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Abstract
Background: Network methods are increasingly used to represent the interactions of genes and/
or proteins. Genes or proteins that are directly linked may have a similar biological function or may
be part of the same biological pathway. Since the information on the connection (adjacency)
between 2 nodes may be noisy or incomplete, it can be desirable to consider alternative measures
of pairwise interconnectedness. Here we study a class of measures that are proportional to the
number of neighbors that a pair of nodes share in common. For example, the topological overlap
measure by Ravasz et al. [1] can be interpreted as a measure of agreement between the m = 1 step
neighborhoods of 2 nodes. Several studies have shown that two proteins having a higher
topological overlap are more likely to belong to the same functional class than proteins having a
lower topological overlap. Here we address the question whether a measure of topological overlap
based on higher-order neighborhoods could give rise to a more robust and sensitive measure of
interconnectedness.

Results: We generalize the topological overlap measure from m = 1 step neighborhoods to m ≥
2 step neighborhoods. This allows us to define the m-th order generalized topological overlap
measure (GTOM) by (i) counting the number of m-step neighbors that a pair of nodes share and
(ii) normalizing it to take a value between 0 and 1. Using theoretical arguments, a yeast co-
expression network application, and a fly protein network application, we illustrate the usefulness
of the proposed measure for module detection and gene neighborhood analysis.

Conclusion: Topological overlap can serve as an important filter to counter the effects of spurious
or missing connections between network nodes. The m-th order topological overlap measure
allows one to trade-off sensitivity versus specificity when it comes to defining pairwise
interconnectedness and network modules.

Background
We consider undirected, unweighted biological networks
that can be represented by a symmetric adjacency matrix
A = [aij]. The adjacency aij between nodes i and j equals 1
if the nodes are connected and 0 otherwise. For notational

convenience, we set the diagonal elements to 1. While the
adjacency matrix considers each pair of genes in isolation,
topological overlap considers each pair of genes in rela-
tion to all other genes in the network. More specifically,
genes are said to have high topological overlap if they are
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connected to roughly the same group of genes in the net-
work (i.e. they share the same neighborhood). To calcu-
late the topological overlap for a pair of genes, their
connections with all other genes in the network are com-
pared. If the 2 nodes connect to the same group of other
nodes, then they have a high 'topological overlap'. Here
we study the properties of the topological overlap meas-
ure (TOM) and propose a generalization that enriches
TOM's sensitivity to longer ranging connections between
nodes.

There is empirical evidence that two substrates having a
higher overlap are more likely to belong to the same func-
tional class than substrates having a lower topological
overlap [1-5]. Such a finding prompts the question
whether a measure of topological overlap based on
higher-order neighborhoods would lead to a more sensi-
tive and robust measure of interconnectedness. In this
paper, we generalize the topological overlap measure by
incorporating information from higher-order neighbor-
hoods and show that it leads to a definition of larger mod-
ules. Specifically, the m-th order topological overlap
measure is constructed by (i) counting the number of m-
step neighbors that a pair of nodes share and (ii) normal-
izing it to take a value between 0 and 1. The resulting node
similarity measure is a measure of agreement between the
m-step neighborhoods of 2 input nodes. Such a measure
can be applied in a number of ways, for instance, ranking
the genes, similarity search, prediction based on k-nearest
neighbors, multi-dimensional scaling and module identi-
fication by clustering.

Results
The algebraic definition of the topological overlap meas-
ure can be found in Eq. (7) in the Methods section. Here
we provide a more intuitive set theoretic interpretation of
the topological overlap measure. Our generalization of
the TOM is motivated by the observation that Eq. (7) can
be expressed as

where N1(i) denotes the set of direct neighbors of i exclud-
ing i itself and |·| denotes the number of elements (cardi-
nality) in its argument. The quantity |N1(i) ∩ N1(j)|
measures the number of common neighbors that nodes i
and j share whereas |N1(i)| gives the number of neighbors
of i. The topological overlap tij assumes a minimal value of
0 if there is no direct linkage between the two nodes and
if they share no common direct neighbors. It assumes a
maximum value of 1 if there is a direct link between the
two nodes and if one set of direct neighbors is a subset of
the other. The fact that tij is bounded between 0 and 1 is

used in the definition of the topological overlap based dis-
similarity measure (see Eq. 4).

