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Abstract

Background: Through genetic engineering it is possible to introduce targeted genetic changes and
hereby engineer the metabolism of microbial cells with the objective to obtain desirable
phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure
and regulation, it is often difficult to predict the effects of genetic modifications on the resulting
phenotype. Recently genome-scale metabolic models have been compiled for several different
microorganisms where structural and stoichiometric complexity is inherently accounted for. New
algorithms are being developed by using genome-scale metabolic models that enable identification
of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding
optimal gene deletion strategy is combinatorial and consequently the computational time increases
exponentially with the size of the problem, and it is therefore interesting to develop new faster
algorithms.

Results: In this study we report an evolutionary programming based method to rapidly identify
gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate
the proposed method for two important design parameters in industrial fermentations, one linear
and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential
metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are
identified and underlying flux changes for the predicted mutants are discussed.

Conclusion: We show that evolutionary programming enables solving large gene knockout
problems in relatively short computational time. The proposed algorithm also allows the
optimization of non-linear objective functions or incorporation of non-linear constraints and
additionally provides a family of close to optimal solutions. The identified metabolic engineering
strategies suggest that non-intuitive genetic modifications span several different pathways and may
be necessary for solving challenging metabolic engineering problems.
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Background

Microorganisms are widely used for producing antibiot-
ics, therapeutic proteins, food and feed ingredients, fuels,
vitamins and other chemicals. Currently there is an
increasing trend to replace chemical synthesis processes
with biotechnological routes based on microbial fermen-
tations. In order to economically produce desired com-
pounds from microbial cell factories it is, however,
generally necessary to retrofit the metabolism, since
microorganisms are typically evolved for maximizing
growth in their natural habitat. Retrofitting of microbial
metabolism has traditionally been done through classical
strain improvement that involved random mutagenesis
and screening, whereas in later years rational design strat-
egies based on genetic engineering have been applied with
an increasing success — often referred to as metabolic engi-
neering. In metabolic engineering many experimental and
mathematical tools have been developed for introducing
directed genetic modifications that will lead to desirable
metabolic phenotypes resulting in improved production
of desirable compounds or in reduced production of by-
products [1,2]. Until now most of the successes in meta-
bolic engineering have been based on qualitative or intu-
itive design principles. However, even though there are
several success stories in metabolic engineering there are
also many attempts that have failed due to the lack of
rational strategies based on predictive analysis tools.

Microbial metabolism is often subjected to tight regula-
tion and is constrained by mass and energy conservation
laws on a large number of intracellular metabolites, and
this makes it difficult to predict the effects of introducing
genetic modifications in a given cell. Moreover, as meta-
bolic pathways and related regulatory processes form
complex molecular and functional interaction networks
[3,4], it is only through analysis of the metabolism as a
whole in an integrative systems approach [5] that one may
evaluate the effect of specific genetic modifications.
Genome-scale models of microbial organisms [6], com-
prising different levels of information, primarily on the
stoichiometry of the many different reactions but possibly
also comprising some information about regulation,
could offer a suitable platform for developing systems
level tools for analyzing and engineering metabolism [7].
Although there have been some attempts to simulate
dynamic behavior of whole cell systems [8,9], currently
these approaches enjoy limited applicability due to lack of
kinetic and regulatory information on the whole genome
scale. Nevertheless, in absence of kinetic and regulatory
information it is possible to at least partly predict the
behavior of cellular metabolism by using steady state
analysis based on genome-scale stoichiometric models.

Genome-scale stoichiometric models represent the inte-
grated metabolic potential of a microorganism by defin-
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ing flux-balance constraints that characterizes all feasible
metabolic phenotypes under steady state conditions.
Because of the large number of reactions occurring in cel-
lular metabolism, the dimensions of the solution space
(or the number of feasible metabolic phenotypes) defined
by genome-scale models [10,11] is very large. Conse-
quently, combinatorial complexity prevents calculation of
all feasible metabolic phenotypes that a microbial geno-
type can assume under a given environmental conditions
[12]. One of the approaches to determine the metabolic
phenotype (i.e. the fluxes through all metabolic reactions)
is to use flux balance analysis (FBA) [13,14]. In FBA a par-
ticular flux or a linear combination of various fluxes
(objective function) in the model is optimized through
linear programming, thus leading to a solution to the
fluxes through all metabolic reactions. Since several
microbial metabolic networks have evolved towards oper-
ation of optimal growth rate [15-18], the use optimiza-
tion of growth rate is an often applied objective function
in FBA. There are, however, some other approaches to
determine flux distributions, especially for deletion
mutants that might not be capable of realizing the same
objective function as the wild-type strain [19-21]. Never-
theless, all these methods provide a basis for using
genome-scale metabolic models to predict possible meta-
bolic phenotypes, and hence for in silico metabolic engi-
neering. However, despite of their potential, genome-
scale stoichiometric models have been scarcely used for
metabolic engineering purposes.

