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Abstract
Background: The relationship between divergence of amino-acid sequence and divergence of
function among homologous proteins is complex. The assumption that homologs share function –
the basis of transfer of annotations in databases – must therefore be regarded with caution. Here,
we present a quantitative study of sequence and function divergence, based on the Gene Ontology
classification of function. We determined the relationship between sequence divergence and
function divergence in 6828 protein families from the PFAM database. Within families there is a
broad range of sequence similarity from very closely related proteins – for instance, orthologs in
different mammals – to very distantly-related proteins at the limit of reliable recognition of
homology.

Results: We correlated the divergence in sequences determined from pairwise alignments, and
the divergence in function determined by path lengths in the Gene Ontology graph, taking into
account the fact that many proteins have multiple functions. Our results show that, among
homologous proteins, the proportion of divergent functions decreases dramatically above a
threshold of sequence similarity at about 50% residue identity. For proteins with more than 50%
residue identity, transfer of annotation between homologs will lead to an erroneous attribution
with a totally dissimilar function in fewer than 6% of cases. This means that for very similar proteins
(about 50 % identical residues) the chance of completely incorrect annotation is low; however,
because of the phenomenon of recruitment, it is still non-zero.

Conclusion: Our results describe general features of the evolution of protein function, and serve
as a guide to the reliability of annotation transfer, based on the closeness of the relationship
between a new protein and its nearest annotated relative.

1. Background
Assignment of function to gene products in the absence of
direct experimental information is an important chal-
lenge of computational molecular biology [1-3]. In anno-

tating proteins from newly-sequenced genomes, it is a
common practice to transfer functional annotation from
a homologous protein [4-8]. This approach depends on
the assumptions that: (1) because homologous proteins
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have similar sequences and structures, they have similar
functions, and (2) the annotation of the source homo-
logue is correct. Often, but certainly not always, these
assumptions are valid.

In this study we quantitatively assess the relationship
between the divergence of protein function and the diver-
gence of amino acid sequence in families of homologous
proteins. In addition to illuminating the process by which
proteins evolve altered and novel functions, the results
provide guidance about the expected accuracy of transfer
of functional annotation among homologous proteins in
databases.

The most general evidence for protein homology, and
inference of shared function, depends on comparative
analysis of sequences and structures. PSI-BLAST [9] and
Hidden Markov Models [10] identify distant homologs
from multiple sequence alignments. Other techniques
include the training of support vector machines [11] and
neural networks [12] on protein features such as charge
distribution and hydrophobicity to predict protein func-
tion. Structure comparisons improve the accuracy of infer-
ence of function in the absence of direct experimental
evidence. These include the use of information from
domains [13] and motifs [14-16]. Fleming et al. [17] com-
bined structural and sequence alignments of proteins in
an annotation tool named PHUNCTIONER.

Despite the sensitivity of these tools for detecting
homologs and predicting function, many authors have
pointed out that because closely-related proteins can
change function, either through divergence to a related
function or by recruitment for a very different function,
annotations based only on homology can be incorrect
[18-28].

Two problems that have arisen in studying the evolution
of protein function and evaluating the expected accuracy
of functional annotation transfer have been (1) standard-
ization of terminology in describing function, and (2)
defining a measure of the "distance" between functions.
The Enzyme Commission classification has been very val-
uable but deals with only one class of protein functions
[29]. In 2000, The Gene Ontology (GO) Consortium for-
mulated a newer and more general classification of pro-
tein functions and the relationships among them [30].
Unlike the EC classification, which was a strict hierarchy,
the GO scheme has the form of Directed Acyclic Graphs
(DAGs), specialized to three domains: Molecular Func-
tion, Biological Process, and Cellular Component.

Enzyme Commission identifiers form a strict four-level
hierarchy, or tree. For example, isopentenyl-diphosphate
Δ-isomerase is assigned EC number 5.3.3.2, where the ini-

tial 5 specifies the most general category, 5 = isomerases;
5.3 comprises intramolecular isomerases; 5.3.3 those
enzymes that transpose C = C bonds; and the full identi-
fier 5.3.3.2 specifies a particular reaction. Note that the EC
classified reactions, not enzymes. To compare functional
assignments of two proteins according to the EC classifi-
cation, it is conventional to ask at how many levels of the
hierarchy the EC numbers agree.

