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Abstract
Background: In order to improve gene prediction, extrinsic evidence on the gene structure can
be collected from various sources of information such as genome-genome comparisons and EST
and protein alignments. However, such evidence is often incomplete and usually uncertain. The
extrinsic evidence is usually not sufficient to recover the complete gene structure of all genes
completely and the available evidence is often unreliable. Therefore extrinsic evidence is most
valuable when it is balanced with sequence-intrinsic evidence.

Results: We present a fairly general method for integration of external information. Our method
is based on the evaluation of hints to potentially protein-coding regions by means of a Generalized
Hidden Markov Model (GHMM) that takes both intrinsic and extrinsic information into account. We
used this method to extend the ab initio gene prediction program AUGUSTUS to a versatile tool that
we call AUGUSTUS+. In this study, we focus on hints derived from matches to an EST or protein
database, but our approach can be used to include arbitrary user-defined hints. Our method is only
moderately effected by the length of a database match. Further, it exploits the information that can
be derived from the absence of such matches. As a special case, AUGUSTUS+ can predict genes
under user-defined constraints, e.g. if the positions of certain exons are known. With hints from
EST and protein databases, our new approach was able to predict 89% of the exons in human
chromosome 22 correctly.

Conclusion: Sensitive probabilistic modeling of extrinsic evidence such as sequence database
matches can increase gene prediction accuracy. When a match of a sequence interval to an EST or
protein sequence is used it should be treated as compound information rather than as information
about individual positions.

Background
Finding protein-coding genes in eukaryotic genomic
sequences with in-silico methods remains an important

challenge in computational genomics, despite many years
of intensive research work. Existing methods fall into two
groups with respect to the data they utilize. The first group
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consists of ab initio programs which use only the query
genomic sequence as input. Examples are the programs
GENSCAN [1], AUGUSTUS [2] and HMMGene [3] which
are HMM-based and GENEID [4]. The second group of
gene-finding methods, extrinsic methods, comprises all
programs which use data other than the query genomic
sequence. Some extrinsic methods use genomic sequences
from other species. A cross-species comparison of
genomic sequences can help in predicting genes in the
given query sequence. This approach is commonly
referred to as comparative gene prediction. The correspond-
ing programs need as additional input a collection of
informant sequences (SGP2 [5], TWINSCAN [6]) or
genomic sequences that are syntenic to the query
sequence (N-SCAN [7], SLAM [8], DOUBLESCAN [9],
AGenDA [10] or methods based on evolutionary Hidden
Markov Models [11,12]). Other extrinsic methods use a
database of known expressed sequences or proteins. Some
of the best available ab initio gene prediction programs
have been extended and have become more accurate by
exploiting additional extrinsic data sources such as protein
or EST sequences [13]. GENSCAN, for example, has an
extension called GenomeScan that uses BLAST alignments
with protein sequences [14]. HMMGene, has an extension
that integrates into the HMM information from BLAST
alignments of the query sequence with cDNA, EST and
protein sequences [15]. Another program which uses
extrinsic evidence is Gene Wise. It aligns a protein
sequence to a genomic sequence [16].

Further, ExonHunter allows, like the method presented
here, to integrate hints from both cross-species compari-
son and protein and EST databases [17]. Besides the two
groups of programs described above, there are also pro-
grams like Combiner [18] that combine the predictions of
several individual gene finders. Most of the above men-
tioned programs use statistical models of sub-structures of
genes such as splice sites, exons or introns to derive evi-
dences about the gene structure. All evidences, which may
well contradict one another, must be combined to pro-
duce one output gene structure. A major challenge in com-
putational gene prediction is therefore to design good
statistical models that are able to deal with different types
of information from heterogeneous sources.

In this paper, we introduce a gene finding approach that
combines intrinsic information about a genomic sequence
s with extrinsic information. In general, extrinsic informa-
tion is evidence about the gene structure of the DNA
sequence s that comes from a source other than the intrin-
sic model. Typically, such information can be gathered by
comparing s to other sequences such as ESTs or a second
syntenic genomic sequence from another species. We also
consider expert knowledge to be extrinsic information, for
example experimentally verified introns. Further,

sequence analysis complementary to the intrinsic model
may provide extrinsic information. For example, an exter-
nal CpG island finder can find evidence that is not
accounted for by the HMM and provide hints on a gene
start. In this study, we present an application where EST
and protein databases are used as source of extrinsic infor-
mation.

In this study we present a stochastic model for gene pre-
diction that generalizes the previously introduced GHMM
AUGUSTUS [2] in a natural way by incorporating hints
from external sources. Our method may be applied to
hints from various sources; we also developed an applica-
tion in the setting of comparative gene prediction. Hints
from different sources can be used simultaneously, taking
into account their different levels of reliability.