The algorithm developed by Maranas et al. [22,23]
(named OptKnock) represents one of the first rational
modeling frameworks for suggesting gene knockouts lead-
ing to the overproduction of a desired metabolite. Opt-
Knock searches for a set of gene (reaction) deletions that
maximizes the flux towards a desired product, while the
internal flux distribution is still operated such that growth
(or another biological objective) is optimized. Thus the
identified gene deletions will force the microorganism to
produce the desired product in order to achieve maximal
growth. Indeed, the design philosophy underlying Opt-
Knock approach takes advantage of inherent properties of
microbial metabolism to drive the optimization of the
desired metabolic phenotype. The relation of OptKnock
with the biological objectives of microorganisms makes it
an attractive and promising modeling framework for in
silico metabolic engineering.

OptKnock is implemented by formulating a bi-level linear
optimization problem using mixed integer linear pro-
gramming (MILP) [22] that guarantees to find the global
optimal solution. In this report, we extend the applicabil-
ity of OptKnock approach by formulating the in silico
design problem by using a Genetic Algorithm (GA), here-
after referred to as OptGene. Genetic algorithms use the
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principle of Darwinian evolution to search (evolve
through mutations and reproduction) for the global opti-
mal solution (individual with a maximum fitness score).
Direct relation of GA with biological evolution makes it a
natural method of choice to identify suitable genetic mod-
ifications for improved metabolic phenotype. There are
two major advantages of the OptGene formulation.
Firstly, OptGene demands relatively less computational
time and thus it enables to solve problems of larger size.
This is of particular importance as the relation between
the size of the problem (as defined by the number of
enzymes and number of deletions desired) and the corre-
sponding search space (combinations of enzymes to be
deleted) is combinatorial (Supplementary Figure 1) [see
Additional file 1]. Thus, the number of possible combina-
tions of 5 reaction-deletions in a model with 250 reac-
tions is more than 7.8 x 102, whereas existing genome-
scale stoichiometric models comprise a significantly
higher number of reactions. Secondly, the OptGene for-
mulation allows the optimization of non-linear objective
functions, which is of considerable interest in several
problems of commercial interest. One example of an
important non-linear engineering objective function is
the productivity (amount of product formed per unit
time).

Results and Discussion

OptGene algorithm

Two different versions of the OptGene algorithm were
used in this work, differing mainly on the representation
of the metabolic genotype: binary (binOptGene) and
integer (intOptGene) representations. The binary form of
the OptGene algorithm is schematically illustrated in Fig-
ure 1, and the important steps of both representations are
explained in the following.

Model pre-processing

Since GA do not exhaustively search the complete solu-
tion space, it is necessary to avoid local optimal solutions
by proper formulation of the problem. We therefore pre-
processed the model to remove duplicate and dead-end
reactions. Also a linear pathway (or enzyme subset [24])
was represented as a single reaction in GA. Moreover,
lethal reactions (including genes that are found to be
lethal in vivo, but not in silico) were not included as the
possible targets in GA. This pre-processing step reduced
the problem size considerably and thus reduced the
number of local optimal solutions (data not shown).