In contrast, the GO classification is not a tree, but a more
general type of graph. Each node is labeled by a general or
specific protein function. Edges in the graph correspond
to relationships between more general and more specific
functions, that is, child-parent relationships. For example,
the node "protein binding" is a child of the node contain-
ing the more general function "binding". The number of
levels – the length of the path from any leaf to the root –
is not constant. The structure of the GO DAG induces a
measure of distances between functions, which will be
used to quantify sequence-function relationships in pro-
teins (see Materials and Methods).

GO assigns the identifier 0004452 to isopentenyl-diphos-
phate Δ-isomerase. (The numbers themselves have no
specific significance.) Figure 1 shows a minimal-length
path from GO:0004452 to the root node of the molecular
function DAG, GO:0003674. In this case there are four
intervening nodes, progressively more general categories
as we move up the figure. Note that the GO description of
this enzyme as an oxidoreductase is inconsistent with the
EC classification, in which a committed choice between
oxidoreductase and isomerase must be made at the high-
est level of the EC hierarchy.

Our current work treats the Molecular Function compo-
nent of the GO classification. The GO Molecular Function
graph forms a network that has characteristics in common
with other biological networks. In the Gene Ontology
DAGs, the average in-degree is 1.36 (that is, on average a
node or GO ID had 1.36 parents.) The in-degree distribu-
tion is intermediate between an exponential and a power
function. There is a wide range in out-degree, ranging
from 1 to 298. Three nodes had very high out-degree with
122, 238 and 298 children. The out-degree distribution
followed a power law, showing that there are hubs, or
highly connected nodes. The total degree (in-degree + out-
degree) distribution for the Molecular Function ontology
has a mean of 2.69, and follows a power law.

1.1 Assignment of functions to proteins
Neither the Enzyme Commission nor the GO classifica-
tions of protein function constitutes an assignment of
function to any particular protein. Both provide only a
framework for making such assignments. The PIR data-
base at Georgetown University [31] associates Gene
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Ontology Identifiers (GO IDs) with individual proteins.
The annotation of each protein may include several GO
IDs. Indeed, annotation with any function logically
implies annotation with all more-inclusive functions, all
the way up to the root of the graph. (Note, however, that
annotations of proteins by GO terms in databases do not
always explicitly contain all the ancestors of every func-

tion that appears.) Therefore for each protein we extracted
the distal (= most precise) GO IDs to represent the func-
tion of the protein (see Materials and Methods).

1.2 The relationship between sequence divergence and 
function divergence
Many proteins with similar sequences have similar func-
tions; for example, mammalian hemoglobins transport
oxygen and carbon dioxide. For mammalian hemoglob-
ins, transfer of annotation among homologs gives correct
results. However, other families of homologs contain pro-
teins with different functions. For example, hen egg white
lysozyme and baboon α-lactalbumin have 37% identical
residues in optimal sequence alignment, and retain very
similar mainchain structures, but have unrelated func-
tions. Contrasting mammalian hemoglobins with lys-
ozyme/α-lactalbumin, there is a general correlation
between divergence of sequence and divergence of func-
tion. That is, mammalian hemoglobins have similar
sequences and similar functions; lysozyme and α-lactal-
bumin have more distantly related sequences and dissim-
ilar functions.

However, there are many exceptions to this correlation. In
the duck, eye lens crystallins are identical in sequence to
liver enolase and lactate dehydrogenase [32]. This is an
example of "recruitment" – unrelated function with little
or even no sequence change. This threatens to produce
incomplete or even erroneous annotations, if annotation
is passed freely among homologs. Conversely, some pro-
teins very distantly related in sequence nevertheless retain
similar function.

Several groups have studied the relationship between
sequence similarity and functional similarity based on the
Enzyme Commission classification. Those studies were
necessarily limited to proteins with enzymatic functions:

In studying the relationship between sequences and EC
classifications of proteins, Wilson, Kreychman & Gerstein
[33], Todd, Orengo & Thornton [34], and Devos & Valen-
cia [19] reached similar (although not identical) optimis-
tic conclusions. Wilson, Kreychman & Gerstein [33]
concluded that for pairs of single-domain proteins, at lev-
els of sequence identity > 40%, precise function is con-
served, and for levels of sequence identity > 25%, broad
functional class is conserved (according to a functional
classification that uses the EC hierarchy for enzymes, and
supplements it with material from FLYBASE [35] for non-
enzymes.) The study of Todd, Orengo & Thornton [34]
analyzed only the homologous pairs of enzymes and
reported that approximately 90% of pairs of proteins with
sequence identity > 40% conserve all four EC numbers.
Even at 30% sequence identity, Todd, Orengo & Thornton
found conservation of three levels of the EC hierarchy for