Our model considers hints that say that an interval of s is
likely to be part of a possibly larger exon as well as hints
that say that an interval is likely to be a complete exon. In
addition to an increased sensitivity the specificity of the
prediction is increased, because a search for hints that
gave no results in a certain region may lead to a correction
of a false positive exon with AUGUSTUS+. This is so
because the absence of hints about coding regions slightly
favors the prediction of non-coding regions.

Combining intrinsic and extrinsic information for gene 
prediction
A GHMM for gene prediction is a probabilistic model of a
random DNA sequence and its random gene structure. It
assigns to each pair of a DNA-sequence s and a gene struc-
ture φ the joint probability P(φ, s). Based on this model,
GHMM-based gene prediction programs find for a given
input DNA sequence s the gene structure φ that is most
likely given s – in other words, they find the gene structure
φ that maximizes the conditional probability P(φ | s) which
is called the a-posteriori probability of φ. Maximizing
P(φ | s) for a fixed sequence s is equivalent to maximizing
P(φ, s) which can be done using the well known Viterbi
algorithm.

A GHMM which emits a DNA sequence and hints to the 
gene structure
In this subsection, we explain how extrinsic information
is integrated in the GHMM of AUGUSTUS. We call an
individual piece of extrinsic information about the input
DNA sequence a hint. For example, a potential splice site
position derived from an alignment of s with an EST
sequence is a hint. We distinguish 6 types of hints, namely
hints to a translation start site, a stop codon, a donor (5')
splice site or an acceptor (3') splice site, hints to a coding
region and hints to an exon. Let

TYPE = {start, stop, dss, ass, exonpart, exon}
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denote the set of hint types. Each hint refers to either the
forward or to the reverse strand. For example a hint of type
start would suggest that the coding region of a gene starts
on a certain strand at a certain position in the input
sequence. A hint of type exonpart suggests that a certain
interval α of the input sequence is part of an exon, i.e. an
exon either properly contains this interval α or is equal to
it. In addition, an exonpart hint specifies a reading frame
and a strand. Note that a hint that suggests that a single
position is coding, as it is used in GenomeScan, is the spe-
cial case of an exonpart hint of length 1. A hint of type exon
specifies the strand, the reading frame and the exact start
and end position of an exon. We assign to each hint a
grade g which allows to distinguish different levels of con-
fidence of the hints according to their respective source of
information. AUGUSTUS+ uses currently four different
grades to distinguish different sources of hints: manual
(user-defined), EST alignment, protein alignment and
combined hints, i.e. EST hints confirmed by a protein
match.

Extended model
AUGUSTUS+. We extend the GHMM used in AUGUSTUS
to a GHMM that considers the above types of hints for
gene prediction. Let h be the collection of all hints, which
have been obtained for the input DNA sequence s. In the
extended model not only the gene structure φ' and the
DNA sequence s are thought to be the result of a random
process but also the collection of hints h. This way, we
obtain a probability distribution on the set of all triples
(φ, s, h) of a gene structure φ, a DNA sequence s and a col-
lection h of hints. AUGUSTUS+ assigns to each such triple
a joint probability

P(φ, s, h)  (1)

and then finds the gene structure φ that maximizes the
conditional probability (or a-posteriori probability)
P(φ | s, h) for given s and h, which is again equivalent to
maximizing the joint probability (1).

In order that the new model is still a GHMM, we combine
the DNA sequence s over the alphabet Σ = {a, c, g, t} and
the collection of hints h to one sequence s' over a suitably
chosen larger alphabet Σ' which we define below. Accord-
ingly, our extended model generates a random sequence s'
which contains both a random DNA sequence s and a ran-
dom set of hints h. The emissions of the new GHMM are
from the extended alphabet Σ', and according to (1), we
maximize P(φ, s') = P(φ, s, h). As in the original model
used in AUGUSTUS, a maximum a-posteriori gene struc-
ture and its a-posteriori probability can be calculated with
the usual Viterbi and forward algorithm, respectively. The
new model is again a GHMM which can be though of as a
random generative process producing alternately states

and strings. However, we will not prove that claim here
and refer to [19].

Each hint about the gene structure of the DNA sequence s
is associated with a certain position in s. For hints of type
start, stop, dss and ass, this is natural as these hints contain
information associated with a single position. Hints of
type exonpart or exon, though, contain information about
a range of positions in s, say from a to b. In this case we
associate the hint with the right-end position b. The i-th
symbol of the string s' specifies the nucleotide at position
i of s and all hints which are associated with i. At most one
hint of each type can be associated with each position.