Generalizing TOM to m-step neighborhoods
By denoting Nm(i) (with m > 0) the set of nodes (exclud-
ing i itself) that are reachable from i within a path of
length m, i.e.,

Nm(i) := {j ≠ i|dist(i, j) ≤ m}  (2)

where dist(i, j) is the geodesic distance (shortest path dis-
tance) between i and j, we obtain a very natural generali-
zation of the TOM, which reads as follows

We define the matrix T[m] = [ ] as the m-th order general-

ized topological overlap measure (GTOMm). Thus, GTOMm
measures the agreement of the m-step neighborhoods
between 2 nodes. When m = 1, this definition reduces to
the original TOM in Eq. (7).

We find it convenient to define the zeroth order GTOM0

as the adjacency matrix, i.e. T[0] ≡ A. Since T[m] is symmetric
and non-negative, T[m] can be considered as a similarity
measure [6]. To turn T[m] into a dissimilarity measure for

use in clustering, we make use of the fact that  is

bounded by 1. The generalized topological overlap-based
dissimilarity measure is defined by

Predicting essential proteins in a Drosophila protein 
network
Knock-out experiments in lower organisms (e.g. yeast, fly,
worm) have shown that essential proteins tend to be more
highly connected than non-essential proteins [7-9]. To
illustrate the biological usefulness of the proposed inter-
connectedness measures, we set out to test the ability of
GTOM to predict essential proteins using a Drosophila
(fly) protein-protein interaction network from the BioG-
rid Database [10]. In our version of the database, the larg-
est connected component was comprised of 2294
proteins with 21217 pairwise interactions. Knock-out
experiments had implicated 282 essential proteins.

To illustrate the use of GTOMm, we will show that pro-
teins that are highly interconnected with an essential pro-
tein have an increased chance of being essential as well.
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Toward this end, we make use of the following terminol-
ogy. A GTOMm neighborhood of size S around node i is

defined as the set (i) of S genes with highest

GTOM value with i. For example, node j is in the size S =
1 GTOMm neighborhood around node i if it has the high-

est topological overlap  across all nodes. For simplic-

ity, we ignore ties and define (i) as the set of

genes that directly link to node i (irrespective of the neigh-
borhood size S).

Since essential proteins may participate in the same path-
way, it is biologically plausible that the GTOMm neigh-
borhoods of an initial essential protein contain essential
proteins as well. Below, we show that for a fixed neighbor-
hood size S and a fixed essential protein, the GTOM2
neighborhood contains a higher proportion of essential

proteins than the corresponding GTOM0 or GTOM1
neighborhoods. This provides indirect empirical evidence
that the proposed higher order GTOM measure (m = 2)
outperforms the standard GTOM measure (m = 1) in this
application.

Specifically, we considered the neighborhoods around
each of the 30 essential proteins with highest nodal
degrees (referred to as essential hub proteins). Since on
average the GTOM0 neighborhoods of these essential hub
proteins contain 40 proteins, we considered the following
neighborhood sizes S = 1,..., 40. For each of the essential
hub proteins, we determined the GTOMm neighborhood
for m = 0,1,2,3. For a given neighborhood of size S, we
determined the proportion of essential proteins. Next we
averaged these proportions across the 30 essential hub
proteins. Figure 1 reports the average proportion of essen-
tial proteins (y-axis) versus different neighborhood sizes
(x-axis).