Chromosome representation of metabolic genotype

Each reaction in the metabolic model can be associated
with one or more genes in the genome. In the binOpt-
Gene algorithm each of those genes is represented by a
binary variable indicating its absence/presence (0/1), and
thus a set of these variables forms an "individual" (some-
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times also referred to as "chromosome" in evolutionary
algorithms nomenclature) representing a particular
mutant that lacks some metabolic reactions when com-
pared with the wild type (Figure 2). For the intOptGene
implementation, the individuals are composed of integer
numbers representing only the genes to be deleted,
according to their relative order in the metabolic model.
This way, the number of genes to be deleted can be
directly imposed by changing the size of the individuals.
The phenotypes of every individual can be obtained by
using FBA or other algorithms. The problem then is to
find the set of genes to be deleted from an individual so as
to obtain a desired phenotype (e.g. with maximum prod-
uct yield and minimum undesired by-product yield).

Initialization of population

The GA begins with a predefined number of individuals,
forming a population. In the binOptGene, individuals in
the population can be initialized in different ways, e.g. by
assigning present/absent status to each gene randomly, or
assigning present status to all genes, while in the intOpt-
Gene representation, the population is usually initialized
randomly.

Scoring fitness of individuals

Each individual is assigned a fitness score that determines
whether it will reproduce and/or propagate to the next
generation. The fitness score of an individual is calculated
using the desired objective function value. The objective
function value can be calculated using FBA, minimization
of metabolic adjustment (MOMA) [19], regulatory on-off
minimization (ROOM) [20] or any other algorithm. The
GA by itself is independent of scoring algorithm.

Crossover of chromosomes

After the fitness score is calculated for all individuals in
the population, the best individuals are selected for cross-
over. A selection scheme that is most commonly used is
the Roulette wheel, where individuals are selected based
on the magnitude of the fitness score relative to the rest of
the population. The higher the score, more likely an indi-
vidual will be selected. Selected individuals are then
crossed to produce a new offspring. The crossover meth-
ods used in this study were one-point, two-points, and
uniform crossover [25].

Mutation

Individuals propagating to the new population are
mutated (in our formulation, a gene is deleted) with a
given probability.

New population and termination
Mutation and crossover give rise to a new population,
which can then again be subjected to a new round of eval-
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Schematic overview of the OptGene algorithm. A population of individuals is initiated by specifying a present/absent sta-
tus for each gene in each of the individuals. Individuals are then scored for their fitness by using FBA/MOMA/other method of
choice and the objective function (/s). Individuals are selected for mating based on their fitness score, and subsequently crossed
to produce new offspring. Mutations are introduced in individuals randomly at specified mutation rate and thus a new popula-
tion is obtained. This cycle of evolution is repeated until a mutant (or mutants) with a desired phenotypic characteristics is
obtained. Please refer to the text for detailed description of each step in the algorithm. Grey shaded or red walled boxes are
used to represent different individuals in the cross-over process. Ind.- Individual. FBA- Flux balance analysis [I3,14]. MOMA-
Minimization of the metabolic adjustment [19]. ROOM- Regulatory on/off minimization [20].
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Representation of the metabolic genotype. Each gene of the microorganism is assigned a binary value, representing its
absence/presence in the mutant (A). The individual genes are associated with one or more reactions in the metabolic network
(B). When a given reaction is in the absent status, the upper and lower bonds for the corresponding metabolic flux are set to

zero, resulting in a modified metabolic model (C).

uation, crossover and mutations. This cycle is repeated
until an individual with a satisfactory phenotype is found.

We illustrate the principles and utility of OptGene algo-
rithm by using three interesting metabolic engineering
problems with the yeast Saccharomyces cerevisiae, which is
one of the most widely used cell-factories. We applied
OptGene for S. cerevisiae to identify gene-deletion strate-
gies for improving yield and substrate-specific productiv-
ity of three metabolites, namely vanillin, glycerol and
succinate. The yield of a product (metabolite) of interest
is defined as the grams of product produced per unit gram
of the substrate consumed, whereas substrate-specific pro-
ductivity is defined as the grams of product produced per
unit time per unit substrate consumed. It is important to
note that models based only on stoichiometry can not
predict rates without an assumption of a fixed substrate
uptake rate. Since the substrate uptake rates for deletion
mutants might change substantially and the fact that it is
very difficult to predict such changes a priori, in general the
productivity can not be optimized by using stoichiometric

models. One of the ways to circumvent this problem is to
optimize the function [Product Yield Growth].
Although, this quantity will be equal to the substrate-spe-
cific productivity under the assumption of a fixed sub-
strate uptake rate, we will refer to this term as Biomass-
Product Coupled Yield (BPCY) rather than the productiv-
ity as this may cause confusion (also see Note 1 for com-
ments about the growth rates for mutants). BPCY
represents an interesting example of a non-linear objec-
tive function that can be optimized by using OptGene.

