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Abstract
Background: Cross-validation (CV) is an effective method for estimating the prediction error of
a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing
classifier parameter values that minimize the CV error estimate. We have evaluated the validity of
using the CV error estimate of the optimized classifier as an estimate of the true error expected
on independent data.

Results: We used CV to optimize the classification parameters for two kinds of classifiers;
Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created,
with no difference in the distribution of the features between the two classes. Using these "null"
datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV
was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM.
Independent test data was created to estimate the true error. With "null" and "non null" (with
differential expression between the classes) data, we also tested a nested CV procedure, where an
inner CV loop is used to perform the tuning of the parameters while an outer CV is used to
compute an estimate of the error.

The CV error estimate for the classifier with the optimal parameters was found to be a substantially
biased estimate of the true error that the classifier would incur on independent data. Even though
there is no real difference between the two classes for the "null" datasets, the CV error estimate
for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated
training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on
38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was
no better than chance.

The nested CV procedure reduces the bias considerably and gives an estimate of the error that is
very close to that obtained on the independent testing set for both Shrunken Centroids and SVM
classifiers for "null" and "non-null" data distributions.

Conclusion: We show that using CV to compute an error estimate for a classifier that has itself
been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for
estimating true error of a classifier developed using a well defined algorithm requires that all steps
of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV
procedure provides an almost unbiased estimate of the true error.
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Background
The unique characteristics of microarray data have stimu-
lated the development of a multitude of analysis meth-
ods. Microarray data is distinguished by very small
numbers of samples compared to the number of features
measured. Most previous machine learning methods have
been developed on data where the opposite holds true;
the number of samples is much larger than the number of
features. As a result, such analysis methods have to be
modified for microarray datasets.

An example is the common paradigm of splitting the data-
set into training and test data. The training data is used for
selecting features and training a classifier. Once a final
classifier has been specified, it can be used to predict the
classes of the test samples. The mean error on a suffi-
ciently large (ideally infinite) test dataset gives the true
error of the classifier.

When the number of samples n is small, it is important to
ensure that the data used to test the classifier is not part of
the data used to train it. Testing the classifier on the same
samples that were used to train it gives the re-substitution
estimate of the true error, which is known to give falsely
low (usually zero) error estimates for small n.

With microarray data, splitting the sample into large train-
ing and test sets is usually not feasible since the number of
samples is so small. Cross-validation (CV) is one solution
to the lack of sufficiently large training and testing sets [1],
where, instead of testing a fixed classifier (as we had in the
split sample case) we have a fixed classifier training algo-
rithm. A classifier training algorithm takes a set of samples
and does feature selection and classifier training and
returns a single, well defined classifier. In CV, part of the
data is left out and the rest is used by the classifier training
algorithm to develop a classifier. The classifier thus
obtained is used to predict the classes of the left out sam-
ples. This loop is repeated for different left out portions.
The average error thus obtained on the entire dataset (the
CV error estimate) can be interpreted as an estimate of the
true error for the classifier we would obtain if we used the
classifier training algorithm on the entire dataset. In the
case where the left out data consists of one sample only
(Leave-One-Out-CV), it can be shown that the CV error
estimate is an almost unbiased estimate of the true error
expected on an independent test set for the classifier one
would obtain if the classifier training algorithm was used
on the entire dataset (Theorem 10.8, 8).

However, CV methods are proven to be unbiased only if
all the various aspects of classifier training takes place
inside the CV loop. This means that all aspects of training
a classifier e.g. feature selection, classifier type selection
and classifier parameter tuning takes place on the data not

left out during each CV loop. It has been shown that vio-
lating this principle in some ways can result in very biased
estimates of the true error. One way is to use all of the
training data to choose the genes that discriminate
between the two classes and only change the classifier
parameters inside the CV loop. This violates the principle
that feature selection must be done for each loop sepa-
rately, on the data that is not left out. As pointed out by
Simon et al. [2], Ambroise and McLachlan [3] and
Reunanen [4], this gives a very biased estimate of the true
error; not much better than the resubstitution estimate.
Over-optimistic estimates of error close to zero are
obtained, even for data where there is no real difference
between the two classes.