The minimal-length path from GO:0004452 to the root node in the molecular function ontologyFigure 1
The minimal-length path from GO:0004452 to the root node 
in the molecular function ontology.
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70% of homologous pairs of enzymes. Devos & Valencia
[19] reached very similar conclusions; they also reported
the ability to predict correctly the agreement of FSSP cate-
gories [36] and SWISS-PROT [37] keywords, as a function
of the level of sequence similarity.

Our work pursues the question of the relationship
between divergence of sequence and function in homolo-
gous proteins, using the Molecular Function DAG of Gene
Ontology for the classification of function. Use of the GO
classification allows extension of the earlier work to pro-
teins with non-enzymatic functions, permitting a compre-
hensive study of functions of proteins.

The steps of our analyses were as follows: For each pair of
homologous proteins from a PFAM family, we recorded
the % identical residues in the optimal alignment as a
measure of sequence divergence, and we measured the
functional distance between the sets of distal GO IDs asso-
ciated with the two proteins. We based our definition of
the distance between sets of annotations on a generaliza-
tion of the simple minimum-path-length measure of the
distance between two single GO ID's (see Materials and
Methods).

From these data, we mapped the relationship between
sequence divergence and function divergence. We distin-
guished divergence of functions within the same "branch"
of the DAG (those for which the lowest common ancestor
of two nodes was not the root node) and those in different
"branches" of the DAG. We call these similar and dissimilar
functions, respectively (Figure 2). We observed that,
despite counterexamples of recruitment, there is a general
correlation between divergence of sequence and appear-
ance of dissimilar functions within each family. This rela-
tionship is made precise by our calculations. Our results
also show that there is some variation among different
PFAM families, especially for more highly-diverged
sequences.

2. Results and Discussion
We analyzed 6828 PFAM families (out of a total of 7863
in v. 18.0). The families ranged widely in size, from 2 to >
1200 proteins. Most families were relatively small; 85% of
those studied had between 2 and 30 members.

For each pair of proteins within each family we deter-
mined the sequence similarity and the set of minimum
distances between distal GO IDs (see Materials and Meth-
ods). For the functional distances, we distinguished, and
analyzed separately, divergent functions within the same
branch of the GO DAG (which we call similar functions);
and entirely different functions, for which the root of
DAG was the lowest common ancestor (which we call dis-
similar functions).

A primary goal is to describe the relationship between
sequence divergence and functional divergence.

2.1 The EF-hand family
The EF-hand family is typical and provides illustrative
results. This family contains 498 proteins comprising two
classes of functions: signaling and buffering/transport. EF-
hand proteins involved in signaling include the best-
known members of the family such as calmodulin, tro-
ponin C and S100B. These proteins typically undergo a
Calcium-dependent conformational change which opens
a target binding site. EF-hand proteins involved in buffer-
ing/transport include calbindin D9k. These do not
undergo Calcium-dependent conformational changes
[38,39].

Figures 3, 4, 5 show normalized distributions of func-
tional divergence of pairs of proteins in the EF-hand fam-
ily, as a function of sequence divergence. The % identical
residues in aligned pairs of sequences ranged from 0% to
100%. Pairs of sequences were divided into bins of width
10% sequence identity. The functional distances range
between 0 and 12.

Similar and dissimilar functions have different distributions
Similar functions (Figure 3) show a dominant peak at dis-
tance = 0 (that is, identical function), and a subsidiary
peak at 7. It is interesting that the different bins of
sequence identity show distributions of similar shape.
What distinguishes the distribution of pairs of closely-
related proteins from pairs of distantly-related proteins is
not so much a progressive increase in the set of functional
distances represented, but a decrease in the number of
pairs with identical function. The distribution (Figure 4)
of dissimilar functions of course excludes the peaks at
functional distance zero or one, and shows an uneven dis-
tribution with peaks between 6 and 10, with a very few
pairs at a GO distance of 12. The high spikes are the arti-
facts of the normalization, in cases where there are very
few data. There is a high peak at functional distance 6 for
pairs of proteins with 80–100% sequence identity, signi-
fying either recruitment or incomplete annotation (or
both).

