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Abstract

Background: Recent circadian clock studies using gene expression microarray in two different
tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak
expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4-
8 hrs in peak expression in one tissue relative to the other. These interesting biological
observations prompt a statistical question regarding how to distinguish the synchronized genes
from genes that are systematically lagged in phase/peak expression time across two tissues.

Results: We propose a set of techniques from circular statistics to analyze phase angles of
circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in
each tissue, which are then used to estimate the paired angular difference of the phase angles of
the gene in the two tissues. These differences are modeled as a mixture of two von Mises
distributions which enables us to cluster genes into two groups; one group having synchronized
transcripts with the same phase in the two tissues, the other containing transcripts with a
discrepancy in phase between the two tissues. For each cluster of genes we assess the association
of phases across the tissue types using circular-circular regression. We also develop a bootstrap
methodology based on a circular-circular regression model to evaluate the improvement in fit
provided by allowing two components versus a one-component von-Mises model.

Conclusion: We applied our proposed methodologies to the circadian-related genes common to
heart and liver tissues in Storch et al. [2], and found that an estimated 80% of circadian-related
transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of
transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one
cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can be extended
to analyze peak expression times of circadian-related genes across more than two tissues, for
example, kidney, heart, liver, and the suprachiasmatic nuclei (SCN) of the hypothalamus.

Background logical processes, and adaptability of biological systems to
Circadian rhythms (or the biologic clocks that control  changes in environment [1-3]. Many circadian-related
them) have stimulated interest in recent years due to their =~ genes have been explored using high-throughput DNA
importance in orchestrating physiological behavior, bio-  microarray technology [1-3]. These studies also have stim-
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ulated efforts to apply and develop methodologies in cir-
cular/directional statistics to elucidate important
characteristics of circadian gene expression and also com-
pare their patterns of peak expression times (phase
angles) across different tissue types, to help elucidate their
diverse tissue-specific functions [1,2,4,5].

As periodic oscillation characterizes the expression pat-
tern of both circadian genes and cell cycle genes, many
correlation-based and Fourier-based methodologies [1-3]
proposed for analyzing cell cycle gene expression can be
directly applied to circadian gene expression analysis.
However, there are some distinct differences between
studies in cell cycle gene expression and circadian gene
expression. First, most cell cycle gene expression patterns
are based on cell cultures studied in vitro, while most cir-
cadian gene expressions are based on various tissues or
organs in vivo. Consequently, circadian gene expression
may be more complex or tissue/cell-specific. Second, the
four phases of a cell cycle, namely, G;, S, G,, and M
phases, have been well characterized through intensive
research over the last thirty years, and more than 54 mam-
malian [6] and 104 yeast cell cycle genes have been iden-
tified [7]. In contrast, to date, less is known about
circadian genes: only eight core mammalian circadian
genes have been identified: Csnkle, Cryl, Cry2, Perl, Per2,
Per3, Clock, and Bmall [8]. In addition, it is not clear
whether these known circadian genes and any other circa-
dian-related genes identified from high-throughput
microarrays can be assigned to a few functional phases, in
analogy to the phases (G,, S, G,, M) in cell cycle. Note that
many studies on cell cycle gene expression based on
microarray were on same organism [6] and cell-type [7]
under different experimental conditions. Therefore, we
expect that a set of cell cycle genes commonly expressed in
various conditions are consistent in their peak expression/
activation time [9]. However, it is an opening question
whether phases or peak expression times for a set of circa-
dian-related genes commonly expressed in multiple tis-
sues, such as heart, liver, kidney, and SCN of the
hypothalamus are in synchrony because expression of
some circadian-related genes may be tissue-specific. Statis-
tical tools for analyzing such a type of circular data cross
multiple tissues need to be developed.