Another violation of the principle is to do any kind of clas-
sifier parameter selection outside the CV loop. Examples
of these classifier parameters are the numbers of neigh-
bors for a Nearest Neighbor classifier or kernel parameters
for the Support Vector Machine (SVM) classifier. To find
the best values of these parameters for a given dataset, we
can compute the CV error estimate for the dataset using
different values of the parameters. Then the classifier
parameter with the minimum CV error estimate is chosen
to create the final classifier. The final classifier is trained
on the entire dataset using the chosen optimal classifier
parameters.

This comes under the general term of wrapper methods,
where a CV algorithm is "wrapped" inside a search algo-
rithm that tries to minimize the CV error. Such wrapper
methods have proven very useful for data-driven adapta-
tion of classifier parameters.

However, this involves a kind of additional training of the
classifier (in the form of selecting the classifier parameter)
that is done outside the CV loop. This violates the
assumption that all training is done within the CV loop
on the data not left out. Thus the guarantee of unbiased
estimation of true error is not valid and there is a possibil-
ity of bias. In other words, the CV error estimate for the
classifier parameters that minimize the CV error estimate
could be a biased estimate of the true error of the final
classifier trained on all the data using the optimal classi-
fier parameters.

We investigate this possibility using two wrapper algo-
rithms. The first is the Shrunken Centroids method of Tib-
shirani et al. [5] where an optimum value of a classifier
parameter ∆ that controls the degree of shrinkage is
obtained as the one that minimizes the 10-fold CV error.
The second is a variant of the Support Vector Machine pro-
posed by Peng et al. [6] which selects SVM kernel parame-
ters that minimize the Leave-One-Out-CV (LOOCV)
error. The first article uses both the CV error estimate on
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the training set and the error on the test set for determin-
ing the optimal value of the parameters, thus making the
test set part of the training process. The second article
presents only the minimum CV error estimate obtained
on the training set. The true error obtained on an inde-
pendent test set is not given for either.

Since selection of classifier parameters that minimize CV
error estimates is a kind of training, it should be included
as part of the classifier training algorithm. Thus the classi-
fier training algorithm in this case is the complete wrapper
algorithm where, given a dataset, the classifier is trained
the following way. First the CV error estimate is computed
for different values of the classifier tuning parameters.
Then, the parameters with the smallest CV error estimate
are used to create a classifier using all the data. This satis-
fies the definition of a classifier training algorithm, i.e. an
algorithm that takes a dataset and returns a single, well
defined classifier.

Now that we have a wrapper algorithm that is a well
defined classifier training algorithm, we can use CV to get
an estimate of the true error for the classifier it returns. We
can embed the complete wrapper algorithm (with its own
CV loop for finding the best classifier parameters) inside
another CV loop that computes the error estimate. Note
that this is no different from the usual CV method. Here,
instead of using CV to find an error estimate for a particu-
lar classifier (e.g. Nearest Neighbors) we use CV to find an
error estimate for an optimized classifier (e.g. Nearest
Neighbors with the optimal number of neighboring sam-
ples determined by minimizing the CV error estimate).
Thus there are two CV loops; the inner loop is part of the
wrapper algorithm and the outer loop computes an esti-
mate of the true error. A similar method was used by Izuka
et al. [7]. In this article, we investigate the effect on the bias
when using this nested CV approach.