X

Vanillin case study

Vanillin is a natural flavor compound extracted from
plants and is widely used as a food ingredient. There is
some commercial interest in producing vanillin by using
recombinant microorganisms and in particular Saccharo-
myces cerevisiae which is a food grade organism. Since
vanillin is not produced naturally by S. cerevisiae, the cor-
responding reactions were inserted into the model as sug-
gested by Pharkya et al[23]. Then we used OptGene to find
gene deletion strategies to improve the BPCY as well as the
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yield of vanillin. We found that it was possible to improve
the vanillin yield in silico up to 90 % of the theoretical
limit by deleting only 2 reactions (pyruvate decarboxylase
and glutamate dehydrogenase), while keeping the growth
rate at 60% of the parental strain. A similar strategy was
predicted for a mutant with the maximum BPCY. The sug-
gested strategy diverts the pyruvate flux going to ethanol
towards vanillin where NADH is oxidised back to NAD-+.
Furthermore, deletion of glutamate dehydrogenase results
in an increased availability of NADPH needed for vanillin
biosynthesis. Increasing the allowable number of dele-
tions did not result in substantial improvement in the
yield or BPCY.

Glycerol case study

Currently glycerol is mainly recovered as a by-product
from soap manufacturing or produced from propylene
and is widely used to synthesize several products ranging
from cosmetics to lubricants [26]. Alternatively, glycerol
can also be produced through microbial fermentation
using sustainable carbohydrate resources. Saccharomyces
cerevisiae naturally produces glycerol in small quantities
during anaerobic fermentation or under osmotic stress.
Moreover, glycerol plays an important role in maintaining
the cytosolic redox balance under anaerobic conditions
and it is therefore interesting to study the effects of gene-
deletions on yield and productivity of glycerol. We
applied the OptGene algorithm to identify gene deletions
leading to improved yield and BPCY of glycerol under aer-
obic conditions, where the maximum theoretical yield of
glycerol is much higher as opposed to anaerobic fermen-
tation.

Results suggested that no single gene deletion will result
in glycerol production, whereas a strategy for double reac-
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tion deletion is identified, namely FBP1 (Fructose-1,6-
bisphosphatase) and genes encoding Glyceraldehyde-3-
phosphate dehydrogenase (TDH1, TDH2 and TDH3).
This strategy makes intuitive sense as reactions that
branch the flux away from dihydroxyacetone phosphate
(the precursor for glycerol) are deleted (see figure 3 for a
schematic representation of yeast central carbon metabo-
lism). With this strategy it is possible to obtain a yield of
0.49 g/g-glucose with a corresponding growth rate that is
80% lower than the reference strain. Increasing the
number of deletions up to six did not result in a further
substantial increase in the yield. However, interestingly,
the BPCY of glycerol improved with the number of dele-
tions allowed. With six deletions, the BPCY reached up to
41 mg/g glucose-hr (yield of 0.31 g/g-glucose) with a
growth rate equal to 50% of that of the reference strain.
Moreover, the identified deletions for yield and BPCY
improvement are different (Supplementary Table 2) [see
Additional file 1]. Notably, the suggested deletions span
not only the central carbon metabolism but also extend to
amino acid and vitamin metabolism, illustrating the tight
links between different metabolic pathways arising from
the mass balance constraints. This also illustrates the need
for the here reported algorithm which can search this vast
solution space efficiently.

Succinic acid case study

Succinic acid is one of the intermediates of the TCA cycle
and is an interesting chemical to be used as a feedstock for
synthesis of a wide range of chemicals. As a metabolite
from the central carbon metabolism, it is a good case
study for devising metabolic engineering strategies. Multi-
ple gene deletion strategies obtained using OptGene algo-
rithm for improving succinic acid yield and BPCY are
summarized in table 1.