Formally, we define a collection h of hints for a sequence
s as a tuple

h = (hi, t : 1 ≤ i ≤ |s|, t ∈ TYPE)

where hi, t is the hint of type t at position i. If no hint of

type t exists at position i, we write hi, t = , i.e. the pitch-

fork symbol stands for 'no hint'. The extended emission
alphabet is a Cartesian product

Σ' = {a, c, g, t} × Hstart × Hstop × … × Hexon.

The i-th character of sequence s' is of the form
(bi, hi, start, hi, stop, ..., hi, exon). Here, bi is the nucleotide at

position i and hi, start to hi, exon specify the hints of type start,

stop, ..., exon, respectively, associated with i if there are any.
We exemplify this with the start hints and the exonpart
hints. hi, start specifies a start hint at position i. If there is no

hint about a translation start at position i then hi, start = .

This is in practice the most common case. Otherwise,
hi, start = (grade, strand), where 'grade' is the grade of the

hint and 'strand' is either the forward or reverse strand,
depending on the reading direction of the putative gene.
hi, stop, hi, dss and hi, ass are analogously defined by the stop, dss

and ass hints for position i. Consider as second example
the exonpart hint at position i. If there is no exonpart hint

ending at position i then hi, exonpart = . Otherwise

hi, exonpart= (grade, strand, length, reading frame), 'length' is

the length of the exonpart hint range. In other words, while
the exonpart hint is associated with its right-end position,
its length and therefore implicitly the left-end position is
part of the information encoded in the emitted character.
'reading frame' is one of the three possible reading frames.
The exon hints are defined analogously to the exonpart
hints.
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Another way of thinking about this is that the GHMM pro-
duces output on 7 tapes, the first tape contains the DNA
bases, the second tape contains the hints about start sites
and the letters on this tape are from an alphabet Hstart,
similarly the third to seventh tape contain the hints of the
remaining five types, each having its own alphabet. Note
that the letters on all but the first tape are themselves
tuples. This choice of the extended emission alphabet Σ'
and its interpretation ensures that all hints can be summa-
rized together with the input DNA sequence in one
sequence s', as is required for an emission of a GHMM.
This definition follows the principle: Every piece of infor-
mation that is used for the prediction must also be emit-
ted by the GHMM.

The probabilities of hints
In order to describe the model AUGUSTUS+ we need to
specify the probability distribution (1). The probabilities
of gene structures φ and DNA-sequences s is the same as in
AUGUSTUS [19]; the same transition probabilities are
used and exactly the same models for the DNA sequence.
In the present paper, we make the general simplifying
assumption that hints emitted at different positions i of a
sequence s are independent given the gene structure φ and
the DNA-sequence s. Further, the hints of different types t
emitted at the same position i are assumed to be inde-
pendent. Thus, we have

In order to define the conditional probability P(hi, t | φ, s)
– i.e. the probability of the observed hint of type t at posi-
tion i given the gene structure φ and the sequence s – we
introduce two terms: We say that a hint is compatible with
a gene structure φ if φ obeys the extrinsic information given
by the hint. For example, a start hint at a certain position
is compatible with any gene structure in which a coding
region starts at this position on the strand specified by the
hint. In case the true gene structure is known a hint that is
compatible with it is said to be correct. Next, we say that a
hint hi, t is compatible with the sequence s if a minimal bio-
logical consistency requirement is satisfied. The meaning
of this requirement depends on the type of the hint. A start
hint is compatible with the sequence if and only if an ATG
ends at the position i and the hint is on the forward strand
or the reverse complement of ATG ends at that position
and the hint is on the reverse strand. Analogously a stop
hint requires the presence of a stop codon in the sequence
and a dss and ass hint require the presence of the dinucle-
otide consensus of 'GU-AG' introns. An exonpart hint is
compatible with s if and only if the interval contains no
stop codon in the corresponding reading frame on the

corresponding strand. Finally, a hint of type exon is only
compatible with s if the interval contains no in-frame stop
codon on the specified strand and the interval is bounded
by splice and/or start/stop codons in a biologically mean-
ingful way.

In the AUGUSTUS model every gene structure that vio-
lates above minimal biological consistency requirement is
impossible and has probability 0. Therefore, every hint
that is compatible with some possible gene structure on s
is also compatible with the sequence s. AUGUSTUS+ con-
siders only hints which are compatible with the input
sequence s; non-compatible hints are ignored. Thus there
are three cases for a hint, given the sequence s and a pos-
sible gene structure φ. Firstly, it can be compatible with the
gene structure φ and therefore compatible with s. Sec-
ondly, it can be compatible with s but not with the gene
structure φ, and thirdly, it can be incompatible with both
φ and s.