Figure 6 shows fragments of the Molecular Function GO
DAG containing minimal-length paths between examples
of GO IDs corresponding to (a) annotations of EF-hand
proteins of similar functions with distance 7, and (b)
annotations of EF-hand proteins of dissimilar functions
with distance 12.

The graph combining all similar and dissimilar functions
(Figure 5) showed three distinct peaks, at 0, 6, and 10; the
peaks at 6 and 10 reflecting dissimilar functions. Two fac-
tors contribute to the non-smoothness of the distribution:
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Distinction between similar and dissimilar functionFigure 2
Distinction between similar and dissimilar function. We regard hydrolase activity, acting on ester bonds and oleoyl-[acyl-carrier pro-
tein] hydrolase activity, as similar functions, because their lowest common ancestor, hydrolase activity, acting on ester bonds, is not 
the root node of the molecular function DAG. However, we would regard hydrolase activity, acting on ester bonds and acyl carrier 
activity, as dissimilar functions, because their lowest common ancestor is the root node of the DAG. The Figure also illustrates 
the idea of the distal GO IDs that we extract from an annotation set, in this case describing proteins in the Acyl_ACP thioeste-
rase family. Both acyl carrier activity and oleoyl-[acyl-carrier protein] hydrolase activity have no child nodes within the GO molecular 
function DAG. These annotations are therefore as specific as possible within the GO function classification. That is, they are 
distal both within the annotations of this family of proteins and in the overall GO DAG itself. The third GO ID, hydrolase activ-
ity, acting on ester bonds, annotates some proteins that are not annotated with the more precise function oleoyl-[acyl-carrier pro-
tein] hydrolase activity. For such proteins, hydrolase activity, acting on ester bonds is a distal GO ID.
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Distribution of Similar + Dissimilar functions in the EF-hand familyFigure 5
Distribution of Similar + Dissimilar functions in the EF-hand 
family.
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Distribution of Dissimilar functions in the EF-hand familyFigure 4
Distribution of Dissimilar functions in the EF-hand family.
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(1) proteins in the EF-hand family are annotated by a rel-
atively small set of distal GO IDs, and (2) there is an une-
ven distribution of pairs of proteins with different degrees
of sequence similarity. The high peaks at 6 and 10 in Fig-
ure 6 arise from pairs of protein with 0–10% sequence
identity. (The peak at distance 7, prominent in figure 3, is
less prominent in Figure 5 because there are many fewer
pairs of similar than the dissimilar functions.)

The results show several regularities:

(1) As the sequences progressively diverge, there is a sys-
tematic decrease in the number of pairs with distance 0
(identical function) (see Table 1). The % of pairs with 0
distance is approximately constant (about 35%) for bins
of sequence similarity < 40%, and then increases sharply.
The distribution of similar functions in pairs of proteins
with 80–100% sequence identity has a unique peak at 0.

(2) The data suggest the interesting result that there is a
threshold at about 40% sequence identity, at which the
observed behavior changes. For pairs of proteins with 0–
40% residue identity, the distribution is largely independ-
ent of sequence identity. Above 40% sequence identity,
there is a significant increase in similar functions over dis-

Distribution of Similar functions in the EF-hand familyFigure 3
Distribution of Similar functions in the EF-hand family. Fig-
ures 3-5 show that the dependence of function divergence 
on sequence divergence for the EF-hand family. Sequence 
similarities, measured by the % identical residues in optimal 
sequence alignment, were divided into bins of width 10%, 
plotted in different colors as shown in the graph. Abscissa: 
GO Distance; Ordinate: fraction of comparisons.

0 142 4 6 8 10 12
GO Distance

0

1

0.2

0.4

0.6

0.8

F
r
a
c
t
i
o
n

Page 6 of 15
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:294 http://www.biomedcentral.com/1471-2105/8/294

Page 7 of 15
(page number not for citation purposes)

(a) Path in GO DAG between two annotations of proteins of the EF-hand family with Similar functions corresponding to GO distance = 7Figure 6
(a) Path in GO DAG between two annotations of proteins of the EF-hand family with Similar functions corresponding to GO 
distance = 7. (b) Path in GO DAG between two annotations of proteins of the EF-hand family with Dissimilar functions corre-
sponding to GO distance = 12.

