fig. S5 and Table S3 in Additional file
1; see also [30]). If additional information either from MI,
normalized MI or RNAALIFOLD covariation is used, the
mean accuracy of secondary structure predictions is not
increased (see Additional file 1). A bonus is, however, the
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Figure 3

Alignment of internal ribosomal entry sites (IRES) from CrP-like viruses [45]. Subfigures A-C are created by means
of CONSTRUCT using the RNAALIFOLD covariation score including stacking and parameters wyp = 0.5, we, = 0.5, t;p = 0.03,
and t-, = 0.15. Colored bars and labels are added in a graphics program according to the nomenclature given in [45]. The used
color-coding is explained in Table S4 in Additional file I. Sensitivity and specificity are above 90 % compared to the structures
given in [47] and [46]; falsely predicted are only a few additional, non-contradictory base pairs, for example those labelled by "j"
in figure part C. A: Dotplot; note that base pairs, which give rise to the pseudoknots (PK I-1ll), are present not only in the cov-
ariation plot (lower triangle) but also, with low probability, in the thermodynamics plot (upper triangle); i. e, they are part of
suboptimal secondary structures. B: Circles plot. C: Structural alignment output.
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validation of predicted pairings by the statistical informa-
tion. Nonetheless, covariation scores increase prediction
quality for alignments with many sequences, especially
when predicting unusual base pairs, and the MI is essen-
tial when predicting tertiary interactions (see Example 2
below).

Summary of new features

Since CONSTRUCT's last release 9 years ago [16] the most
striking new features are the display and use of several
mutual information scores and the ability to predict terti-
ary interactions. The following types of measures for base
pair covariation are now supported (see step 4 above):
Mutual Information with optional pair-entropy normali-
zation [26,27] or RNAALIFOLD with optional stacking
[17,30], which are an essential requirement for the newly
added prediction of tertiary interactions (see below). In
previous versions, covariation was only used for a »2 test
to verify predicted base pair positions. Now both types of
covariation are displayed in the GUI. As covariation scores
usually suffer from statistical noise and alignment errors,
proper filtering and weighting is important when using it
as a basis for structure prediction. CONSTRUCT now
allows the user to adjust filter and weighting factors
according to the displayed data and thus to make optimal
use of it. Instead of using only thermodynamic data for
structure prediction and validate this using statistics, we
now combine the chosen covariance measure with the
thermodynamic prediction and apply user-defined
weights and thresholds. This filtered and weighted combi-
nation of both terms (see step 6 above) builds the basis
for the following structure prediction step. On top of the
standard Nussinov-style prediction of secondary structure
prediction [32], we added the abilities to predict subopti-
mal consensus structures [33,34] using dynamic program-
ming and tertiary interactions using the maximum
weighted matching (MWM) procedures imatch and
bmatch [35]; see also Figure 3. Some of these features are
demonstrated in the following section.

On top of that, several new convenience features have
been added, for example:

e input of alignments in most sequence formats via Eddy's
SQUID package [41],

e color-coded regular expression searches (see e. g. the
colored GAA-motif in the alignment window of Fig. 2),

e the built-in option to request RNA structure logos [39],
¢ removal of gaps from consensus structure drawings,

¢ a paned editor window to allow for simultaneous view-
ing and editing of 5' and 3' ends, and

http://www.biomedcentral.com/1471-2105/9/219

¢ support for RNAplfold [42] to fold very long sequences
locally.

CONSTRUCT version 3 is a reimplementation of the prior
versions. Many time consuming Tcl functions-e. g. those
responsible for update of the GUI (consensus dotplot)
after alignment modification-have been ported to C and
built into the custom Tcl interpreter to speed up the appli-
cation. This GUI update step after alignment modification
could take up to approximately 20 seconds for a big align-
ment of 450 sequences (moving 15 nucleotides at once);
by using C-code (built into the interpreter) instead of
interpreted Tcl-code the execution is speedup is roughly
15-fold.