The phase angles estimated from cycling transcripts in
Panda et al. [1] and Storch et al. [2] can be regarded as
points on a circle of unit radius, which are treated as cir-
cular data in circular/directional statistics [10,11]. Circu-
lar data are commonly modeled with a von Mises
distribution function on the unit circle, an analog to the
normal distribution for linear data. The main feature of
circular data is that it is directional and classical methods
based on linear data can produce meaningless results. As
an example, suppose a bird takes off in the northeast
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direction at an angle of 2°, while another takes off in the
southeast direction at an angle 358° then their mean
direction (by usual linear methods) is 180°, or due west!
Means and variances and other statistical analyses must
respect the directional nature of the data to avoid such
nonsensical results. For example, a sum of two points on
a unit circle is calculated as the sum of the two vectors,
yielding a vector with certain direction and length. With
this vector averaging, the two birds now have a mean
direction of 0°, corresponding properly to due east. Spe-
cial methods are available in the literature for describing
correlation and regression between circular variables
[10,11]. One needs to be cautious when analyzing circular
and linear variables simultaneously. In some cases circa-
dian phase angles have been mistreated as linear variables
in linear regression of the phase angle on the period and
amplitude [12]. Results so obtained may not be useful for
interpretation.

The motivation for our work is based on the observation
in [1-3] that some circadian-related genes that are
expressed in two tissues are systematically lagged in peak
expression time in the two tissues. Panda et al. [1]
reported that many of the 28 circadian-related transcripts
common to the suprachiasmatic nuclei (SCN) of the
hypothalamus and liver, including Per2 and Rev-Erbg, are
delayed by 4-8 hrs in peak expression in liver relative to
the SCN. Ueda et al. 3] validated in vitro that the Rev-ErbA/
ROR response element in both the SCN and liver tissues is
expressed in phase with Bmall and in anti-phase with Per2
oscillation. These studies suggest that the coordinated
temporal expression of circadian genes in-phase and anti-
phase in different tissues is an interesting but a complex
biological phenomenon. Statistical analysis tools for stud-
ying this type of interesting biological questions arising in
recent genomics studies are needed.

To address the above questions, we propose a few steps in
the following sections. Given a set of circadian-related
genes common to two tissues, we first fit a random-peri-
ods model [13] to the time-course expression for each
gene individually in each of two tissues, to estimate its
phase angles along with periods and amplitudes. The
angular difference between the two phases for each gene
can be represented as an angle, i.e. as a point on a circle.
Using a mixture of two von Mises distributions, we cluster
angular differences of the genes into two groups; genes
whose expressions are synchronized (mean difference is
close 0) in the two tissues and those whose expressions are
different in the two tissues. The identified clusters may
provide a hint on association of circadian genes specific to
these tissues. We then assess the association of each set of
genes common to two tissues using Down and Mardia's
circular-circular regression model [14]. In addition, we
propose a new circular-circular regression-based boot-
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Table I: Estimates of phase angles of circadian-related transcripts in heart and liver [2] of cluster |