Table I: Different deletion strategies suggested by OptGene algorithm for improving succinate yield and Biomass Product Coupled

Yield.
Objective function Number of Suggested deletions! Objective function %Maximum  Unique
deletions value? Growth solution?3
Succinate yield 5 SDH-complex, ZWF1, PDC6, U133, U221 0.39 14% Yes
SDH-complex, ZWFI, PDCé, U133, U4 037 1% Yes
4 SDH-complex, ZWF I, PDCé, AGP3 0.356 30% Yes
3 SDH-complex, ZWF 1, PFK2 0.211 4% Yes
SDH-complex, SER3, THRI 0.074 76% Yes
Succinate Biomass Product 4 SDH-complex, ZWF I, PDC6, AGP3 29 30% Yes
Coupled Yield
SDH-complex, SER3, THRI, U221 22 75% Yes
3 SDH-complex, SER3, THRI 16 76% Yes
SDH-complex, ZWF|1, GLTI 9.78 42% Yes

I Only few of the suggested strategies, with high objective function values are shown. OptGene found many strategies with different, but high
objective function values. This tendency can be controlled by varying GA parameters.

2Units are: Yield in gram (gram glucose)!, Biomass Product Coupled Yield in milli-gram (gram-glucose.hour)-!

3 Uniqueness of the solution was verified by first optimizing for the biomass, and then minimizing and maximizing the succinate flux at fixed, optimal

biomass value.
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Firstly, we note that the maximum theoretical yield of suc-
cinic acid is 0.506 g/g glucose (Note 2) when no biomass
is being produced, and that no succinic acid can be pro-
duced at optimal biomass growth rate. Moreover, no sin-
gle gene deletion strategy resulted in succinic acid
production. For a double gene deletion strategy, deletion
of the SDH-complex (succinate dehydrogenase) and THR1
(homoserine kinase) is predicted to result in a succinic
acid yield of 0.018 g/g glucose, with a 10% reduction in
the growth rate. Flux re-distribution leading to this
improvement in the double-deletion mutant is quite
interesting and non-intuitive. Deletion or inactivation of
the SDH-complex prevents the conversion of mitochon-
drial succinate to fumarate, while simultaneous deletion
of THR1 forces threonine synthesis via glycine, which may
be formed from glyoxylate. Consequently there is
increased flux through ICL1 (cytosolic isocitrate lyase, cat-
alyzing the reaction from isocitrate to glyoxylate and suc-
cinate), thus creating surplus succinate that is secreted by
the cell. Moreover, this flux re-distribution is also associ-
ated with an increased flux through the pentose phos-
phate (PP) pathway for increased NADPH availability. We
note that in the mutant with only the SDH-complex
deleted, threonine is synthesized via aspartate, which is
optimal route for maximizing biomass production. The
same double deletion mutant was also predicted to show
maximum BPCY (4.5 mg/g glucose-hr).

The search for a triple deletion mutant with maximum
succinate yield suggested deletion of the SDH-complex,
ZWF1 (Glucose-6-phosphate dehydrogenase) and PFK2
(Phosphofructokinase). Although this resulted in
increased prediction of succinate yield (0.21 g/g glucose),
the corresponding growth rate is very low (96% reduction
in growth rate), making this solution unattractive. How-
ever, a triple deletion mutant with maximum BPCY (16
mg/g glucose-hr) was found to have 76 % of the wild-type
growth rate and a succinate yield of 0.07 g/g glucose. The
corresponding solution suggested deletion of SER3 in
addition to the double deletion strategy discussed above.
Deletion of SER3 blocks the synthesis of L-Serine via 3-
Phospho-D-glycerate, which increases the demand on gly-
cine production via glyoxylate. Overall, it leads to a fur-
ther increase in the flux through ICL1 ensuring a higher
flux towards succinate while maintaining a high growth
rate. This increase is also associated with a further increase
in the flux through the PP pathway.

In spite of a slow growing triple deletion mutant for
improved yield, the algorithm found a quadruple deletion
mutant with not only improved yield (0.36 g/ g glucose),
but also with much higher growth rate, as compared to the
triple deletion mutant (table 1), and therefore higher
BPCY. The suggested genes for deletion are the SDH-com-
plex, ZWF1, PDCG6 (pyruvate decarboxylase) and AGP3
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(glutamate permease). Deletion of ZWF1 increases the
flux through glycolysis and deletion of PDC6 increases
conversion of pyruvate to oxaloacetic acid via PYC1. This
flux could be directed towards glutamate production and
into the TCA cycle. But since the SDH-complex is deleted
the flux through TCA cycle is limited, while deletion of
secretion reaction for surplus glutamate forces malate for-
mation from oxaloacetic acid. The flux through malate is
then directed to succinate via fumarate. We also searched
for a quadruple deletion strategy for maximum BPCY and
the algorithm suggested the same deletion strategy as for
the maximum yield, with a corresponding BPCY of 29
mg/g glucose-hr. This BPCY shows a substantial increase
over the BPCY obtained with the triple deletion strategy.