User optimization of a given alignment

Example |: SECIS

"Selenocysteine insertion sequence" (SECIS) RNA ele-
ments from methanogenic organisms [43] form a stem-
loop structure characterized by a relatively low degree of
sequence conservation in the terminal helix (about 20 nt)
and a higher degree of sequence conservation in the
remaining part (about 14 nt). Accordingly, alignments
created by standard sequence alignment programs are far
from structurally correct. However, displaying such an
alignment in CONSTRUCT (see dotplot in Fig. 2A for a
ClustalW alignment) the correct consensus structure is
readily identifiable: note the small yellow dots inside the
blue squares and the "helix clustering" visible as a close
accumulation of green diagonals in the upper triangle of
the dotplot, which are not superimposed, i. e. not cor-
rectly aligned. Here, five of the 14 sequences are already
superimposed in their structure (note the colored nucle-
otides in the alignment window). Furthermore, from the
dotplot it is already obvious that most other, not-superim-
posed structures can be aligned with those by mainly hor-
izontal adjustment of base-pair positions. A major shift is
necessary only for the two hdr_A sequences (see the off-
diagonal helices in the dotplot). The user is guided during
this adjustment process-i. e. which of the sequences have
to be selected, which nucleotides have to be moved in the
alignment, etc.-by the direct interconnection between
base pairs in the dotplot and corresponding nucleotides
in the alignment editor. Additionally, the possibility to
highlight certain nucleotides or motifs in the alignment
window by means of regular expressions might be of help
during the manual refinement stage. In case of the SECIS
elements this is the conserved GAA in the internal loop
(see for example the turquoise colored motif in the align-
ment windows in Fig. 2).

After the correction process (for a step-by-step example
see Fig. S6 of Additional file 1) from the sequence align-
ment in Fig. 2A to the corrected alignment shown in Fig.
2B, the mean thermodynamic pairing probability of the
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terminal helix (see yellow to red dots in upper triangles of
dotplots in Fig. 2) rises from 0.07 to 0.673, and the mean
MI (see lower triangles of dotplots in Fig. 2) from 0.46
nits, which has a low significance according to 42 tests, to
0.86 nits, which is highly significant (all data computed
inside CONSTRUCT). The alignment length is reduced by
three nucleotides and all helices (green diagonals) except
one are superimposed, thus building a consensus helix
(red diagonal). The exceptional helix belongs to sequence
M_kandleri_hdr_A, for which at least two different align-
ments are possible; details of these alternatives are shown
in Additional file 1 (Fig. S2). A decision about such cases
is left to the user and/or further (experimental) input.

Example 2: Tertiary interactions in CrP-like viruses

The second example shows prediction of a consensus
structure including pseudoknots. In general the prediction
of pseudoknots, triple base pairs, or any non-Watson-
Crick pairs is difficult in comparison to prediction of a
secondary consensus structure because thermodynamic
predictions are usually limited to pseudoknot-free struc-
tures. Tertiary helices are, however, quite often part of sub-
optimal secondary structures included in the partition
function prediction. Furthermore, base pairs in tertiary
structural elements are quite often more conserved in
sequence than the isosteric Watson-Crick and wobble
base pairs [31] in secondary structural elements. This
higher degree of sequence conservation leads to a better
(sequence) alignment in corresponding regions. Anyway,
pairings predicted by the partition function and/or helix
dotplots (step 2) in combination with MI or RNAALI-
FOLD's covariation measure (step 4) followed by MWM
prediction (step 6) results-similar to secondary structure
prediction-in prediction with about 80 % sensitivity and
specificity (for a detailed analysis see [25]).

Cricket paralysis-like viruses use an internal ribosomal
entry site (IRES) for an 5'-end-independent pathway of
translation initiation [44-48]. This IRES (with lengths up
to 200 nt) contains three pseudo-knots, which are notice-
able as crossing lines in the circle plot (Fig. 3B). The align-
ment contains 10 sequences with an average pairwise
sequence identity of about 50 % and is slightly modified
by means of CONSTRUCT from that given in [49]. The
pseudoknot helices (encircled by black lines in Fig. 3A,
top right triangle) are already visible in the aligned "ther-
modynamic base pairing probability matrices", but are
much more prominent in covariation plots (Fig. 3A, left
bottom triangle). Summation of pairing probabilities
from thermodynamics predicted matrices and covariation
plots followed by MWM structure prediction leads to a
consensus structure depicted as circular graph in Fig. 3B
and as structure-annotated alignment in Fig. 3C. Most pre-
dicted pairings are in accordance with those given in the
literature [46,47]; sensitivity and specificity are 93 and 90
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%, respectively, compared to the structure given in [47]
and 92 % compared to the structure given in [46] (com-
puted with compare.pl [25]). CONSTRUCT predicts only
additional, non-contradictory base pairs; examples are
two additional pairs in the proximal helix of Domain 1
and three to four additional pairs in the hairpin of
Domain 3.