Probe ID Gene Description Accession Phase in heart  Phase in liver
(rads) (rads)
98079 _at carbonic anhydrase 14 AB005450 0.12 0.61
93184_at expressed sequence C76179 Al596362 0.27 0.95
92821 _at ubiquitin specific protease 2 AF079565 0.29 -2.85
94549_at RIKEN cDNA 1200003006 gene Al315650 0.30 0.67
160795_at expressed sequence AW 122395 AW 123662 0.31 -0.13
101539 _f at carboxylesterase 3 AW226939 0.34 0.08
93619 _at period homolog (Drosophila) AF022992 0.35 2.67
97473_at transmembrane 4 superfamily member 7 AW 124470 0.58 1.72
100581 _at cystatin B U59807 0.62 1.45
97556 _at cerebellar ataxia 3 Al843178 1.60 1.59
94145 _at interferon beta, fibroblast K00020 2.35 -2.51
160195_at RIKEN cDNA 1200013P24 gene Al84696 | 2.62 -2.92
96102_i_at RAD23b homolog (S. cerevisiae) X92411 2.83 1.42
97485_at RIKEN cDNA 1200015P13 gene Al850953 -3.06 2.74
96774_at expressed sequence AA960555 AWO047139 -2.86 2.88
101002 _at ornithine decarboxylase antizyme inhibitor AF032128 -2.77 -3.01
104241 _at expressed sequence AA408983 Al854379 -2.69 -2.69
104200_at AWO048729 -2.57 3.05
102797 _at retinal short-chain dehydrogenase/reductase 1X95281 -2.56 -2.35
98478_at cyclin G2 U95826 -2.45 2.68
100323_at S-adenosylmethionine decarboxylase 2 723077 -2.43 -2.86
97808 _at splicing factor 3b, subunit I, 155 kDa Al844532 -2.37 -2.51
92264 _at SRY-box containing gene 3 X94125 -2.18 2.69
93874 s at interleukin || receptor, alpha chain 2 U69491 -2.16 2001
96852 _at protein kinase, cAMP dependent regulatory, type | alpha AWI122197 -2.04 -1.48
103957 _at transferrin receptor X57349 -1.61 -2.06
96793_at RIKEN cDNA 1500016M21 gene Al607813 -1.32 -2.63
94461 _at pre-B-cell colony-enhancing factor Al852144 -1.22 -1.49
93694 _at period homolog 2 (Drosophila) AF036893 -0.84 -0.83
93121 _at ribosomal protein S24 X60289 -0.77 0.86
98892 _at lipin | Al846934 -0.38 0.26
98766_at SH3-domain binding protein 5 (BTK-associated ABO16835 -0.36 1.50
95614_at chromobox homolog 5 (Drosophila HPa) Al852086 -0.26 1.03
104320_at pyridoxal (pyridoxine, vitamin Bé) kinase Al841777 -0.19 0.33
94944 _at protein kinase, cAMP dependent regulatory, type | beta AWI125016 -0.18 -1.15
99076_at thyroid hormone receptor alpha U09504 -0.13 -0.21
95057_at homocysteine-inducible, endoplasmic reticulum stress-inducible Al846938 -0.12 -0.55
ubiquintin-like domain member |
160489_at tumor necrosis factor, alpha-induced protein L24118 -0.02 091

| radian = 57.3 degrees.

strap method to assess the mixture of two homogeneous
phase distributions for the two tissues. We illustrate the
proposed methodologies using the heart and liver circa-
dian-related gene expression data sets from Storch et al.

[2].
Methods

Phase estimation

One characterizing feature of circadian-related genes
expression is the periodically oscillating pattern. Sinusoi-
dal functions have been used to model the circadian gene
expression level [1-3]. We apply the "random-periods
model" [13] to estimate the phase angles, period, and
amplitude together for a given circadian gene expression

using nonlinear least-squares regression. While there is no
attenuation in circadian gene expression, the sinusoidal
component of the "random-periods model" is reduced to
a simple sinusoidal function K,cos(27t/T, + ¢,), where K,,
T,, and ¢, are the amplitude, period, and phase (angle) of
gene g. The phase parameter ¢, indicates when the expres-
sion of the g gene reaches its maximum.

A mixture of two von Mises distributions for circular
paired-difference data

After estimation of activation times or phase angles for a
set of circadian-related genes that expressed in two tissues
or organs, we are interested in examining whether the
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Table 2: Estimates of phase angles of circadian-related transcripts in both heart and liver [2] of cluster 2

Probe ID Descriptions of Genes Accession Phase in heart (rads) Phase in liver (rads)
101007_at  MAP kinase-interacting serine/threonine kinase 2 Al845732 0.08 -2.16
100555_at  Down syndrome critical region homolog | (human) Al846152 3.01 0.55
93324 _at zinc finger protein 36, C3H type-like | M58566 3.05 0.93
92820_at ubiquitin specific protease 2 Al846522 -3.06 1.31
97224 at proline-rich nuclear receptorcoactivator | Al851394 -2.72 1.31
100126_at  chromatin accessibility complex | AA967263 -1.54 -3.10
102955_at  nuclear factor, interleukin 3, regulated u83148 -1.21 2.59
95307 _at similar to scavenger receptor cysteine rich domain containing group B AW047736 -0.62 -2.55
160117_at  thyrotroph embryonic factor Al850638 -0.28 -2.97
160841_at D site albumin promoter binding protein AWO047343 -0.09 -1.76

phase angles are synchronous or not. Let q;g and ¢Sgy

denote the estimated phase angles of a circadian-related
geneg g=1, 2, ..., n, in the two tissues x and y, where -7<