We make the general simplifying assumption that for a

hint hi, t ≠  the probability P(hi, t | φ, s) depends only on the

type t of the hint, its grade g, whether it is compatible with φ
and whether it is compatible with s. Thus, for all grades g and
types t there are numerical values q+(t, g), q-(t, g) such that

The probabilities q+(t, g), q-(t, g) have been estimated on a
part of our training set with known gene structures and
given hints. Example for the estimation: For 386 of the
500 translation starts in the training set we received a hint
coming from a protein database search. Therefore we esti-
mated

q+(start, Protein) = 386/500 ≈ 0.77.  (4)

We also had Protein start hints for 47 of the approximate
145000 ATGs which are not a translation start. Therefore,
we estimated

q-(start, Protein) = 47/145000 ≈ 3.2·10-4.  (5)

This training directly assesses the reliability of the hints,
not indirectly through the incorporation of BLAST output
numbers with ad-hoc parameters. For details on the train-
ing of hints parameters see [19]. In the case of user defined
constraints (g = manual) we simply set q-(t, g) = 0 for all
types t, i.e. manual hints that are incompatible with the
gene structure are never observed. This has the effect that
P(φ, s, h) = 0 for every gene structure φ which is incompat-
ible with a manual hint. Therefore AUGUSTUS+ predicts a
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gene structure which is compatible with all manual hints
if that is possible with the model. These user constraints
can also be set at the AUGUSTUS web server [20].

The simplifying independence assumption (2) is in some
cases clearly violated. This is for example the case when
the same EST alignment was used to generate a hint for an
exon and also for the bordering splice sites. In this case we
keep only those nonredundant hints which best summa-
rize the extrinsic information: We keep the exon hint and
delete the dss and ass hint. Also, the sets of EST and Com-
bined hints are not stochastically independent, as those
hints may in both cases depend on the same EST. In the
case of identical hints of different types we keep only the
one with the most reliable grade. These changes to the set
of hints are made before the hints are considered for gene
prediction.

Reward for gene structures supported by hints

Suppose we have some (possibly empty) collection h of
hints for an input DNA sequence s. We want to examine
the effect that an additional hint not present in h has on
the predicted gene structure. Clearly, gene structures that
are compatible with the new hint should get some sort of
bonus over ones that are incompatible with it. Let h'
denote the collection of hints obtained by adding the new
hint to h. Let the new hint be at position i of type t and

with grade g, i.e. h'i', t' = hi', t' for all (i', t') ≠ (i, t) and

h'i, t ≠ hi, t = .

Suppose that φ+ and φ- are gene structures on s such that
the new hint h'i, t is compatible with φ+ but not with φ- We
obtain

This equation holds because using (2) the probabilities

P(φ+, s, h') and P(φ+, s, h) differ only by the two factors

q+(t, g) and P(hi, t =  | φ+, s) as the new hint is compatible

with φ+. Likewise, the denominators on both sides of this
equation are equal. The interpretation of (6) is that intro-
ducing a hint of grade g and type t gives the a-posteriori
probabilities of all gene structures which are compatible
with that hint a relative bonus of

over those which do not respect that hint. For example,
this means that when the protein search lead to a hint
about a putative translation start site, then gene structures
which have a translation start site at this position become
more likely. Using (4) and (5) the probability of a gene
structure with that start site relative to the probability of a
gene structure without that start site increases by approxi-

mately a factor of . An addi-

tional hint may turn a compatible gene structure into the
maximum a-posteriori gene structure.

Penalty for gene parts not supported by hints

A 'bonus effect' as above was clearly intended when we
constructed the new model. It turns out that the extended
probabilistic model entails another effect, which could be
called a 'malus effect'. Consider the following example.
Suppose that a search for hints has produced no results

(hi, t =  for all i, t) on a certain piece of DNA s. Imagine

that s is a small part of a longer input DNA sequence. Let

φ0 and φ1 be any two gene structures. Then

Now, let for example φ0 be a gene structure which has no

exons in s and let φ1 be a gene structure with exactly one

internal exon in s. Then in the product in (8) all probabil-
ities of observing no hint given the one or the other gene
structure cancel out except for the splice site hint types at

the two positions where φi has a splice site, for the exon
type at the right end point of the exon and for the exonpart
type at all � coding positions. For these pairs of i and t the
probability of observing a hint of type t at position i is