Shrunken centroids

This classifier, originally proposed by Tibshirani et al [5],
is an extension of the nearest centroid classifier. In the
nearest centroid classifier the training set is used to calcu-

late the centroids  and  (mean expressions of the

genes) for the two classes. A new sample is compared to
the two centroids and classified according to the class of
the nearest centroid. In the shrunken centroids method, a

parameter ∆ is used to shrink the class centroids towards
the overall centroid after standardizing by the within class
standard deviation. The centroid belonging to class k is
brought closer to the overall centroid  (mean of samples
of all classes pooled together) by

where s is the vector of pooled within class standard devi-
ation for all genes, s0 is the median of the elements of s, dk
is given by

and (...)+ denotes the positive part of the quantity in the
parenthesis, i.e. equal to the quantity if it is greater than
zero, and zero otherwise. Thus genes which are not very
differentially expressed will contribute less to the classifi-
cation than genes that are more discriminating. The
parameter ∆ can be varied to vary the number of genes
used.

In the original paper, 10-fold CV is used to obtain the CV
error estimate for a particular choice of ∆. There is no
objective guideline given for selecting ∆ based only on the
training data. The authors vary ∆ and use the value that
minimizes the CV error estimate on the training set and
the error on the testing data simultaneously. Thus the test
set is used in the selection of the classifier parameters,
which is problematic.

Support Vector Machines
Peng et al. present a method for feature selection using
genetic algorithms (GA) and recursive feature elimination
(RFE) in combination with a support vector machine
(SVM) classifier [6]. SVMs were introduced by Vapnik [8]
as linear hyperplanes that separate data belonging to dif-
ferent classes while maximizing the margin, or the dis-
tance of the training samples to the linear separating
hyperplane.

Denote the two classes by 1 and -1. For a sample x consist-
ing of p measurements (e.g. gene expressions) the linear
hyperplane classifier c(x) predicts the class according to

for a weight vector w = Qw0 w1 ... wpN and the augmented

sample vector  obtained by appending sample x with a

constant 1, i.e.  = Q1, x1, ..., xpN.

The margin of a sample x of class y ∈ {-1,1} is defined as

y w' and it plays a very important role in SVM. The mar-
gin of correctly classified samples is positive and that for
misclassified samples is negative. The margin of the clas-
sifier is defined as the smallest margin of all the training
samples. The SVM tries to find a w such that the margin is
maximized while the norm of the weight vector, w, w is
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minimized. This is equivalent to minimizing the cost
function

where

ξi (w) = (1 - yi wt)+  (5)

and (...)+ denotes the positive part of the quantity in the
parenthesis, as above, i.e. equal to the quantity if it is
greater than zero, and zero otherwise.

Since the capacity of the classifier increases with increas-
ing norm of the weight vector, the parameter C also con-
trols the tradeoff between the size of the margin and the
capacity of the classifier.

Since the samples need to be represented only in the form
of scalar products, this formulation can be extended to
non-linear classifiers by the introduction of kernels. Ker-
nels are the functional representation of scalar products in
transformed space. It can be shown that such a transfor-
mation leaves the optimization problem unchanged
except that the inner product x1, x2 is replaced by the ker-
nel K(x1, x2). In the case of very high (or infinite) dimen-
sional transformed space, the kernel is usually easier to
compute than doing the transformation followed by sca-
lar product.

For Gaussian kernel SVM (also called a radial basis func-
tion kernel), the kernel is given by

K(x1, x2) = exp(-γ ||x1 - x2||2)  (6)

The spread of the kernel function is given by γ, which can
be varied to adapt the kernel to the data. The larger the
value of γ, the more peaked the corresponding transfor-
mations of the feature vectors are, and the higher the
capacity of the classifier.

Peng et al use the Leave-One-Out-CV (LOOCV) error to
tune the kernel parameters. LOOCV is a CV scheme where
one sample is left out during each iteration. The average
classification error obtained is an almost unbiased esti-
mate of the true error. In (6), the training data is used to
select an appropriate kernel (from linear, Gaussian and
polynomial) and set of parameters that minimize the
LOOCV error estimate. However no independent test set
is used and only the final LOOCV error estimate on the
training set is reported.