GTOMhoodS
m[ ]

tij
m[ ]

GTOMhoodS
[ ]0

Proportions of essential proteins among the S proteins that are most highly interconnected with a given essential hub protein in the Drosophila protein-protein interaction networkFigure 1
Proportions of essential proteins among the S proteins that are most highly interconnected with a given essen-
tial hub protein in the Drosophila protein-protein interaction network. For a given neighborhood size S (x-axis) we 
averaged the results over 30 essential hub proteins (y-axis). The black horizontal line (GTOM0) represents the average pro-
portion of essential proteins among the directly linked neighbors (adjacency = 1) of an essential hub protein.
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As can be seen from Figure 1, GTOM2 performs better
than the other measures in this application involving a
relatively sparse network. For example, when considering
neighborhoods comprised of 10 proteins (rank 10) based
on GTOM0, GTOM1, GTOM2, GTOM3 the proportion of
essential proteins is given by 0.59, 0.59, 0.68, and 0.58,
respectively. We find that neighborhood analysis with
GTOM2 leads to significantly better results than GTOM0
(Wilcoxon p-value = 0.034), GTOM1 (p-value = 0.015)
and GTOM3 p-value = 0.02).

Module detection in a yeast co-expression network
There is evidence that genes and their protein products
carry out cellular processes in the context of functional
modules [11]. Thus, an important task in biological net-
work analysis is to identify groups, or 'modules', of
densely interconnected genes. Here we focus on module
identification methods that are based on using a node dis-
similarity measure in conjunction with a clustering
method. Further, we assume that the nodes in a network
module have high topological overlap with their neigh-
bors. A review of alternative module detection methods is
beyond the scope of this article, see e.g. [12-21].

To demonstrate the usefulness of the GTOM dissimilarity
measures for module detection, we apply the proposed
measures to gene co-expression networks constructed
based on a microarray dataset recording gene expression
levels during different stages of cell cycle in yeast [22].
Because the transcriptional response of cells to changing
conditions involves the coordinated co-expression of
genes encoding interacting proteins, studying co-expres-
sion patterns can provide insights into the underlying cel-
lular processes [23,24]. As detailed in the Methods
section, the co-expression network was constructed by
thresholding the absolute pair-wise (Pearson) correlation
coefficient between the expression profiles. We cluster the
genes into modules using the average linkage hierarchical
clustering with different choices of dissimilarity measures.
Modules correspond to branches of the resulting cluster-
ing tree. While there is evidence that this clustering proce-
dure leads to biologically meaningful modules in several
applications [1-5,25], we do not claim that this clustering
method is optimal. Since our interest lies in the perform-
ance of topological overlap based dissimilarity measures
but not the clustering procedure, comparing different
clustering procedures is beyond the scope of this article. In
our applications, modules correspond to branches of a
hierarchical clustering dendrogram [6]. Figure 2 shows the
modules (as branches of the dendrogram) detected by
applying the average linkage hierarchical clustering with 3
different similarity measures: The adjacency matrix
(GTOM0), Ravasz et al.'s TOM (GTOM1) and a general-
ized TOM (GTOM2) presented in the Results section.
Genes that belong to the functional class 'protein biosyn-

thesis' are grouped together when the GTOM2 measure is
used. However, they are separated into two distinct sub-
groups if GTOM0 or GTOM1 are used. This suggests that
GTOM2 is a more sensitive measure for detecting the
higher order connections between the nodes in this large
module. Thus membership in the protein biosynthesis
module is more robust when neighborhoods of step size
2 is used for measuring topological overlap.

For the sake of brevity, we only present our analysis of the
protein biosynthesis module in this methodological
paper. Since the protein biosynthesis pathway is relatively
large, it makes sense to use a relatively sensitive dissimilar-
ity measure (GTOM2) since it favors the discovery of large
modules. However, when considering a functional cate-
gory that involves few genes, it would be better to use a
dissimilarity measure with higher specificity (GTOM0 or
GTOM1) since it favors the discovery of smaller modules.
A more detailed biological analysis of a related yeast co-
expression network can be found in [3].