larger given φ1 than given φ0, and thus the probability of

observing no hint is smaller, i.e. P(hi, t =  | φ1, s) <

P(hi, t =  | φ0, s). To give a concrete example, if the exon

of φ1 has length 100, and the search for all hints has found

no results, we would have

The quotient at the right hand side is the ratio of the a-
posteriori probabilities of the two gene structures in the
original ab initio AUGUSTUS model. Equation (9) means
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that in this case when AUGUSTUS+ is compared to
AUGUSTUS the a-posteriori probability of a gene struc-
ture with an additional unsupported internal exon gets a
relative malus factor of about 0.036 over gene structures
which do not have the unsupported internal exon. Unsup-
ported exons and splice sites are penalized, which seems
reasonable: Experience shows that the largest part (more
than three fourth) of the actual donor splice sites are sup-
ported by EST dss hints. Suppose a situation where the ab
initio gene prediction program is 'in doubt' about this
splice site in the sense that there are two likely gene struc-
tures with about equal a-posteriori probabilities. One
gene structure has this splice site and one has not. In this
situation an EST search that produced no hint makes the
no-splice-site gene structure more likely. No information
is also information. Lengths of exonpart and exon hints.
We examined the information the length of a hint con-
tains on its reliability and how it should be taken into
consideration by a program. HMMGene can include,
among others, BLAST hits to an EST database [15]. An EST
hit of length � indirectly has the following effect for
HMMGene. The joint probability of the sequence and a
parse in which a coding region covers the EST hit gets a rel-
ative bonus over the joint probability that of the sequence
and a parse in which an intron or intergenic region covers
the EST hit. This relative bonus is exponential in �. With
the ad-hoc parameters used in [15] it is approximately
(1.2/1.07)� = 1.12�. So, for example the relative bonus is

about 300 when the EST hit has length 50 but it is as large
as 7 109 when the EST hit has length 200. In the TWINS-
CAN model the length of a BLAST match has a similar
effect. The relative bonus of a gene structure which has an
exon covering a BLAST match of length � over a gene struc-
ture which has an intron or intergenic region covering that
match is also approximately exponential in �. In the case
of HMMGene with an EST search this length dependency
has been identified as a problem by Krogh: "... ignoring a
long EST is very improbable, whereas it is quite probable
to ignore a short one.... for ESTs experimentation with
other types of length dependences is necessary." In HMM-
Gene "the specificity drops more than the sensitivity
increases when ESTs are used." [15] For the case of Protein
and EST hints obtained with AGRIPPA, we found that long
exonpart hints are not much more often correct than
shorter ones (data not shown, see [19]). In our model the
relative bonus a gene structure gets for being compatible
with a hint of type exonpart or exon does not depend on the
length of the interval specified in the hint.

Relevance of the p-value of a match
Another difference between our method and GenomeS-
can and HMMGene is that we do not make use of the
BLAST p-value. A smaller p-value indicates that the BLAST
hit of a given score is less likely to have occurred if the
database consisted of random sequences not related to the
query sequence. This fact seems to suggest to make use of

Venn diagram of exons and genesFigure 1
Venn diagram of exons and genes. Area-proportional Venn diagram of three sets of exons (top) and three sets of genes 
(bottom) for chromosome 22. 'Annotation' refers to the set of 387 genes compiled by the Sanger Institute. Examples: 2271 
exons were in the Sanger Center annotation and were exactly predicted by AUGUSTUS+ using the Combined hints and by 
SGP2. The annotation set and the set of predictions of AUGUSTUS+ shared 71 genes identically, that were not in the set of 
SGP2 predictions.
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the BLAST p-value and trust those hints more that are
derived from a hit with a small p-value. Indeed, Genom-
eScan uses a heuristic in which the relative bonus of a gene
structure is inversely proportional to the 10th root of the
p-value. However, we found that the distribution of the e-
value of correct Protein exonpart hints is about the same as
the distribution of the e-value of incorrect Protein exonpart
hints (data not shown, see [19]). Only very large e-values,
say larger than 10-10, are somewhat more frequent among
the incorrect hints than among the correct hints. This can
be explained by the following presumption. Most of the
incorrect Protein exonpart hints are not incorrect because
the similarity between the genomic sequence and the pro-
tein sequence is a mere coincidence but because there are
(strong) similarities to protein sequences in the nr data-
base in regions of the genomic sequence which are not
annotated as exons. The e-value and p-value contain only
little information on the correctness of an exonpart Protein
hint. Trying to exploit that information with AUGUSTUS+
by introducing different grades for higher e-values and
lower e-values yielded no better results.

Collecting Hints from EST and protein databases
The hints we here use as input to AUGUSTUS+ (in GFF
format) are automatically generated by a program called

AGRIPPA (The eponymous Roman general Agrippa was
an adviser and close associate of the Roman emperor
Augustus). AGRIPPA extends the local alignment search
tool WU-BLAST [21]. It uses a protein sequence database
and an EST database to infer hints about the coding
regions in the input DNA sequence. Before such a data-
base search is initiated, putative repetitive elements in the
input DNA sequence are masked using the program
RepeatMasker. When run on the protein database,
AGRIPPA uses the resulting alignmens of a BLASTX search
to infer Protein hints of all six types. When run on the EST
database, it uses the resulting alignments of a BLASTN
search (options: -Q 15 -R 15) to infer EST hints of the
types exonpart, exon, ass and dss.