 (a) 

(b)
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similar ones. These results, shown in Figure 5 for the EF-
hand family, were also observed when all the PFAM data
were combined and the contribution of dissimilar func-
tions to each range of sequence identity calculated.

2.2 Combined PFAM data
The number of proteins/PFAM family varied from 2 to
1200 for the collected data (Figure 7). Because of the
effects of different sample sizes on the statistics of the dis-
tributions, we divided the PFAM families into five catego-
ries according to size: 2–30 members (5834 families), 31–
60 members (719 families), 61–270 members (244 fami-
lies), 271–780 members (27), and > 780 members (3
families). Figure 8 shows the relationships between
sequence divergence and functional difference for these
classes separately, in each case separating ranges of
sequence identity into bins of width 20% sequence iden-
tity.

Figure 8 shows quantitatively how the distribution of
functional divergence depends on the divergence of
sequence. For example, Figure 8b describes PFAM families
containing between 31 and 60 proteins. The data show
generally that as the sequence identity decreases, the per-
centage of non-identical functions (distances > 0)
increases. This graph also contains an example of recruit-
ment (the peak at distance = 6, for the proteins with 81–
100% sequence similarity). For proteins with 81–100%
sequence identity, 15% of the comparisons have a dis-
tance of 6.

The data shown in Figure 8 confirm an "action zone"
between 40% sequence identity and 60% sequence iden-
tity. This range of sequence identities shows the highest
change in the identical functions (GO distance = 0). This
suggests a threshold in the behavior: sequence divergence
below 50–60% residue identity "releases" function to
diverge, or alternatively, functional divergence by mecha-
nisms other than recruitment generally requires > 40%
amino acid substitution. Pairs of proteins with all values

of sequence identity > 60% had nearly the same contribu-
tion from dissimilar functions. This means that for pairs
of proteins with > 60% residue identity the fraction of dis-
similar functions did not vary strongly with sequence
divergence. A similar threshold behavior appears in the
relationship between percentage of dissimilar functions
and sequence identity. There is a steep increase in the per-
centage of dissimilar functions as the sequence identity
fell below 40%.

To study the variation between different PFAM families,
we did separate calculations for each PFAM family and
compared results. We calculated the percentage of dissim-
ilar functions within each PFAM family and divided the
pairs of proteins into bins of width 10% sequence iden-
tity. The results are shown in Figure 9. The data show a
very wide overall divergence among different PFAM fami-
lies in all ranges of sequence similarity. Each column con-
tains data in the full range from 0 to 1 of fraction of
dissimilar functions with in a family. However, it is also
clear that there is a sharpening of the distribution, a
decrease in the mean (corresponding to a greater fraction
of similar functions) and fewer outliers, as sequence sim-
ilarity increases.

Figure 9 shows a systematic difference between residue
identities in the ranges 0–50% and 50–100%. Between 0–
50% there is a linear decrease in the value of the mean,
and almost no further change between 50–100%. This is
consistent with a threshold of behavior change between
40–60% sequence identities. The data in the mid quartiles
(25 – 75%) also decreases with increase in sequence iden-
tity, showing that most of the data are zeros and the
number of outliers is also decreasing with the increase in
sequence identity.

Distribution of sizes of PFAM familiesFigure 7
Distribution of sizes of PFAM families.

Table 1: The increase in percentage of similar function with 
increase in sequence similarity in the experimental data of EF-
hand family. Right column: Left column:

Sequence identity fraction of comparison with similar functions.

0–10 0.34
11–20 0.34
21–30 0.35
31–40 0.36
41–50 0.41
51–60 0.70
61–70 0.83

> 70% data not available.
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Distribution of functional distances (Y-axis in fraction) in bins of 20% sequence identity (X-axis)Figure 8
Distribution of functional distances (Y-axis in fraction) in bins of 20% sequence identity (X-axis). The graphs present the distri-
bution of all functions (Similar + Dissimilar).
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2.3 Comparison with sequence-function correlation based 
on the Enzyme Commission classification
Other investigators have studied the relation of divergence
of function based on the EC classification. Of course,
these studies were limited to proteins with enzymatic
functions. In a result typical of these studies, Wilson et al.
reported a threshold at 30 – 40% sequence identity for
onset of more prevalent function divergence in their com-
parison of sequence and function conservation using
Enzyme Commission classification (See ref 33, Figure 7A
and 7D).