Results
Implementation
For each simulation we generated at least 1000 sets of 40
samples, of which 20 belonged to class 1 and the remain-
ing 20 to class 2. Each sample was a vector of 6000 fea-
tures (synthetic gene expressions). For some of the cases
we used "null" data sets where no gene is differentially
expressed between the two classes. For each gene, the pop-
ulation mean expressions in both classes were the same,
namely zero. Thus none of the features are truly discrimi-
natory between the two classes. We also used data gener-
ated from a "non-null" distribution for validating the
nested CV approach. In this case, instead of using a "null
distribution" (i.e. no difference in gene expression
between the two classes), we simulated differential expres-
sion by fixing 10 genes (out of 6000) to have a population
mean differential expression of 1 between the two classes.
Samples from one class were drawn from a mean zero,
unit variance, multivariate Normal distribution while
samples for the second class had 10 genes with mean 1,
unit variance Normal and the rest 5990 genes were of
mean zero, unit variance Normal distribution.

Shrunken centroids
This was implemented in MATLAB™ (Ver. 6.5, The Math-
works). For this case we used the "null" dataset with no
difference between the two classes. For each 40 sample
dataset, we computed the 10-fold CV error for the
Shrunken Centroid classifier for values of ∆ between 0.01
and 1. The value of ∆ with the minimum 10-fold CV error
CV(∆) was determined.

∆* = arg min (CV(∆)
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Distribution of the CV error estimate and the true error for optimized Shrunken CentroidsFigure 1
Distribution of the CV error estimate and the true error for 
optimized Shrunken Centroids.
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If two values of ∆ had the same error, the larger value was
chosen (this corresponded to smaller number of genes
with non-zero weights).

To determine if the CV error estimate CV(∆*) is a unbiased
estimate of the true error for a classifier built using all the
40 samples with parameter value ∆*, we created a
Shrunken centroid classifier using all 40 samples and
parameter value of ∆*. We call this the optimized Shrunken
Centroids classifier. This classifier was used to predict the
class of 20000 samples created independently using the
"null" data distribution. Since these test samples were not
part of the training set, the mean error on them will give
us the true error TE(∆*).

This process was repeated for each simulated 40-sample
dataset providing empirical distributions of CV(∆*)and
TE(∆*).

Support Vector Machine
The same type of analysis was performed for the SVM case.
The "null" data distribution was used to create the syn-
thetic data. For computational efficiency, we do not con-
sider the complete algorithm used in (6). Instead of
recursive feature elimination (RFE) for feature selection,
we used the two sample t-statistics and selected the three
features with the largest absolute t-statistic. In lieu of
genetic algorithms (GA) as the search strategy, we used a
simplified algorithm with a fixed Gaussian kernel. The
classifier parameters tuned were C (trade off parameter in
Eq. 4) and γ (kernel parameter). It must be noted that
reducing the set of parameters over which one optimizes,
as we have done here, may potentially reduce the amount
of bias obtained.

The Leave-One-Out-CV (LOOCV) was used to compute
the CV error estimate for each point on a grid of C and γ
values (C was varied from 2-5 to 215 and γ from 2-15 to 23).
The CV error estimate was computed by leaving out each
of the 40 samples in turn, selecting the 3 best features
using the t-statistic on the remaining 39 samples and cre-
ating an SVM classifier using the fixed C and γ values. This
classifier was used to predict the class of the left out sam-

ple. The average error on the 40 samples is a CV error esti-
mate CV(C, γ) for the values of C and γ used. This was
repeated for all of the grid values. We used the LIBSVM
package developed by Chang and Lin [9] to develop the
classifier.

Similar to the analysis on Shrunken Centroids, we find the
value of parameters that minimize the CV error estimate

(C*, γ *) = arg min (CV(C, γ))

To compute the true error, an SVM classifier with parame-
ters C* and γ * was built using all 40 samples, and the top
3 features based on all 40 samples. We call this the opti-
mized SVM classifier. This classifier was used to predict the
classes of a large test set of 20000 samples with the same
distribution as the training set (i.e. the "null" distribu-
tion). The mean error on the test set gives us the true error
TE(C*, γ *).