Comparing GTOMm to the correlation coefficient
Since the absolute value of the Pearson correlation coeffi-
cient is widely used for clustering gene expression profiles,
we compare it here to the GTOM measures. Specifically,
we consider the following class of correlation based dis-
similarities:

Here, ρij is the (Pearson) correlation coefficient between
the expression profiles of i and j. Setting p = 1 yields the
absolute correlation coefficient which is widely used for
clustering genes. Setting p > 1 has the effect of emphasiz-
ing larger values of |ρij| while deemphasizing the smaller
ones. We consider p = 6 since we find that the resulting
distance is highly related to GTOM1 in the yeast dataset.
Such a setting has also been used in [26] for functional
annotation.

Figure 3 shows the relationship between six dissimilarity
measures, GTOM-based dT,[m] for m = 0,1,2,3 and correla-
tion-based dC,[p] for p = 1,6. For the yeast co-expression
network, we arrive at the following results. First, dC,[6] is
highly correlated (> 0.8) with the lower-order GTOM dis-
similarities, dT,[0] and dT,[1]. The correlation-based measure
dC,[1] is highly correlated (0.79) with dT,[2]. Second, the
higher-order GTOM dissimilarities dT,[2] and dT,[3] show a
high correlation of 0.78. Third, two GTOM-based dissim-
ilarities are moderately correlated (< 0.4) if their orders
differ by 2 or more. Finally, the frequency distribution of
dT,[3] is concentrated around 0 while that of the others are
concentrated around 1. This illustrates that increasing m
leads to increased sensitivity but decreased specificity
when defining interconnectedness.

dij
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Hierarchical clustering and GTOM plots

In networks involving few nodes, modules can easily be
identified by inspecting the network but for large net-
works involving hundreds of nodes, it is useful to provide
a 'reduced' view of the network. For example, one can vis-
ualize the topological overlap dissimilarity using classical
multi-dimensional scaling plots [27], see the Multi-
dimensional Scaling Plots section. Alternatively, it can be
useful to visualize the topological overlap dissimilarity

matrix [ ] directly using a TOM plot. As an example,

consider the four GTOM plots corresponding to the
zeroth- to third-order GTOM in Figure 4. The dataset used
here is the same as the one in Figure 2. Red/yellow indi-

cate low/high values of . Both rows and columns of

 have been sorted using the hierarchical clustering

tree. Since  is symmetric, the GTOM plot is also

symmetric around the diagonal. Since modules are sets of
nodes with high (generalized) topological overlap, mod-
ules correspond to red squares along the diagonal.

Figure 4 shows that modules are more pronounced and
larger with increasing values of m. This illustrates that

higher values of m increase the sensitivity of measuring
interconnectedness at the expense of specificity. This is
further discussed in the section on the asymptotic behav-
ior of GTOM below. For comparison purposes, a color bar
is shown on the top on each GTOM plot. The color bar is
ordered by the respective dendrogram and colored by the
GTOM1 module assignment (c.f. Figure 2B.) The fact that
the module colors stay together for different choices of m
provides evidence that the module assignment is fairly
robust with respect to the dissimilarity measure. One
advantage of our proposed general class of dissimilarity
measures is that they allow one to verify that module
assignment is robust with respect to different network dis-
similarities. If there is a strong biological signal, one
would hope that the results are robust with respect to dif-
ferent choices of statistical methods.

But a more subtle analysis provides indirect empirical evi-
dence of the usefulness of GTOM2 for module definition.
Note that a second color bar is included on the left of the
heatmap. Here, dark red indicates the membership to the
class 'protein biosynthesis'. Genes that belong to other
classes (or are unknown) are depicted by a gray color in
the bar. We observe that protein biosynthesis genes are
grouped together in the GTOM2 and GTOM3 plots.

dij
mT,[ ]

dij
mT,[ ]

dij
mT,[ ]

dij
mT,[ ]