¢fgx <z, -ﬁﬁégy < . Further, we model the distribution of

the angular difference

Ag =9/ -9, —m<A <m (1)

as a mixture of two von Mises distributions. One compo-
nent will correspond to a subset of the n genes have the
same phase angle in the two tissues and the other will cor-
respond to genes having unequal phase angles in the two
tissues. Thus the probability density function is given by:

2 2
f(Ag):Zpifi(Ag)' Zpizl' (2)
i=1 i=1
where fi(A,) = %exp(l{i cos(Ag —4;)),i=1,2;0

< k; - <y; < 7w Here, p; is the mixing parameter, g is the
mean direction for distribution i, x; is the concentration
parameter characterizing the variability of the estimated
differences A, about g, and Iy(x;)is the modified Bessel
function of the first kind and order zero. We expect that
one von Mises distribution has mean close to 0 radians,
because it consists of a concordant subset of genes having
the same phase in the two tissues, whereas the other dis-
tribution contains a set of "discordant" genes. The varia-
tion in shift characterizing genes of the second set can be
measured by summingl - cos(4,) [11].

The log likelihood for the mixture of two von Mises distri-
butions in (2) is

n 2,
L(A;0) = Zloge 2 !

g=1 ig 2y (k)

exp( K; cos(Ag — 117)) | (3)

The parameters in the vector (p,, &y, 4, &5, 1) in the mix-
ture model (3) can be estimated using the Newton-type
optimization method in the Matlab optimzation toolbox.
To ensure convergence to the global solution, we use fifty
random starting points. A comparison of the performance
of various estimators can be found in [15]. We chose the
Newton-type optimization method in the estimation due
to its simplicity and flexibility of converting uncon-
strained searching to constrained optimization by adding
constraints on the mixing parameter p;, i.e., 0.15 <p; <

0.85 or the concentration parameter &3, or &, i.e., k3 <10
and k, < 10. Upon obtaining the five estimated parame-
ters ( py, Ky, fq,K5, [, ) in the mixture model (2), we statis-
tically assign each of the A, to one of the two components

based on its relative likelihood. That is, gene g is assigned

to cluster 1 if p, f; (Ag)> o f (Ag), otherwise to cluster 2.

Circular-circular regression

In a recent article [9] we described the notion of associa-
tion between the phase angles of a set of cell-cycle genes
from a pair of experiments using the circular-circular
regression model of Downs and Mardia [14]. Within each
cluster obtained above, we shall apply the methodology
described in [9] to examine the association between the
estimated phase angles of the genes in the two tissues.

Consider a pair of angular random variables for cluster i
as (gi%, qig ),i=1,2,¢=1, .., n with mean directions ¢;
and S, respectively. Further, suppose 77, denotes the mean
direction of q% given (ﬁ; In the present context, this

would be the mean estimated phase angle of a gene in one
tissue, conditional on its estimated phase angle in the
other tissue. Downs and Mardia [16] introduced the fol-
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Plot of A, showing clusters for 48 circadian-related cycling transcripts [2].

lowing flexible circular regression model to regress 4% on
£x
%

Mg - B *_o,
tan%=witan%, (4)

where ®; denotes the "slope" parameter of the regression

and 7, is the mean direction of q% conditional on %C-

The above model allows for estimating not only the rota-
tional angle 6, = S, -¢;, but also the slope parameter ;. As
in Downs and Mardia [16], to avoid multiple solutions,
we restrict - 1 < @;< 1 and -7< ;< 7and -7 < f< 7. We

model the conditional distribution of q% given (Iig as a

von Mises with concentration parameter k; , i.e.,

([’z;’ |@§ ~M(nig(@§}ai,ﬁi,wi)7('ic). (5)
As shown in Downs and Mardia [16], the angular error g/%

-1i( <1%§ ;o B, ®;) is von Mises with mean 0 and concen-

tration parameter k;, where

N B 1/~
Nig (@;;ai,ﬂi,wi ) = B; +2tan l(a),- tang(qg -0 ) ] (6)
The association from one tissue to the other of genes in

each cluster (qily, q%x ), i=1, 2, can then be assessed using

the F-test derived by Downs and Mardia [16].
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f2

-2

Residual plot of circular-circular regression for the 38 synchronized genes in heart and liver tissues [2] from cluster .