It should be mentioned that we make a systematic error
with EST hints. It is due to the fact that ESTs can theoreti-
cally only be used to infer the mRNA sequence of a gene.
Our method also finds presumable non-coding exons. The
information which part of that mRNA sequence is coding
cannot be derived from ESTs hits alone. Therefore,
AGRIPPA has a program option, Combined, which tries to
verify which parts of the partially reconstructed mRNA is
coding by performing a protein database search with this
sequence. After the EST database has been used to par-

Combined hintsFigure 2
Combined hints. The information retrieved from a combination of EST and protein database searches. The input DNA 
sequence contains one gene of which the dark boxes are the coding parts. At first, ESTs matching the DNA sequence are 
found and clustered. The concatenation of the segments of the input DNA sequence which are aligned to the clustered ESTs is 
then searched against a protein database. The protein match can be used to infer which part of the EST consensus sequence 
was coding. In this example the alignment of the protein started at the first position of its amino acid sequence. Thus a likely 
translation start site (start hint) can be inferred.
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tially reconstruct the mRNA, each presumable part τ of an
mRNA sequence is searched against the protein database.
The parts of τ that are aligned to an amino acid sequence
are relatively likely to be coding. Then the information
from the original alignment of the ESTs to the input DNA
sequence can be used to infer a partial presumable intron/
exon structure. Again, a protein hit can be used to infer a
translation start or stop site if the first or last amino acid
of a protein has been aligned, respectively. Figure 2 shows
an example for the construction of Combined hints.

Test results
We tested AUGUSTUS+ on two different human test sets,
the benchmark set sagl78 [22] and the well-annotated
human chromosome 22 [23] and compared our results to
a number of established gene finding programs which use
different information sources for the prediction.

Guigó et. al. compiled the test set sag178 [22] which con-
tains real genes and randomly generated intergenic
sequence. This has the advantage that gene predictions in
this area are certainly false positives, so the specificity of
gene finding programs can better be assessed. Further, we
tested AUGUSTUS+ with hints generated by our tool
AGRIPPA in four different ways, (a) using the dbEST data-
base, (b) using the non-redundant protein sequence data-
base nr from NCBI, (c) using above described
combination of an EST and protein search and (d) with all
above hints together. We refer to these sources of hints as
Protein, EST, Combined or all hints, respectively. In addi-
tion to some ab initio methods, we tested GenomeScan [14]
which uses BLASTX alignments with protein sequences for
the prediction and TWINSCAN [6], a reimplementation
of GENSCAN that uses in this setting BLASTN alignments
with the mouse genomic sequence. Furthermore, we com-

pared our method to SGP2 [5], an extension of GENEID
which here used TBLASTX alignments with the mouse
genomic sequence. The GenomeScan and TWINSCAN
results were obtained using their respective web servers.
To obtain the GenomeScan predictions we uploaded for
each input query sequence the complete protein
sequences of all proteins that AGRIPPA used to generate
Protein or Combined hints for AUGUSTUS, on average 23
proteins per sequence.

Table 1 summarizes the test results on sag178. AUGUS-
TUS predicts 42% of the genes correctly. The EST hints
help to improve the accuracy. Protein hints improve the
accuracy even more and the best accuracy was achieved by
AUGUSTUS+ using all hints (option (d)). On these multi-
gene sequences AUGUSTUS outperforms the other pro-
grams, especially on the gene level.

A more realistic test set is human chromosome 22. How-
ever, it is less completely and probably less accurately
annotated than the above test set. As reference annotation
of this test set, we used the 387 protein coding regions of
all complete genes which have been published by Collins
et al. [23]. These data were produced by the Chromosome
22 Group at the Sanger Institute and are available online
along with the GENSCAN predictions [24].

Table 2 shows that, on Chromosome 22, AUGUSTUS is
somewhat less sensitive than GENSCAN on the base and
exon level but considerably more specific. Again, AUGUS-
TUS is more accurate than GENSCAN on the gene level.
AUGUSTUS+ with all hints is in all measures the most
accurate version of AUGUSTUS. It predicts 41% of the
genes exactly as annotated. TWINSCAN and SGP2 are less
accurate on the exon and gene level than the least accurate

Table 1: Accuracy results on sag178

sag178 base exon gene
sn sp sn sp sn sp

AUGUSTUS 0.93 0.83 0.79 0.73 0.42 0.38
GENSCAN 0.94 0.64 0.68 0.45 0.18 0.14
GENEID 0.89 0.78 0.67 0.60 0.17 0.17

HMMGene 0.87 0.49 0.71 0.30 0.20 0.07

AUGUSTUS+ EST 0.95 0.85 0.85 0.76 0.49 0.46
Protein 0.98 0.90 0.91 0.87 0.71 0.68