Yeast network modules and protein biosynthesis genes for different GTOMmFigure 2
Yeast network modules and protein biosynthesis genes for different GTOMm. A. The adjacency matrix (GTOM0). 
B. Standard Ravasz et al.'s TOM (GTOM1). C. Our new generalized TOM (GTOM2). In each column, the top row shows the 
dendrogram obtained by applying the average linkage hierarchical clustering to the corresponding GTOM dissimilarity, the mid-
dle row shows the color bar ordered by the corresponding dendrogram but colored by the module assignment with respect to 
the TOM measure in B, the bottom shows the color bar ordered by the corresponding dendrogram but colored in dark red if 
the gene belongs to the class 'protein biosynthesis'. The modules defined by the TOM are the branches of the dendrogram in 
B at the cutoff 0.95. Almost all protein biosynthesis genes are grouped together by the proposed new TOM measure whereas 
the other two measures tend to distribute the class over two modules. The modules defined by GTOM2 are more pro-
nounced in the sense that they are separated by larger distances.
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Multi-dimensional scaling plots
We visualize the dissimilarity measures using classical
multi-dimensional scaling (MDS) plots. Classical multidi-

mensional scaling takes as input matrix a dissimilarity
matrix (here the GTOM dissimilarity). The result of multi-
dimensional scaling are vectors in a low dimensional

Pair-wise scatter plots between different GTOMm dissimilarity measuresFigure 3
Pair-wise scatter plots between different GTOMm dissimilarity measures. The upper triangular panel shows the 
scatter plots, the lower triangular panel shows the corresponding Pearson correlation coefficients, the diagonal panel shows 
the frequency distributions of the dissimilarities. Correlation-based dissimilarities dC,[p] are denoted by dissCorp. GTOM-based 
dissimilarities dT,[m] are denoted by dissGTOMm. Note that dissGTOM0 (= 1 - ADJ) takes on binary values for the unweighted 
network.
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Topological overlap matrix plots for the yeast gene co-expression networkFigure 4
Topological overlap matrix plots for the yeast gene co-expression network. A. GTOM0 plot. B. GTOM1 plot. C. 
GTOM2 plot. D. GTOM3 plot. The color bar on the top of each heatmap shows the module assignment obtained from 
GTOM1. The color bar on the left of each heatmap shows the functional category of the corresponding genes. Dark red indi-
cates the membership to the class 'protein biosynthesis'. Modules are more pronounced in the GTOM2 and GTOM3 plots 
(larger contrast between the diagonal blocks and off-diagonal blocks). Smaller modules (as diagonal blocks of red) are more vis-
ible in GTOM0 and GTOM1 plots whereas larger modules are more respected in GTOM2 and GTOM3 plots. However, 
GTOM3 leads to excessively large modules and thus the specificity of the modules is compromised. Protein biosynthesis genes 
are grouped together in the GTOM2 and GTOM3 plots.
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Euclidean space (here the 2 dimensional Euclidean plane)
such that the Euclidean distances between the vectors
approximate the dissimilarities. To compute these vectors,
an eigenvector problem is solved to find the locations that
minimize distortions to the dissimilarity matrix [27].

The MDS plots are shown in Figure 5. All the plots are
color-coded according to the modules with respect to
GTOM1 depicted in Figure 2. The relative position of the
points are well-preserved as we can see that points having
the same color are almost always clustered together.
Genes that belong to the class 'protein biosynthesis' are
depicted by the symbol '▲'. Other genes are denoted by a
'❍'. Interestingly, almost all 'protein biosynthesis' genes
are in the vicinity of each other. The plot using the
GTOM1 dissimilarity in Figure 5B shows a more clear sep-
aration between the red and brown modules.

We observe from the MDS plots that there is a tendency of
consolidation as the order m of the GTOM measure
increases. This phenomenon can be seen in Figure 5D
where GTOM3 is used and a few 'sinks' (points of attrac-
tion) have been formed.