2.4 Comparison of experimental and non-experimental 
annotations
It could be argued that for purposes of judging the relia-
bility of transfer of annotation among homologous pro-
teins, the comparisons of annotations described in the
previous sections are flawed, because the data contain
annotations produced by transfer. In order to explore this,
we did separate calculations limited to experimentally-
based annotations.

GO provides for recording the source of functional assign-
ments, which may be experimental or inferred. The GO
consortium classified possible sources of annotation, and
ranked them according to suggested reliability. The most
direct evidence is experimental: evidence codes TAS
(Traceable Author Statement), IDA (Inferred from Direct

Assay), IMP (Inferred from Mutant Phenotype), IGI
(Inferred from Genetic Interaction) and IPI (Inferred from
Physical Interaction). Less direct sources of annotation are
ISS (Inferred from Sequence Similarity), IEA (Inferred
from Electronic Annotation) and NAS (Non-Traceable
Author Statement). We used these evidence codes to com-
pare sequence-function relationships for experimental
and non-experimental annotations of proteins.

We extracted proteins of the EF-hand family for which all
annotations had experimental support only. This reduced
the number of proteins from 498 to 47 (9.5%). We
formed two mutually exclusive sets: (1) Proteins with only
experimentally verified annotations, and (2) Proteins
with no experimentally verified annotations. We collected
all the GO IDs for the proteins from both sets and deter-
mined the common and different terms. The experimen-
tal-based set had 30 unique annotations and the non-
experimental set had 65 unique annotations. Both sets of
annotations varied from very specific to quite general
functions.

Some of the results that emerged from studying the rela-
tionships between the annotation sets were anticipated.
All the experimental GO IDs appeared in the non-experi-
mental set, as would be expected if the experimental infor-
mation "seeded" the annotation of other proteins via
transfer of annotations. The comparison of experimental
and non-experimental sets also revealed that the percent-
age of dissimilar functions was higher in the experimental
set (~68%) than in the non-experimental set (~40%) for
the entire range of sequence similarity. When we com-
pared the normalized data (Figures 10, 11), we observed
that (1) a smaller percentage of protein pairs in the exper-
imental set had identical functions (GO distance 0) and
(2) comparison of the distributions of functional differ-
ence for different ranges of sequence divergence were
more similar for the annotations based on non-experi-
mental data than for the annotations based on experi-
mental data.

However, we also observed, to our surprise, that:

1. Many GO IDs in the non-experimental set did not
appear in the experimental set. This raises the question of
what these annotations were based on.

2. The set of non-experimentally-based annotations
included more precise functions than the experimental set.

For instance, there is solid experimental evidence that pro-
teins of the EF-hand families bind Calcium and Zinc;
however, some proteins of the EF-hand family are anno-
tated as binding Magnesium and Iron. The Magnesium
and Iron binding annotations are given the evidence code

Distribution of fraction of Dissimilar function (Ordinate: frac-tion) versus sequence identity (X-axis in bins of 10%)Figure 9
Distribution of fraction of Dissimilar function (Ordinate: frac-
tion) versus sequence identity (X-axis in bins of 10%). The 
top of each box is the upper 75th percentile, the bottom is 
the lower 25th percentile. The median of each box is also 
shown but is superimposed on the 25th percentile. The cir-
cles are single extreme cases. The line joins the mean frac-
tion of Dissimilar function at each level of sequence identity. 
The mean is well above the median due to the extreme 
skewness of the distribution towards mostly similar function.
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IEA (= Inferred from electronic annotation). Although the
non-experimental and experimental annotations share
the idea of cation binding, the details – the identity of the
metals – are different. Moreover, the non-experimental
annotations include specific ligands for which experimen-
tal evidence has not been attributed to homologues.

For another example, the non-experimental set contained
a GO ID which did not appear with experimental support
as the annotation of any homologue: peptidyl-prolyl cis-
trans isomerase activity (GO:0003755). The protein
FKBP9_MOUSE is annotated with this function with the
evidence code IEA. However, a literature search revealed
that Shadidy et al. reported in 1999 that FKBP9_MOUSE
contains an EF-hand domain and showed experimentally-
measured peptidyl-prolyl cis-trans isomerase activity [40].
The annotation correctly assigned the function but did
not report that the assignment was grounded in experi-
mental evidence.