Combined 0.95 0.89 0.89 0.85 0.68 0.65
all hints 0.98 0.93 0.94 0.90 0.82 0.79

GenomeScan* 0.83 0.77 0.69 0.64 0.37 0.38
TWINSCAN 0.88 0.82 0.71 0.68 0.20 0.25

Accuracy results on human data set sag178 with 43 sequences and 178 genes, sn = sensitivity = TP/AP, and sp = specificity = TP/PP where TP, AP 
and PP are the number of true positives, actual positives and predicted positives, 'exon' and 'gene' here refer to the protein-coding parts of exons or 
genes, respectively. * For the accuracy values of GenomeScan the 7 sequences which are longer than 230 Kb were deleted from the test set. They 
were too long for the GenomeScan web server.
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version of AUGUSTUS+ which uses EST hints alone.
Again, the difference is especially demonstrative on the
gene level. The accuracy of GenomeScan on chromosome
22 has been compared to that of GENSCAN and SGP2 by
Parra et. al [5]. These authors conclude that "Overall,
SGP2 appears to be more accurate than GENSCAN in
human chromosome 22" and "GENOMESCAN [...] did
not appear to be superior to GENSCAN in human chro-
mosome 22.". Figure 1 shows how much the predictions
of SGP2 and AUGUSTUS+ using Combined hints have in
common with each other and with the annotation. The
data of Figure 1 show, for example, that the intersection of
the set of SGP2 exons and AUGUSTUS+ Combined exons
would have 2271 true positive and only 439 false posi-
tives. Such a combined exon finder which predicts only
the common exons of AUGUSTUS+ Combined and SGP2
would thus have an exon sensitivity of 0.65 and an exon
specificity of 0.84.

To measure the advantage of interval hints over position
wise hints we conducted the following two experiments
where we compared AUGUSTUS+ to variants of it. First,
we modified the set of Protein hints for the test set sag178
and replaced every hint of type exon or exonpart which goes
from position a to b by an exonpart hint of length 1 at
position (a + b)/2 (rounded). We also removed the splice
site hints but kept the start and stop hints. This is similar to
the method of GenomeScan which uses a BLASTX hit to
reward gene structures which include the so-called cen-
troid of the hit in an exon. We reestimated the probabili-
ties of these hints and obtained the following accuracy
values on sag178: base sn = 93%, sp = 92%, exon sn =
85%, sp = 85%, gene sn = 62%, sp = 59%. We conclude
that reducing each interval hint to a single point decreases
the overall accuracy. Further we tried the following vari-
ant. We removed the hints of type start, stop, ass and dss

and replaced very hint of type exon or exonpart which goes
from position a to b by a set of b - a + 1 exonpart hints each
of length 1, the positions ranging from a to b. This variant
yields: base sn = 98.5%, sp = 86%, exon sn = 84%, sp =
79%, gene sn = 53%, sp = 49%. This indicates that the
common model solution of upvaluing gene structures
independently for every coding base that overlaps the
database match is not optimal.

To estimate the magnitude of the malus effect and to
obtain an upper bound on the number of genes that may
be missed because there is no extrinsic evidence for them
we performed the following experiment. On chromosome
22 we used the AUGUSTUS+ version that uses EST hints
but gave AUGUSTUS+ an empty set of hints. So the model
'thought' that an EST database search has been performed
on that sequence but the search has produced no results.
Compared to the ab initio predictions the number of pre-
dicted exons decreased from 4824 to 4183. However, the
percentage of annotated genes whose coding sequence
overlaps a predicted coding sequence decreased only very
little, from 93% to 92%. The accuracy results are: base sn
= 83%, sp = 63%, exon sn = 68%, sp = 57%, gene sn =
19%, sp = 10%. On the base and exon level the sensitivity
decreased a little but the specifity even increased more
than the sensitivity decreased. We conclude that only
exons that are very doubtfull according to the intrinsic evi-
dence are not predicted when extrinsic evidence is miss-
ing. The effect is still weak enough so that the gene level
sensitivity remains the same.