A bootstrap test for number of clusters

To assess whether there are two clusters in the mixture of
Ay 8 =1,..,n,in (1), in the following we propose a boot-
strap methodology to test the null hypothesis that A, 's are
a random sample from a single von-Mises distribution
against the alternative hypothesis that they are from a
mixture of two independent von-Mises distributions.

n
Let cv = Z (1—cos(ry)) denote an estimate of the circular

8=1
variance for the combined sample of n = n, + n, observa-

tions, based on residuals from a single circular regression,

m 1y
while ¢y = 2 (1-cos(rg)) and cv; = 2 (1-cos(ry))
g=1 g=1

denote the estimates of the circular variances for the two

individual clusters separately based on residuals from two
circular regressions.

The proposed bootstrap procedure is described in the fol-
lowing steps:

1) Regress phase angles in y tissue on phase angles in x tis-
sue using the circular-circular regression model (4) and
compute the circular variance cv based on the residuals To
g =1, ..., n, from this single circular regression;

2) Compute for each gene g the difference A, = qggy - ¢;gx ,

where q;gy and égx are the estimated phase angles for gene
g in tissues y and x;
3) Fit the phase differences A, g = 1, ..., n, to a two-com-

ponent mixture of von-Mises model, obtaining two sepa-
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f2

Figure 3

-2

Residual plot of circular-circular regression for the 10 discordant genes in heart and liver tissues [2] from cluster 2.

rate clusters with n; and n, genes in provisional clusters 1
and 2, respectively;

4) Regress n, and n, phase angles of y, on x; and y, on x,
separately for the two clusters, and obtain the residuals
relusterl and reluster2 from each of the two regressions;

5) Compute the circular variances cv, and cv, for each of
the two-cluster sets of residuals r¢/usterl and reluster2 from the
regressions carried out in step 4);

6) Calculate the test statistic: T = cv - cv; - cv,
7) Compute the absolute values of r, obtained from Step
1, and randomly assign a +/- sign to each r, call it 7, then

obtain bootstrapped data rgboommp from r; ;

8) Obtain each pseudo phase angle for the heart data by

bootstrap _ y,bootstrap
Mg+ Tg => ¢y

in tissue y based on regression performed in Step 1;

, where 7, is the predicted angle

9) Repeat the loop from step 1) to 8) 3000 times using

ngx , the bootstrap data Gg'boommp to replace :gy and

replacing r, by rgbwmmp . For the bootstrap data denote the

T in step 6 by Tbeotstrap,

Then the bootstrap p-value is the proportion of Tbootstrap
that are greater than the calculated value of test statistic T.

Results
Datasets
We apply our methodologies to 52 circadian-related
cycling transcripts that are expressed in mouse heart and
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Accession: AIB50638
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Figure 4

Plots of log, expression for the transcript AI850638 in heart
and liver tissues [2]. Data (-o-) and fitted curve of the model
(—). The phase difference in the heart and liver is -0.28 rads
- (-2.97) rads = 2.69 rads.

liver tissues, identified by Storch et al. [2]. In Storch's stud-
ies, mice were entrained to a 12 hrs light/dark cycle for
more than two weeks, then placed in a constant dim light
for more than 42 hrs. The tissue samples were taken from
sacrificed mice at 4-hour intervals for 48 hrs, or about two
circadian cycles, as in the circadian studies of Panda et al.

[1].

Due to the poor fit of our random-periods model [13] to
the expression of four transcripts (accession numbers:
AI834950, AF003348, AF043288, and AB014494), we
excluded them from the list of 52 circadian-related tran-
scripts [2] in our analysis. The estimated phase angles for
the remaining 48 transcripts in both heart and liver for
clusters 1 and 2 are listed in Tables 1 and 2, respectively.
The angular differences (heart, denoted as y, minus liver,
denoted as x) A, are plotted in Figure 1.