Robustness of the results to network perturbations

To demonstrate that GTOM2 may outperform GTOM1
and GTOM0 in the case of noisy network data, we ran-
domly removed connections in the yeast gene co-expres-
sion network. Specifically, we randomly set a proportion
p = 0, 0.1, 0.25, 0.33, 0.5, 0.67, 0.75, 0.9 of entries in the
adjacency matrix to 0. We used the perturbed network to
compute the corresponding GTOMm measures (for m =
0,1,2,3). To quantify the ability of GTOMm to separate
protein biosynthesis genes ( ) from non-protein biosyn-

thesis genes ( ) we defined a measure of separation,
which is motivated by the intergroup dissimilarity meas-
ures used in average linkage hierarchical clustering. Specif-
ically, we define

where

is the average GTOMm among protein biosynthesis genes
and

is the average GTOMm between protein biosynthesis and
non-protein biosynthesis genes. Here, | | and | |
denote the total number of protein biosynthesis genes
and non-protein biosynthesis genes respectively. The
higher the value of GTOMdiff(m), the better is the per-
formance of GTOMm in this application. For each proba-
bility p, we averaged the results across 20 perturbed
versions of the network. The results in Figure 6 demon-
strate that high values of m counter the effect of misspeci-
fied (missing) adjacencies in this application.

A simple example
An example comparing modules detected by the GTOM1
and GTOM2 similarities is given in Figure 7. As a rule of
thumb, if many of the nodes in a module are separated by
a distance of 1 or 2 from each other, then they form a tight
module with respect to the GTOM1 similarity. Likewise, if
many of the nodes in a module are separated by a distance
of 3 or 4 from each other, then they form a tight module
with respect to the GTOM2 similarity.

The asymptotic behavior of GTOMm for large m
Here we consider the situation when m is larger than or
equal to the network diameter, i.e. each pair of nodes can
be connected with a path of length ≤ m. In this case,
|Nm(i)| = n - 1 and |Nm(i) ∩ Nm(j)| = n - 2 where n denotes
the network size. Then

when n is large. This demonstrates that for sufficiently
large values of m all pairs of nodes within a connected net-
work component will be highly interconnected. Thus,
large and tight modules result when GTOMm with large m
is used as input of a clustering procedure, see Figure 4.

Choosing the order m
How to choose the order m is an important question in
many applications. While it seems intuitive that the
choice of m has some relationship to the network diame-
ter, it is unclear to us how to use the network diameter to
guide the choice of m (other than providing an upper
bound).

In general, the optimal choice of m will depend on the
data quality and the goals of the analysis. Roughly speak-
ing, if the adjacency matrix contains very few errors and if
the goal is to determine which nodes are linked to a given
node then m = 0 is the obvious choice. But if many adja-
cencies have falsely been set to 0 (since the corresponding
connections are unknown) and/or if the goal is to detect
possibly longer ranging interactions then relatively large
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values of m may uncover that 2 nodes are interconnected
even if the corresponding adjacency is 0.

When an external label is available for at least some of the
nodes then one can use it to inform the choice of m. For
example, when the external node label y encodes group

membership, then one can choose m so that the groups
have high within group interconnectedness and low
between group interconnectedness. To make this more
specific, we assume that there is evidence that the nodes of
group 1 are highly interconnected and that they are well
separated from nodes of group 0. For example, in our

Multi-dimensional scaling plots of the yeast gene co-expression networkFigure 5
Multi-dimensional scaling plots of the yeast gene co-expression network. MDS plots using A. GTOM0, B. GTOM1, 
C. GTOM2, and D. GTOM3. The coloring scheme is used to reflect the 7 modules shown in Figure 2B detected by using hier-
archical clustering with the GTOM1-based dissimilarity. The symbol '▲' denotes genes that belong to the functional category 
'protein biosynthesis'. Genes that belong to other classes are denoted by a '❍'. In general, the module assignment is preserved 
across the different GTOM measures. But the spatial distributions of the points vary to a large extent. Genes in the 'protein 
biosynthesis' class appear to be closer together.
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yeast gene co-expression network, we have shown above
that the average GTOMm measure between protein bio-
synthesis genes (group 1) is larger than the average
GTOMm measure between protein biosynthesis genes and
non-protein biosynthesis genes (Figure 6).