Application to reference alignments of BRAliBase

The first comprehensive RNA alignment benchmark
(BRALIBASE 1II; [7]) used reference alignments created
from four alignments taken from the RNA family database
Rfam [50,51]. The reference alignments were compiled in
such a way that each contained five sequences, which were
equally distributed across the available range of sequence
identity. For each of these four RNA families we took the
reference alignment which is hardest to align-i. e., it has
the lowest sequence identity-and optimized it using
CONSTRUCT. Reference independent quality measures of
the original BRALIBASE alignment and the alignment cor-
rected with CONSTRUCT are listed in Table 1. While the
sequence identities of the original and optimized/cor-
rected alignment remain almost the same, the structural
conservation is increased clearly during the optimization.
The structurally misaligned regions are easily identified in
CONSTRUCT'"s consensus dotplot display (see Table S1)
and can easily be corrected in a few steps (see also SECIS
example in previous section and Fig. 2).

As the BRALIBASE alignments were re-compiled automat-
ically from bigger Rfam alignments they naturally contain
some errors. We wish to note however that the BRALI-
BASE alignments are generally of good quality. A recent
publication of another sophisticated editor, SARSE [14],

Table I: Optimizing reference alignments of BRAIliBase.

BRALIBASE CONSTRUCT
Alignment APSI SCI APSI SCI
cov  w/o cov cov  w/o cov

g2intron/aln5|1 0.46 0.55 0.42 045 0.75 0.58
rRNA/aIn74 049 0.68 0.53 0.50 0.8l 0.6l
tRNA/aln27 035 .19 0.73 036 1.22 0.76
U5-RNA/aln4 0.50 0.6l 0.42 0.50 0.65 0.49

For each RNA family used in BRALIBASE [7] we extracted the
hardest alignment, i. e. the alignment with lowest sequence identity
(measured as average pairwise sequence identity; APSI), and
corrected it using CONSTRUCT. Quality measures for the original
BRALIBASE alignments and the alignment optimized with
CONSTRUCT are shown: sequence identity is measured as APSI,
structural conservation as structure conservation index (SCI) with
(cov) and without (w/o cov) covariation term, respectively. By using
CONSTRUCT, the structural conservation of the alignments is clearly
enhanced while maintaining sequence conservation. Dotplots of the
alignments are shown in Table S| of Additional file I.
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showed that more than 10 % of all entries in the Rfam
database are either misaligned (for an example see Fig. S8)
or their structure is inconsistently annotated. Thus one
should be aware of the limitations when using those
alignments as a reference for alignment benchmarking. A
benchmark consisting of hand curated alignments sup-
ported by predicted and/or known structures has yet to be
compiled. RNA alignment editors like SARSE, S2S and
CONSTRUCT would be crucial for this task.

Conclusion

RNA alignment and consensus structure prediction is still
a circular problem: A consensus structure needs to be
known to create a high-quality alignment, but a high-
quality alignment is prerequisite for consensus structure
prediction. Thus, despite recent advances on this field [52-
55] the need for RNA alignment editors which allow man-
ual refinement based on structural properties is still there.
These editors are still widely used and become increas-
ingly sophisticated (seee. g. [13] and [14]). Automatically
created RNA alignments and corresponding consensus
structure prediction can be optimized in most cases (see
this manuscript and [14]).

Our tool, CONSTRUCT, guides the user in correcting
structurally misaligned regions. Once the initial align-
ment is refined, CONSTRUCT is able to predict secondary
as well as tertiary consensus structures with high sensitiv-
ity and specificity. CONSTRUCT has already been
described as an effective and "most elegant" [56] tool for
structure alignment generation and RNA structure predic-
tion. One of its strength is the "elaborate GUI" [56] that
allows for easy identification and correction of structur-
ally misaligned regions, guides the user in correcting an
initial RNA sequence alignment, and allows for setting
proper weight and threshold parameters for consensus
structure prediction. Structurally misaligned regions are
readily identifiable in the thermodynamic consensus dot-
plot and can be corrected by means of the built-in align-
ment editor. The example shown in Fig. 2 is typical in the
sense that with a pure sequence alignment the "correct”
consensus structure is already detectable in the CON-
STRUCT dotplot and necessary corrections of the initial
alignment are quite obvious.