The 48 circadian-related cycling transcripts were assigned
into two clusters based on a mixture of two von Mises dis-
tributions, as described above. The first cluster contains
38 genes (Table 1) and the second cluster contains 10
genes (Table 2). The five estimated parameters

(P1. Ry, Ky, ) = (0.79, 1.50, -0.07, 4.56, 2.16). The
distance between the two clusters in mean direction
(4 — f1y) is 2.23 rads, suggesting that the ten transcripts
in cluster 2 have different points of peak expression in
heart and liver. This can also be seen in Figures 2 and 3.

The mean direction of 38 phase angles in the cluster 1 is -
0.07 rads, suggesting that the peak expression times for

http://www.biomedcentral.com/1471-2105/7/87

the 38 cycling genes in heart and liver are close to synchro-
nized. In contrast, the peak expression times for the 10
genes in heart and liver (in cluster 2) are away from the 0
direction by 2.16 rads, with heart ahead of liver by about
8 hrs. This result suggests that these 10 discordant circa-
dian-related genes may play different roles in the heart
and liver.

We estimated the across-tissue association of the genes in
each of the two clusters by regressing the phase angles in
heart, denoted as y, onto those in liver, denoted as x, using
the circular-circular regression model described above (5).
The estimated rotational parameters, the slope, and the
concentration parameter for the von Mises distribution

are (dl,Bl,cbl,lel ) = (-0.83, -0.91, 0.58, 1.85) for cluster

1and (&, B,,@,,&5) = (-2.85,-0.76, 0.86, 9.41) for clus-
ter 2. Figure 2 shows the residuals for all genes, i.e. the
angular difference between the phase angle in heart and
the prediction based on the same gene's pattern of expres-
sion in liver. The residuals for the 10 genes in the second
cluster are shown in Figure 3. We can see that the activa-
tion times of these transcripts in heart and liver tissues are
matched well after a 2.16 radian clockwise rotation of the
phase angles in heart relative to in liver. Upon obtaining

the 'slope parameters' @; and @,, we tested the null
hypothesis H: @; = 0 vs. the alternative hypothesis, H,: o

#0,1=1, 2, using the test statistic derived by Downs and
Mardia [14]. The corresponding p-values for clusters 1 and
2 were less than 5 x 107 and 1.4 x 104, respectively, sug-
gesting that the associations of the circadian activation
times in heart and liver are strong in both clusters. Here
we included the expression plots of the transcripts
AI850638 and AI846522 in heart and liver tissues [2] and
the fits of our model to the two transcripts in Figures 4 and
5, accordingly. The plots reveal that the fits of our model
to the data are reasonably good, and peak times of the two
transcripts in liver tissue are markedly lagged relative to
heart tissue.

Based on 3000 bootstraps using the procedure outlined in
section of bootstrap test, we found that the estimated p-
value for sufficiency of a one-component distribution in
the phase difference of heart and liver tissues for the 48
genes was 0.063. Although this is not significant at 5%
level of significance, it suggests that a two-component
von-Mises distribution for the phase in heart and liver tis-
sues better describes the relationships among the peak
expression times for the studied genes.
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Accession: Al846522
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Plots of log, expression for the transcript Al846522 in heart
and liver tissues [2]. Data (-o-) and fitted curve of the model
(—)- The phase difference of the gene in the heart and liver is
-3.06 rads - 1.3 rads = 1.9 rads (module).

Discussion and conclusion

Our analysis of the peak expression times (phases) for a
set of 48-circadian-related genes expressed in both heart
and liver tissues [2] suggests that not all of the genes are
maximally expressed at the same time in the two tissues.
Instead, among the 48 genes, 38 are synchronized in
phase or peak expression times in heart and liver tissues,
and the other 10 genes express earlier by about 2.23 rads
or 8 hours in heart than in liver. Our bootstrapping test
result supports, albeit weakly, the existence of two distinct
subsets among the 48 genes. Although our findings are
based on the single experimental dataset of Storch et al.
[2], our results are similar to an earlier observation made
by Panda et al. [1] that the peak expression times for some
genes are not synchronized in suprachiasmatic nuclei
(SCN) compared to liver. One implication of our results,
giving quantitative support for the conclusion of Storch et
al. [2], may be that some commonly expressed circadian-
related genes may perform different functions across dif-
ferent organs [1,2].