Analogous to Eq. 6, we define the following measure of
mean GTOM difference between the 2 groups

where the indicator function I(·) equals 1 if the condition
is satisfied and 0 otherwise. Note that

 equals the mean interconnect-

edness of group 1 nodes and 

equals the mean interconnectedness between group 1 and
group 0 nodes. Since high values of GTOMdiff(m) indi-
cate a good separation between the 2 groups, it is natural
to choose m as the value that maximizes GTOMdiff(m).
Obviously, this criterion for choosing m only works if
prior data allow one to define the external label y.
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Separation of protein biosynthesis genes from non-protein biosynthesis genes in perturbed versions of the yeast networkFigure 6
Separation of protein biosynthesis genes from non-protein biosynthesis genes in perturbed versions of the 
yeast network. The average separation (c.f. Eq. 6) is reported for GTOM0 (red), GTOM1 (green), GTOM2 (blue) and 
GTOM3 (brown). To assess the robustness of the GTOM measures to random deletions, we randomly deleted a proportion p 
of connections (adjacencies) and averaged the results across 20 draws. Note that GTOM2 outperforms the other measures if 
p < 67%. GTOM3 outperforms GTOM2 if more than 67% of adjacencies are deleted. This illustrates that high values of m can 
counter the effect of misspecified (unknown or missing) adjacencies.
Page 10 of 14
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:22 http://www.biomedcentral.com/1471-2105/8/22

Page 11 of 14
(page number not for citation purposes)

A simple example where GTOM2 is superior to GTOM1Figure 7
A simple example where GTOM2 is superior to GTOM1. GTOM neighborhood of size S = 7 around node 1. A. 
GTOM1 neighbors are colored in black. B. GTOM2 neighbors are colored in black. Note that GTOM2 detects the 'true' 
neighborhood (comprised on nodes 1 through 8) while GTOM1 misses nodes 6 and 7.
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Discussion
Several measures that keep track of shared 1 step neigh-
bors have been proposed in the literature, e.g. [28]. Here,
we propose a natural generalization of the widely used
topological overlap matrix. This class of new measures is
constructed by keeping track of the number of m-step
neighbors that a pair of nodes share. The GTOM similarity
measure is normalized to take on values in the unit inter-
val. A corresponding dissimilarity measure can be defined
by subtracting the GTOM similarity from 1.

While we find it a worthwhile goal for future research to
develop statistical or heuristic criteria for choosing m, we
find that a main advantage of GTOMm is that it allows
one to assess the robustness of network analysis results. In
many applications (e.g. module definition, neighbor-
hood analysis), it will be worthwhile to show that the
results are relatively robust with respect to m since this
indicates that the biological signal is strong. While we
present applications where non-standard choices of m
lead to superior results, we have found in several other
(unreported) applications that the results are robust with
respect to m = 0,1, 2. By randomly deleting network adja-
cencies in the yeast gene co-expression network applica-
tion, we have shown that large values of m can counter the
effect of misspecified (missing) adjacencies. GTOMm
becomes uninformative if m is larger than the network
diameter. Thus, GTOMm will be useful in networks with
moderate or large 'degree of separation' (average path
length between any pair of nodes). Since biological net-
works tend to have low diameters [29], we expect that low
values of m will be preferable in most applications. But we
have provided two real data applications where m = 2 is
preferable over m = 1. In general, the GTOM measures
with lower orders m will be useful for discovering small
modules while those with higher orders favor the discov-
ery of larger modules.

A limitation of our approach is that it is only defined for
unweighted networks, i.e. the entries of the adjacency
matrix should be 0 or 1. Another limitation is that we only
consider the topological overlap between 2 nodes. A
multi-node extension of the GTOM1 measure is presented
in [30].

Conclusion
The generalized topological overlap measure can serve as
a filter for countering the effect of spurious or missing
connections. The order m of the topological overlap meas-
ure can serve as a tuning parameter for interconnectedness
that trades off sensitivity versus specificity. Since different
orders of m probe different neighborhoods, adjusting m
allows the user to consider network modules at different
'zoom' levels. We provide additional Materials and Meth-
ods as well as the statistical software code, a tutorial along

with customized R functions, and the accompanying data
files at the web page [31]. Thus, the reader should be able
to reproduce all of our findings.