Such observations persuaded us to leave the experimen-
tal/non-experimental comparison at the qualitative level.
We conclude that the results of Figure 8 based on a mix-
ture of experimental and non-experimental annotations:
(1) probably underestimate, to some extent, the extent of
divergence of protein function as a function of amino acid
sequence divergence, and (2) probably overestimate, to

some extent, the danger of introduction of error in anno-
tation transfer.

3. Conclusion
(1) Available data permit a quantitative study of the rela-
tion between divergence of sequence and divergence of
function in proteins, based on the Gene Ontology func-
tional classification.

(2) Sequence divergence is generally accompanied by
higher likelihood of divergence in function, although the
phenomenon of recruitment provides exceptions in
which proteins of similar sequence can perform very dif-
ferent functions.

(3) There is a threshold at about 50% sequence similarity
below which function divergence is enhanced. This is con-
sistent with the conclusions of the previous authors, who
used the EC functional classification.

(4) If we were given only the amino acid sequence of a
protein of unknown function, and asked to estimate the
probability that transferring annotation from the closest
homologue in the databanks would not lead to annota-
tion errors, we would base the answer on the distribution
of similar and dissimilar functions in homologous pro-
teins only. The variation among different families suggests

The dependence of function divergence on sequence divergence for the EF-hand family in which the proteins with only the experimentally supported annotations were utilizedFigure 10
The dependence of function divergence on sequence divergence for the EF-hand family in which the proteins with only the 
experimentally supported annotations were utilized. Abscissa: GO Distance; Ordinate: fraction of comparisons. Different colors 
show distributions of sets of pairs of proteins with different ranges of sequence similarity, divided into ranges of width 10% res-
idue identity.
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that it is worth looking at the families individually. This is
consistent with the conclusions of Ranea et al. [41], who
also observed that families evolve at different rates
depending on their functional class.

(5) Databases are prone to error, because the recording of
experimental sources of functional annotation is a labor-
intensive human activity, and because once introduced,
errors tend to propagate. Given the very crucial impor-
tance of annotation in biomedical research, the develop-
ment of objective methods for quality control and
correction of annotations in databases have been recog-
nized as essential [25].

4. Methods
Sources of data
We downloaded the Gene Ontology network file from the
GO consortium website [44] and PFAM domains from the
Washington University, St Louis, PFAM server. The March
2005 release of PFAM contained 7868 protein families.
PFAM contains seed and full alignments of proteins in
each family. We used the seed alignments, which are high-
quality alignments that do not change substantially

between releases. PFAM uses these alignments as the basis
for doing full alignments for the respective PFAM families
[42,43].

The PIR database at Georgetown University provided the
GO IDs for each protein. PIR presents GO IDs in Molecu-
lar Function, Biological Process and Cellular Component
categories. We used only the Molecular Function assign-
ments.

Preprocessing
For each protein we identified the distal GO ID(s) in its
annotation set. A distal GO ID is the GO ID included in
the annotation of the protein, for which no more specific
(descendant) GO ID is part of the annotation of the same
protein. For example, suppose that in some data base a
protein is given as its functional annotation three GO IDs:
00016788 (hydrolase activity, acting on ester bonds),
0004320 (oleyl-[acyl-carrier protein] hydrolase activity),
and 0000036 (acyl carrier activity) (see Figure 3). GO ID
0004320 is a descendant of 0016788. In this chain of
descent in the GO graph, 0004320 is the more precise
annotation, distal to 0016788. However, 0000036 is not

The dependence of function divergence on sequence divergence for the EF-hand family in which the proteins with only the non-experimentally supported annotations were utilizedFigure 11
The dependence of function divergence on sequence divergence for the EF-hand family in which the proteins with only the non-
experimentally supported annotations were utilized. Abscissa; GO Distance; Ordinate; fraction of comparisons. Different colors 
show distributions of sets of pairs of proteins with different ranges of sequence similarity, divided into bins of width 10% resi-
due identity.
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in the same chain of descent. From these annotations we
would retain only GO: 0004320 and GO:0000036 as dis-
tal GO IDs.

As working data then, for every protein domain we had an
amino acid sequence (from PFAM), and the distal GO
ID(s) (from PIR). For each pair of proteins in each family,
we measured the similarity of the sequence and function.