Discussion
In this paper, we introduced a novel Generalized Hidden
Markov Model for gene prediction that integrates intrinsic
and extrinsic information in one single probabilistic
model. When considering hints from extrinsic sources in

Table 2: Accuracy results on chromosome 22

chr22 base exon gene
sn sp sn sp sn sp

AUGUSTUS 0.85 0.59 0.71 0.52 0.19 0.09
GENSCAN 0.89 0.49 0.73 0.39 0.10 0.05

AUGUSTUS+ EST 0.90 0.63 0.80 0.58 0.25 0.12
Protein 0.94 0.65 0.87 0.63 0.37 0.19

Combined 0.91 0.65 0.81 0.61 0.30 0.15
all hints 0.94 0.68 0.89 0.66 0.41 0.22

TWINSCAN 0.85 0.65 0.76 0.58 0.14 0.10
SGP2 0.87 0.66 0.74 0.56 0.19 0.10

Accuracy results on human chromosome 22 using the annotation of the Sanger Center as a standard of truth. The results were computed using the 
program Eval from Evan Keibler and Michael R. Brent. The TWINSCAN and the SGP2 predictions were taken from [28] and [29]. The AUGUSTUS 
predictions can be downloaded from the AUGUSTUS web server [27]
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addition to intrinsic sequence features, it is crucial to
incorporate these hints in a probabilistic manner that
allows to ignore hints which disagree with strong intrinsic
evidence. A major difficulty in combining extrinsic and
intrinsic information is to find a reasonable balance
between these different sources of information. We solved
this problem by introducing a new probabilistic approach
that incorporates both intrinsic and extrinsic evidence in
one stochastic model.

In our program evaluation, we compare the quality of the
respective software programs in terms of their prediction
accuracy. When comparing the accuracy of extrinsic meth-
ods, one should keep in mind that AUGUSTUS+ and
GenomeScan use different sources of external informa-
tion (EST and protein or protein only) than the programs
TWINSCAN and SGP2 do (genomic sequences). With this
evaluation it is not possible to directly compare the effi-
ciency of the underlying methods for integrating extrinsic
information. Our approach allows for exonpart hints that
indicate that a certain region or position is coding as well
as for exon hints that indicate the location of a complete
exon. An exon hint gives a bonus to an exon candidate
only if both the begin and end position are confirmed by
an alignment to EST or protein sequences. This is in con-
trast to the integration methods of GenomeScan and
HMMGene, where the gene structure gets bonuses, if it
classifies certain positions as coding. We believe that, in
the case when a putative complete exon can be inferred by
an EST alignment to the genomic sequence, a considera-
ble amount of information is lost by reducing such a hint
to a set of hints to individual positions. We think that this
is one reason why the use of ESTs alone increases the accu-
racy of AUGUSTUS+ in multi-gene sequences but not the
accuracy of HMMGene.

An implication of the here described extension of a
GHMM is that an unsuccessful search for hints in a certain
region makes exons in this region less likely. This is not the
case for HMMGene and GenomeScan. If the ab initio ver-
sions of these programs predicts an additional false exon
in an otherwise correctly predicted gene then the extended
versions of the programs that use extrinsic information,
will also predict the false positive exon. This is so even if a
very sensitive method of finding extrinsic information has
produced no results supporting that false positive exon.
By contrast, our method would give a malus to a possible
exon that is not supported by the extrinsic information.
Thus, with our model the non-supported false positive
exon is less likely to be included in the output gene model
if extrinsic information is used. Whether the malus defect
is desirable depends on the objective when predicting
genes. If the aim is to make the best guess on the gene
structure of a sequence, based on both sequence intrinsic
and extrinsic evidence then in the spirit of Bayesian statis-

tics a lack of extrinsic evidence lowers the likelyhood of
genes and the malus effect is desirable. If however the aim
is to explicitly find 'new' genes without homology evi-
dence, then an ab initio gene finder is the method of
choice. The objective will be different for different
research applications of the same genome project and a
solution is to have different sets of gene predictions. The
method that we described can be readily applied to hints
coming from other sources than EST and protein data-
bases. We currently develop an approach to generate hints
coming from cross-species alignments of genomic
sequences. To this end, we use a previously described
combination of the alignment programs DIALIGN [25]
and CHAOS [26] to generate exonpart hints by locating
segments of the input genomic sequence with high simi-
larity on the peptide level to segments of a genomic
sequence from a related species. As another possible
extension of the AUGUSTUS model, one could include
states for exons and introns in the non-coding region. This
way, the current systematic error of assuming that all EST
matches are likely to be in coding regions can be cor-
rected. Many more approaches are possible to integrate
extrinsic information in our GHMM. We will explore
these approaches systematically in the future to further
improve the predictive power of AUGUSTUS+.

Availability and requirements
AUGUSTUS+ is an option to the program AUGUSTUS.
The source codes of AUGUSTUS and AGRIPPA are freely
available for download from the AUGUSTUS web server
[27]. Both programs are written in C++ and have been suc-
cessfully compiled under Linux, UNIX and Mac. The
augustus web server also hosts a web interface to AUGUS-
TUS including the possibility of giving user-defined con-
straints.
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