Nested CV with shrunken centroids and SVM
We evaluated the nested CV approach for the Shrunken
Centroids classifier with ∆ optimized using10-fold CV
(the optimized Shrunken Centroids classifier). The "null"
data distribution was used to generate the datasets. Find-
ing the optimum value ∆* of the classifier parameter was
done exactly like described above, as was finding the true
error TE(∆*). The only thing that changes is how a new
estimate of the true error is computed. Instead of using the
CV error estimate CV(∆*) for the optimal ∆, we used the
nested CV error estimate. The nested CV error estimate is
computed this way. One sample (out of the 40) was left
out and the ∆ for the Shrunken Centroids classifier was
selected on the remaining 39 samples by minimizing the
10-fold CV. This is done exactly as above except that the
wrapper algorithm is restricted to 39 samples, instead of
40. The wrapper algorithm determines an optimal value
of ∆ using the 39 samples and then creates a classifier with
the same 39 samples and the optimal value selected based
on these samples. This classifier is used to predict the class
of the left out sample. This was done for each of the 40
samples, left out in turn. The average error over the sam-
ples is the nested CV error estimate CVnest(∆*) for the opti-

Table 1: Results.

Classifier type Percentage of 
times

 training error<30%

Percentage of
 times bias>20%

Mean CV error 
estimate

 for optimized 
classifier

Mean true error of
 optimized 
classifier

Mean bias

Shrunken centroids 
on "null" data

18.5% 22.2% 37.8% 50.0% -12.2%

SVM on "null" data 22.2% 25.3% 41.7% 50.0% -8.3%
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mized Shrunken Centroid classifier. Repeating this for
several synthetic datasets gives us the empirical distribu-
tion of CVnest(∆*) and TE(∆*).

The nested CV approach was also evaluated for the opti-
mized SVM classifier. Here we used the "non null" data
distribution to create the training samples (40 samples)
and the test samples (20000 samples). Nested CV is used
to find the nested CV error estimate CVnest(C*, γ *) of the
SVM classifier optimized for parameters C and γ. The pro-
cedure is exactly the same as that described for optimized
Shrunken Centroids above, except that the classifier train-
ing algorithm being evaluated is the optimized SVM clas-
sifier algorithm detailed earlier.

Fig 1 shows the empirical distributions of CV(∆*), the CV
error estimate for the optimal ∆ and TE(∆*), the true error
for the optimal ∆ for the optimized Shrunken Centroid
classifier. Fig 2 shows the distributions for CV(C*, γ *) and
TE(C*, γ *) for the optimized SVM classifier. In both plots,
the CV error estimate is centered over means that are dis-
tinctly smaller than the mean true errors. Since both these
simulations were done with "null" data, the true errors are
centered on 50% while the CV error estimates have a
lower mean. Numerical results are shown in Table 1. Even
though the mean true error is 50% (i.e. equal to randomly
choosing the classes), the CV error estimate on the train-
ing set averages 37.8% for the optimized Shrunken Cen-
troid classifier and 41.7% for the optimized SVM
classifier. On more than one-fifth of the random training
datasets, the bias is more than 20% for the classifiers.

Fig 3 shows the distributions for the nested CV error esti-
mate CVnest(∆*) and the true error TE(∆*) for the opti-
mized Shrunken Centroids. We obtain an almost
unbiased estimate of the true error. The mean nested CV
error estimate is a slight overestimate of the true error
(54.2% compared to 50.0%), since the classifier used in
each nested CV iteration is based on 39 samples, while the
classifier used on the test set is trained on 40 samples.

Fig 4 shows the distribution of the nested CV error esti-
mate CVnest(C*, γ *) and the true error TE(C*, γ *) for the
optimized SVM algorithm on the "non null" data sets. We
obtain a mean nested CV error estimate of 35.3% com-
pared to the true error of 32.0%. The higher estimate of
training error compared to test error can again be attrib-
uted to the lower number of samples being used (39 vs.
40) to create the classifier in the nested CV iteration.