We have developed a new bootstrap method for assessing
the adequacy of one versus the need for two clusters of
genes in the two sets of phase angles in heart and liver tis-
sues for the 48 genes. In particular, we evaluated the sig-
nificance of the circular variances of the residuals from
circular-circular regression of the phase angles in heart on
in liver in one cluster vs. two clusters. In contrast, most
studies on mixtures of circular variables have focused on
dividing a set of data into two subsets. To the best of our
knowledge, no studies have used a mixture of two compo-
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nents for circular datasets for testing heterogeneity of a
cyclic pattern.

This work would not have been undertaken without the
interesting observations by Panda et al. [1], Storch et al. [2]
and Ueda et al. [3] that a few circadian-related genes
expressed out of phase across two tissues of mouse. In
addition, quantitatively the results of our statistical analy-
sis depend on the approximation of sinusoidal waveform
for circadian gene expression, on reasonably accurate esti-
mation of the phase angles, on a relative large sample size
of genes common to two tissues, on the approximate
validity of the von Mises distribution for each cluster of
differences. In previous circadian gene expression studies
[1-3], a tissue sample was commonly taken at each 4-hr
interval for two circadian cycles, i.e., 12 time points per
gene expression. Although our fits to the 48 circadian gene
expression in both tissues are reasonably good, as shown
in Figures 4, 5, further experimental and simulation stud-
ies may be needed to understand the role of sample size
and sampling frequency on phase estimation when a
sinusoidal waveform is presumed for circadian rhythm. In
this work, we considered the difference of two phases for
a gene in two tissues as a random variable modeled by a
von Mises distribution on a circle. The corresponding
uncertainties are captured by the degree to which the von
Mises distribution is spread out on the circle.

The 48 circadian related genes expressed in heart and liver
of mouse each provide a pair of peak expression times. We
have assumed that there are at most two clusters. Further
experimental studies are needed for testing whether there
might be more than two clusters with for 48 genes. While
our method can hypothetically be extended to allow one
to test the need for 3 clusters rather than for 2 clusters, the
sample size of 48 genes, may not be sufficient to carry out
such a test with much power. The results of the two-clus-
ters analysis must be regarded as descriptive. Our analysis
of circadian gene expression may serve to stimulate fur-
ther methodological development in circular/directional
statistical analysis of genes that may be expressed differ-
ently in phase in two or more tissues. The genes in each
cluster would need to be scrutinized separately for further
elucidation of their tissue-specific biological and physio-
logical functions [1,2,5].

Our methodologies can be, in principle, extended to ana-
lyzing multiple circadian gene expression data sets across
multiple tissues (organs), e.g., kidney, heart, liver, and
SCN where investigators are interested in understanding
whether there is one set of core circadian-related genes
that are similar in their patterns of activation across differ-
ent organs (or tissues), and others that are differently
expressed in different tissues, as suggested by Reppert and
Weaver [5]. Because the maximum likelihood approach
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considered in this paper may become challenging due to
computational complexity, further methodology develop-
ment is needed in this area. For such multiple mixture
problems, one may want to consider a Bayes or empirical
Bayes approach. However, to the best of our knowledge,
Bayes and empirical Bayes methods for mixture problems
associated with circular data are not well developed. The
present application provides an excellent opportunity for
developing such methodology for mixture problems asso-
ciated with circular data. Secondly, using the standard
likelihood approach, we clustered the 48 genes into two
clusters on the basis of the phase difference between the
two tissues. It would be interesting and useful to derive an
estimate of "reliability" of clustering for each gene. One
possible approach is to perform a bootstrap by selecting a
simple random sample of 48 genes from the list of 48
genes and classify them into two clusters using procedure
described in this paper. This procedure could be repeated
for a large number of times, say 1000. One then could
estimate the proportion of times a gene was classified into
one of two clusters. Unfortunately, such a procedure does
not work well when the number of genes is small and
their "true" cluster memberships are unknown and the
numbers of genes in each cluster are highly unbalanced.
Nonetheless, these important questions need to be
addressed because the number of potential applications
for such a procedure is ever growing.
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