Calculation of sequence similarity
We aligned amino acid sequences by the standard
dynamic programming algorithm using the BLOSUM 62
matrix [45]. We used the alignment program MUSCLE
[46], with default gap weighting. A comparison of
sequence similarities computed from MUSCLE pairwise
alignments with values computed from the alignments
inherent in PFAM showed that the differences were gener-
ally so small as to make no significant differences in the
results presented (See additional file 1). We note that the
pairwise sequence alignment approach provides a meas-
ure of sequence similarity that is stable and independent
of any realignment or reclassification that PFAM may
adopt.

Calculation of functional similarity
We represented the functional divergence of the two pro-
teins by the distance between their sets of annotations;
that is, between the sets of distal GO IDs assigned to each
protein. The measure of the distance between sets of
annotations was based on a measure of the distance
between individual GO IDs. We defined the distance
between two individual GO IDs as the number of edges in
a minimal-length path between the two nodes in the GO
DAG that passes through the lowest common ancestor of
the two nodes. Based on this, we needed to define a meas-
ure of distance between sets of distal GO IDs, as might
appear in the annotation of a protein with multiple func-
tions.

There are several possible ways to assign a metric to the
GO DAG. Because there is no natural metric, we have cho-
sen one that appeared suitable after being guided by con-
sideration of specific simple cases (see Figure 12). In each
case we are comparing one protein, with one or more
annotations labeled X, to another protein with one or
more annotations labeled O.

Case (a) is the simplest: each protein has one annotation
and the minimum path length between them has length
4. The distance function should report this value.

In case (b), each protein has two annotated functions,
appearing on two branches of the graph. However, the
two proteins show similarity of both functions: for each X
there is an O at distance 2. Although the distance between

the leftmost X and the rightmost O is 4, it does not seem
reasonable to report a functional distance of 4 between
these two proteins. Therefore it would not be suitable to
define a distance function as the set of minimal path
lengths between every X, O pair.

In case (c), one protein has two annotated functions but
the other has only one. The proteins share a similar func-
tion: the rightmost X and the O have distance 2. However,
in this case, compared to (b), it is relevant that the dis-
tance from the leftmost node labeled X to the closest node
labeled O is 4. This is a genuine difference between the
annotated functions of the two proteins. It may be that
protein X was recruited for a novel function not similar to
the function of protein O. It is also possible that protein
O shares the other function with protein X but is not so
annotated. In any event, the distance function should
report both 4 and 2. This implies that it would not be suit-
able to define a distance function as the minimum X-O
distance for all X-O pairs.

We therefore adopted the following definition of the dif-
ference in functional annotations between two proteins, X
and O. For each distal GO ID X, we determine the mini-
mum distance to all the distal GO IDs O, and for each dis-
tal GO ID O, we determine the minimum distance to all
the distal GO IDs X. This set of values represents the dis-
tance between the annotation sets X and O. In the cases
shown in Figure 12, the distances reported would be: (a)
4, (b) 2, 2, (c) 2, 2, 4.

Any classification scheme may vary in the fineness with
which it distinguishes different regions of its domain.
Because for protein function (unlike for sequence or struc-
ture) there is no natural metric, there is no direct way to
calibrate distances between nodes in either the EC or GO
classifications. The problem is somewhat more acute for
the GO classification because of the variable depths of the
DAG. We explored the possibility of "normalizing" the
GO distances according to the local depth of the DAG, but
were unable to do this in a consistent way, largely because
of the non-uniqueness of the lengths of the paths from
any node up to the root.

In order to demonstrate that the problem will not seri-
ously affect the results in at least most cases, we did the
following calculation: For all distal nodes in the GO DAG
(that is, all nodes that had no lower nodes = nodes farther
from the root) we determined the minimal-length path
from the root to the distal node. The result was that for
85% of the distal nodes, the minimal path lengths to the
root were between 4 and 6. For these cases any reasonable
"normalization factor" will vary only between 0.8 and 1.2.
Nevertheless, for the particular application: "Given a
novel sequence, what is the likelihood of error in transfer-
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ring annotation between homologues?" we explicitly rec-
ommend a homologous-family-by-homologous family
approach, in which one would in most cases be compar-
ing functions in similar sections of the GO DAG. For
these, the fineness of the distinctions between related
functions would be comparable, and the differences in
overall depths of different nodes would be a controlled
quantity.
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