Methods
Topological overlap matrix
The topological overlap of two nodes reflects their similar-
ity in terms of the commonality of the nodes they connect
to. Note that in an unweighted network, the number of
shared neighbors of nodes i and j is given by ∑u≠i,j aiu auj.
Ravasz et al. [1] define the topological overlap measure tij
as follows

where lij = ∑u≠i,j aiu auj, ki = ∑u≠i aiu. An advantage of the
quantity 1 - aij in the denominator is that it prevents the
denominator from becoming 0 when the connectivities
(degrees) ki and kj are 0. Since aij ≤ 1, one can easily show
that lij = ∑u≠i,j aiu auj ≤ ∑u≠i aiu - aij = ki - aij. It follows that lij ≤
min(ki - aij, kj - aij) and that the numerator of tij is smaller
than the denominator, i.e. 0 ≤ tij ≤ 1.

We remark that the definition of TOM given in [1] is
slightly different from Eq. (7):

(lij + aij)/min{ki, kj}. In a personal communication with E.
Ravasz, the definition in Eq. (7) is preferred, which is also
given in the online supporting material of [1]. The inclu-
sion of the term aij in the numerator makes tij explicitly
depend on the existence of a direct link between the two
nodes in question.

An algorithm for computing GTOM

In this subsection, we present computational formulas for
T[m]. In this subsection, we assume that the diagonal of A
has been set to 0. Then the ij-th entry of the matrix power
Am counts the number of paths of length m connecting
nodes i and j [32]. But the paths are not necessarily geo-

desic and may contain cycles. Then the matrix S[m] ≡

[ ]:= A + A2 + ... + Am counts how many distinct paths

of length smaller than or equal to m connect each pair of

nodes. Thus, we have Nm(i) = {j ≠ i |  > 0}. If we define

a binary matrix B[m] to be

t
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then Nm(i) ≡ {j ≠i|  = 1}. To obtain the number of

shared m-step neighbors, |Nm(i) ∩ Nm(j)|, we simply take

the inner product of the i-th and the j-th columns of B[m]

which can be obtained from the matrix (B[m])2 = [|Nm(i) ∩
Nm(j)|] because of the symmetry of B[m]. In particular,

|Nm(i)| is given by the i-th diagonal entry of (B[m])2. These

values can then be used to compute T[m] using formula
(3). It is worth repeating that the formulas in this subsec-
tion assume that the diagonal of the adjacency matrix is 0.
Since matrix multiplication is computationally expensive,
the computation of S[m] may be sped up using the formula
A(S[m-1]+ I).

Using hierarchical clustering for module detection
By using the topological overlap measure as an input of
the average linkage hierarchical clustering procedure, we
define modules as discrete branches of the clustering tree
(e.g. Figure 2). As in all hierarchical clustering analysis, it
is a judgement call where to cut the tree branches. When
detecting modules using hierarchical clustering, we use
GTOM plots to aid the choice of the dendrogram's height
cutoff (see the Results section). Thus the modules are
found by inspection: a height cutoff value is chosen in the
dendrogram such that some of the resulting branches cor-
respond to the discrete diagonal blocks (modules) in the
GTOM plot. The robustness of the module definition with
respect to the height cut-off can be explored using our
online R software tutorial.

Yeast gene co-expression network construction
Two genes in our co-expression network are linked if they
are highly correlated across the samples. To construct the
gene co-expression networks from the microarray data
[22], we first select the 4000 yeast genes having the high-
est variance across the microarray samples. Then we calcu-
lated all possible pairwise Pearson correlations for the
4000 genes across the microarrays. Because microarray
data can be noisy and the number of samples is often
small, absolute values of the correlations were thresh-
olded using a relatively large hard threshold of τ = 0.7.
This threshold corresponds to a significance level of p =
8.7 × 10-8 (Fisher's correlation test) and leads to an approx-
imate scale-free topology as described in [33]. Such a
topology implies the existence of 'hub genes' [34] and the
robustness to random perturbations [35] which are bio-
logically desirable properties. The topology of the yeast
network data is further discussed in [3].
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