Results of a further search allowing more gene deletions,
for improvement in yield and BPCY, are summarized in
table 1. Here we note that it might be difficult to realize
some of the suggested optimal strategies in vivo due to a
variety of reasons, e.g. regulatory constraints, orphan reac-
tions etc. However OptGene provides not only the opti-
mal solution found, but also generates a family of "good"
solutions and thus provides many strategies that can be
further analyzed manually before experimental verifica-
tion. Some of such alternative solutions are also reported
in table 1.

MOMA approach

The examples discussed above use FBA as scoring function
to evaluate fitness of an individual in the GA. However, as
noted before, the flux distribution of mutants of Echerichia
coli have been shown to be better approximated by assum-
ing that the fluxes tend to have a minimum distance from
wild-type flux distribution, which may not correspond to
the flux distribution for maximum growth [19]. Neverthe-
less, although this approach, referred to as Minimization
of Metabolic Adjustments (MOMA), might explain the
flux distribution of mutants better than FBA, such
mutants might approach towards FBA-predicted optimal
solution when evolved under growth pressure [15,27].

To check whether the two approaches for evaluating flux
distributions (namely FBA and MOMA) result in different
predictions for multiple deletion mutants, we used Opt-
Gene to search for double and triple deletion mutants
with improved succinic acid yield and BPCY. The double
deletion strategy for obtaining maximum yield with
MOMA includes deletion of FUM1 (fumarase) and PDA1
(pyruvate dehydrogenase). This strategy is different from
that suggested by using FBA, and it also predicts a better
yield (0.11 g/g glucose) for a double deletion mutant. In
case of BPCY the MOMA approach yielded the same pro-
ductivity, although with different genes (RPE1 and an
orphan reaction in mitochondria). However, an effective
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comparison of FBA and MOMA for multiple deletion
mutants can only be done after experimental evaluation.

Significance and effects of different GA parameters
Parameterization of stochastic optimization methods like
evolutionary algorithms is recognized as a difficult task
and for this particular problem only an empirical study of
the effect of different parameters was conducted. The
main purpose of this parameterization was to be able to
obtain a global optimum within a reasonable computa-
tion time.

Different sizes of the population were tested, and it was
found that an increase beyond 125 individuals did not
improve the results significantly. Furthermore, a mutation
rate of 1/(genome size) was found to be optimal for both
representations (Supplementary Figure 2) [see Additional
file 1].

Regarding crossover methods, for the binOptGene repre-
sentation, one-point, two-points and uniform crossover
methods were tested, and the different crossover tech-
niques gave almost the same results, indicating that all
approaches are equally good, probably due to their simi-
lar operation mode. For intOptGene, only one type of
crossover method was tested, namely uniform crossover
where a child obtains a gene from each parent with equal
probability.

After parameterization, for both representations, and for a
typical optimization run, the evolutionary algorithms
were able to achieve a solution within 1000 generation,
although the algorithm was allowed to run until 5000
generations. A typical convergence curve can be found in
Figure 4.
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Figure 4
Typical shape of the convergence curve of OptGene.
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Resemblance to Natural Evolution

The theoretical foundations of genetic algorithms rely on
a notion of short, highly fit schemata, also known as
building blocks (see e. g. [25,28]), that are propagated
generation to generation and constitute the basis for the
convergence to optimal solutions. For the strain design
problem, building blocks can be regarded as subsets of
genes in a close position on the individuals of the evolu-
tionary algorithms that, when deleted together, improve
process yield or productivity.