Conclusion
Our results demonstrate that although it is reasonable to
optimize classifier parameters by minimizing cross vali-
dated error rates, the resulting minimum CV error esti-
mate is not an unbiased estimate of the true error that can
be expected from the final classifier on independent data.
The difference between the CV error estimate and the true
error can be greater than 20% more than one-fifth of the
time which can be very significant in classification prob-
lems where the overall accuracy is not very high (such as
predicting survival or response to treatment).

Distribution of the nested CV error estimate and true error for optimized Shrunken Centroids nested within a LOOCV loopFigure 3
Distribution of the nested CV error estimate and true error 
for optimized Shrunken Centroids nested within a LOOCV 
loop.
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In our work, we observed this bias for two different resa-
mpling methods (10-fold CV and LOOCV). Will this bias,
possibly with differing magnitudes, be present for other
cross validation schemes? Since the bias is caused by the
variability in the estimates of prediction error for different
values of the tuning parameters it is a general phenome-
non. This can be seen intuitively in the following simple
explanation.

Assume that classifier parameter α can only take discrete
values α1, α2, ..., αk and that the true prediction error E is
independent of the value of the parameter. Thus all values
of the parameter will give the same true error. However,
due to the variability in the errors estimated by resam-
pling, different parameter values will lead to different pre-
diction error estimates. Let the error estimates be denoted
by e1, e2, ..., ek. If we assume that the resampling method
is median unbiased, it is easy to see that the probability
that the minimum of the errors is lesser than E

Pr(min {e2, ..., ek} <E) = 1 -   (8)

This implies that for large K, there is a high probability
that choosing the minimum resampled error will give a
biased estimate of the true error.

Even if there is no parameter selection being done, any
resampling method for estimating error is subject to some
bias and variance (11). We have mentioned above the bias
of the LOOCV method (over-estimating the true error)
that occurs because a subset of training samples is used to

create the classifier in the CV loop while the final classifier
is created using all the samples. We call this the inherent
bias. However, as we have shown in our results, when
additional parameter selection is being done, the variance
of the estimates results in an additional parameter selection
bias. The parameter selection bias adds to the inherent
bias to form the total bias of the resampling procedure. It
must be noted that inherent bias can be either negative or
positive (i.e. the error estimate can be lower or higher than
the true error). The parameter selection bias, on the other
hand, is always negative.

The parameter selection bias is smaller for resampling
methods with smaller variances, e.g. .632 Bootstrap [10]
and Bootstrap CV [11]. However, low variance methods
can also have a large inherent bias [12] (either positive or
negative). The total bias (i.e. the sum of inherent bias and
parameter selection bias) is what must be kept in mind
when interpreting error estimates. If the inherent bias is
positive, the parameter selection bias will subtract from it
and possibly bring the error estimate closer to the true
error. However, if the inherent bias is negative, the param-
eter selection bias will exacerbate it.

Cross-validation can be a useful method for selecting tun-
ing parameters for a classifier, but the generalization error
for the resulting classifier should be estimated correctly.
This can be accomplished by a large validation set that is
independent of data used for parameter tuning. However
this requires a large number of samples that can be split
into training and validation sets. Another way, used in this
paper and illustrated by the method of Izuka et al. [7], is
to leave out some samples that are not used in the CV tun-
ing of the parameters. A tuned classifier is then developed
on the reduced training set and tested on the left out sam-
ples; this procedure is repeated for several sets of left out
samples. This is effectively two nested CV loops; the outer
loop estimates the generalization error while the inner CV
is used for tuning the parameters. If the number of sam-
ples left out at each step of the outer loop is not too large,
this gives an almost unbiased estimate of the true error.
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Distribution of the nested CV error estimate and true error for optimized SVM nested within a LOOCV loopFigure 4
Distribution of the nested CV error estimate and true error 
for optimized SVM nested within a LOOCV loop.
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