The gold standard approach for RNA consensus-structure
prediction-Comparative Sequence Analysis using covari-
ation and MI [28,57]-needs many sequences that have to
be nearly perfectly aligned, which in turn is almost impos-
sible for most sequence sets. Even given the perfect and
large alignment, predictions only based on MI often suffer
from non-informative columns (due to either too high
sequence conservation or too many gaps) in the align-
ment. Purely thermodynamic based prediction methods
are usually fairly reliable and allow for structure predic-

http://www.biomedcentral.com/1471-2105/9/219

tion from a few (in the extreme case one) sequences, and
gain specificity and sensitivity when more sequences are
added. Yet (standard) thermodynamic approaches alone
cannot detect tertiary interaction or non-canonical base
pairs. By using the (pair-entropy normalized) MI, which
makes explicitly no use of base pairing rules, or the
RNAALIFOLD covariation function (including stacking),
which acknowledges consistent base pair mutations,
CONSTRUCT is also able to predict non-canonical base
pairs and tertiary interactions (for example see Fig. 3C).
The prediction of tertiary interactions or at least certain
types of pseudoknots could in principle be enhanced by
including data into CONSTRUCT from structure-predic-
tion programs other than RNAfold (for a review of alter-
natives see [58]).

From the results presented here-and our experience over
the last years using CONSTRUCT-we propose the follow-
ing approach for building up an RNA alignment for con-
sensus structure prediction by means of CONSTRUCT:

1. Usually few sequences are initially available.

2. By pure sequence search (like BLAST) one could try to
find more homologues of the sequence(s) from step 1.
(Due to the sequence search the found homologues will
be closely related to the already known sequences. For an
overview and benchmark of selected RNA search tools see

[591.)

3. Create an alignment of the sequences using an align-
ment program of your choice and depending on length
and number of sequence; for example MAFFT [20], STRAL
[21] or STEMLOC [11]; see [7,60] for benchmarks. This
preliminary consensus structure should be checked for
consistency by means of CONSTRUCT using only thermo-
dynamics.

4. With help of the preliminary consensus structure, crea-
tion of either a pattern or a covariance model (CM) is pos-
sible. Both allow to search-for patterns with programs
like PatScan [61] or HyPa [1] and for CMs with programs
like infernal [62] or RSEARCH [2]-more specifically for
further members of the RNA group under inspection.

Alternatively, reiterate from step 2.

5. Check the refined model for consistency with CON-
STRUCT using thermodynamics and covariation analysis.
If this gives new information-especially in terms of terti-
ary interactions and/or base triples-reiterate from step 4,
otherwise this final model could be refined further by ver-
ification from wet lab experiments.
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In case of additional structural knowledge, for example
from chemical or enzymatic mapping [63,64], the initial
structure prediction by RNAFOLD can accordingly be con-
strained (see RNAfold manual and [65]) and thus incor-
porated into CONSTRUCT. If even information on the
three-dimensional structure of one of the sequences from
the set is available from X-ray or NMR analysis, the use of
S2§ [15] in addition to CONSTRUCT is advantageous.

Methods

Sensitivity and Specificity

Given a reference and a consensus secondary structure
predicted by CONSTRUCT, we wuse the script
compare_ct.pl [40] to compute sensitivity ("hit rate") and
specificity (selectivity). In case of tertiary structures we use
the corresponding script compare.pl [25].

Alignment Scores

For computation of the structure conservation index (SCI)
we used scif [60] and for the computation of the average
pairwise identity we used alistat from Sean Eddy's SQUID
package [41].

Availability and requirements

CONSTRUCT version 3 is based on a previously pub-
lished version [16] and has been rewritten and largely
extended. The underlying interpreter (Tcl/Tk 8.4) was
extended to speed up the application; the installation
process uses the GNU autotools. We successfully tested
CONSTRUCT under several Linux distributions (Ubuntu,
Debian, SuSE, Red Hat Fedora) as well as under Mac OS X
(using Fink). Input of sequences is format independent
due to use of the SEQIO package [66]. Graphics output is
produced in PostScript. Various output formats for struc-
tures and further processing are supported (e. g. RNAML,
connect etc.). The CONSTRUCT package (source and
Debian package) including a manual can be downloaded
at http://www.biophys.uni-duesseldorf.de/construct3/.
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