The differences on the representation of individuals in
both approaches used in this work originate different req-
uisites in terms of the formation of building blocks: as in
the binary representation the order of the genes in the
individuals follows closely that of the stoichiometric
model (where genes are grouped according to the main
pathways they integrate), only related genes can be a part
of the building blocks. On the other hand, for the integer
representation any subset of unrelated genes can form a
building block. A natural conclusion of this observation is
that the more the genes in the metabolic model follow a
biological meaningful order, the more similar the binOpt-
Gene optimization approach is to a biological evolution
of microorganisms under a given selective pressure.

Additionally, we observed that if the limitation on the
number of genes to be deleted in binOptGene is imposed
by using penalty functions after evaluation of individuals,
the number of invalid individuals in the population at a
given generation is very large and consequently negatively
affects the convergence.

Nevertheless, in spite of the described differences, and
although it is known that usually Genetic Algorithms do
not perform very good for problems of the size found for
the binary implementation, similar results were obtained
for both approaches, after parameterization. In fact, for
the majority of the runs, and with both representations,
there was a clear convergence to an optimum (Figure 4),
and the solutions found were very similar among all the
repetitions (typical values of the relative standard devia-
tion of 20 runs are 6%). Additionally, most of the times
the final solution was found very early, indicating that
500-1000 generations are probably enough for converg-
ing to a satisfactory solution. However, by looking at the
shape of the convergence curve in figure 4, it is clear that
there are several sudden increases in the performance of
the best individual, as opposed to the most often observed
smooth convergence curves obtained with evolutionary
algorithms. These step changes in the objective function
value are usually an indication that the optimization is
being stopped very prematurely but, as more iterations do
not improve the final solution, it is more likely that the
problem itself is discrete. In fact, and although additional
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characterization of the search space is needed, this obser-
vation can be explained by the evidence that, when a good
candidate for deletion is found, the performance of the
best individual in a population increases significantly.

Global optimal solution and computational cost

In case of succinate yield optimization, the optimality of
the solution found by OptGene was verified using exhaus-
tive search with up to 4 deletions. In case of BPCY,
although the optimal solution for 3 deletions represented
a global optimum, for a 4 deletion case OptGene found a
sub-optimal solution. However, this solution was quite
close to the global optimal solution (85% of the global
optimal value). With 5 deletions the optimal solution
found reached quite close to the maximum possible BPCY
value. We hereby note that in cases where global optimal-
ity can not be directly verified, a good estimate for close-
ness to the global optimal solution can be found by using
a curve similar to that presented in Supplementary Figure
3 [see Additional file 1]. The plot in the Supplementary
Figure 3 is generated by fixing the biomass yield at differ-
ent values and then optimizing for the succinate produc-
tion.

The computational cost of OptGene (estimated as the
number of objective function evaluations necessary to
find an optimal solution) was found to be 0.03 % of that
found by using exhaustive search for 4 gene deletion case
(succinate yield) and 0.33 % for succinate BPCY case.
However, we did not observe any direct correlation
between the number of deletions and the computational
cost. Supplementary table 4 [see Additional file 1] sum-
marizes the computational cost associated with the suc-
cinic acid optimization case.

Multiple optima

Since the flux distribution obtained using FBA is not nec-
essarily unique, the objective function value obtained in
the fitness evaluation routine may not be unique as well.
This is usually due to the possibility of other by-products
being formed instead of the desired product (Supplemen-
tary Table 3 [see Additional file 1] lists the metabolites
that were allowed to be secreted by the cells in this study).
Consequently it has an important implication while
designing the deletion strategies. Such check for unique-
ness of objective function can easily be incorporated in
the fitness evaluation routine by using flux variability
analysis. Thus, e.g., an upper and lower bound can be cal-
culated for the product flux at the optimal growth rate.
The choice between "pessimistic" and "optimistic" fitness
value can be left for the user. However, we note that for
the results presented in this study, the solutions obtained
were unique as indicated in the last column of Table 1.

http://www.biomedcentral.com/1471-2105/6/308

Conclusion

We report a GA based framework termed OptGene for
designing microbial strains in silico. OptGene presents two
major advantages, higher speed and ability to optimize
for non-linear objective functions. The optimal solution
for a four deletion problem (succinate yield case) was
found using OptGene by searching only 0.03% of the
total solution space. For a higher number of deletions, the
OptGene search space represents considerably lower frac-
tion of the total solution space that increases exponen-
tially. As a consequence of an exponential increase in the
search space, a detailed study of the correlation between
the OptGene search space and the total solution space was
not feasible. Nevertheless, as discussed in the results sec-
tion, it is possible to estimate the closeness to the global
optimal solution by comparing the results with the plots
as reported in Supplementary Figure 3 [see Additional file
1]. Consequently, high computational speed of OptGene
enables addressing the problems involving large number
of genes, and searching for higher number of deletions.
This is of particular interest as genome-scale models of
simple eukaryotic organisms like S. cerevisiae include
more than 1000 reactions. In case of simple minimal
media that we used in our simulations, this set of 1000
reactions can be reduced to 240 reactions as described in
the algorithm. This number can still be large for solving
quadruple deletion problem using exhaustive search algo-
rithms.

The metabolic engineering strategies reported in this work
suggest that non-intuitive genetic modifications spanning
several different pathways may be necessary for solving
challenging metabolic engineering problems. Conse-
quently a priori selection of candidate targets might lead to
sub-optimal solution, and it is desirable to consider the
whole model. Moreover, with the recent advances on the
experimental front, it is feasible to construct mutants with
many knockouts in real time. It should also be noted that
we might often need to recalculate the results in case of
changes/errors in the model, e.g. after including regula-
tory information or addition of a new reactions. Speed of
calculations can be a key factor in such cases. OptGene
can serve to provide a quick hint to whether a particular
function of interest can be improved at all or up to what
extent. The ability of OptGene to optimize for non-linear
objective functions opens new opportunities for design-
ing microbial strains with tailor-made metabolic pheno-
type, e.g. a strain with high BPCY of x and low yield of y.

The GA formulation can provide us with multiple solu-
tions, and thus an opportunity to choose from many good
solutions. This is of interest as many of the predicted solu-
tions might be difficult to realize due to complex biologi-
cal regulation, which is difficult to account for in scoring
function models. Moreover, the GA framework is very
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flexible and thus can easily be changed to use different
scoring functions depending on the problem and system
under investigation. In conclusion, OptGene represents a
computationally efficient, flexible and natural tool for in
silico designing of microbial strains by using genome scale
models.

Methods

Metabolic model

Genome scale reconstruction of S. cerevisiae reported by
Forster et al. [29] was used as stoichiometric model of
yeast metabolism. All simulations were performed for aer-
obic glucose-limited conditions. The glucose uptake rate
was fixed to 3 mmoles/gDW/hour while the maximum
oxygen uptake rate was set to 9 mmoles/gDW/hour [30].

FBA and MOMA

FBA simulations were performed using the GNU linear
programming kit http://www.gnu.org/software/glpk/
glpk.html, while MOMA calculations were performed by
using an Object oriented quadratic programming package
[31].

Genetic algorithm
The genetic algorithm was implemented as a C++ program

using the GAlib package http://lancet.mit.edu/ga/.

Note I: Reported growth rates for mutants

As discussed in the main text, FBA (and other steady state
models) can not simulate "rate" without specification of
the specific substrate uptake rates (substrate uptake per
unit biomass per unit time). Consequently the reported
growth rates for the mutants should be more correctly
interpreted as biomass yields.

Note 2: Maximum theoretical yield of succinate

The maximum theoretical yield of succinic acid reported
in this study is calculated using FBA, whereas external H+
was balanced. In case where H+ is regarded as unbalanced
(or external) metabolite, maximum yield is 0.98 g/g glu-
cose. This difference is very high and hence can result in
big differences in the predictions reported. However, the
choice is not trivial since the exact mechanism by which
succinic acid is transported out of cell is unknown. More-
over, in case where H* is not balanced, certain contradic-
tions with the experimental observations were found
under anaerobic conditions. For this reason we chose to
use a conservative estimate for the maximum theoretical
yield. We also note that the theoretical yields were calcu-
lated with the constraints for maintenance cost, and no
CO, uptake. Thus the reported yields are slightly lower
than the stoichiometric yields (1.124 g/g glucose in case
of succinate).

http://www.biomedcentral.com/1471-2105/6/308

Note 3: Data availability

The flux distributions, model reactions and other data
related to this article can be obtained for non-profit
research purposes by contacting the corresponding author
(ON).
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