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Abstract

databases and incomplete genome sequences.

The accessibility of almost complete genome sequences of uncultivable microbial species from metagenomes
necessitates computational methods predicting microbial phenotypes solely based on genomic data. Here we
investigate how comparative genomics can be utilized for the prediction of microbial phenotypes. The PICA framework
facilitates application and comparison of different machine learning techniques for phenotypic trait prediction. We have
improved and extended PICA’s support vector machine plug-in and suggest its applicability to large-scale genome

We have demonstrated the stability of the predictive power for phenotypic traits, not perturbed by the rapid growth of
genome databases. A new software tool facilitates the in-depth analysis of phenotype models, which associate
expected and unexpected protein functions with particular traits. Most of the traits can be reliably predicted in only
60-70% complete genomes. We have established a new phenotypic model that predicts intracellular microorganisms.
Thereby we could demonstrate that also independently evolved phenotypic traits, characterized by genome reduction,
can be reliably predicted based on comparative genomics.

Our results suggest that the extended PICA framework can be used to automatically annotate phenotypes in near-
complete microbial genome sequences, as generated in large numbers in current metagenomics studies.

Background

Microorganisms, comprising bacteria, archaea and unicel-
lular eukaryotes, are key components of all ecosystems on
earth. Their tremendous phylogenetic, ecological and
functional diversity is so far only insufficiently understood.
Although genome sequencing has within the last two dec-
ades enormously advanced the investigation of microbes,
microbial genomes have mainly been sequenced from
DNA obtained from well-characterized, pure lab cultures.
The majority of microbes, however, cannot be cultivated
and was therefore inaccessible for genome research [1].
Metagenomic techniques, studying DNA directly obtained
from environmental samples, have provided first impor-
tant insights into genomic features of the unseen majority
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of microorganisms [recently reviewed in [2]]. Improve-
ments in high-throughput sequencing and DNA extrac-
tion protocols, combined with advanced computational
methods for binning and taxonomic classification of
metagenomic sequences, have recently enabled the recon-
struction of near-complete genome sequences of even
low-abundant members of microbial communities [3-5].
These recent advances have not only triggered a paradigm
shift from “gene-oriented” to “genome-oriented” metage-
nomics, but also leave us with an emerging bioinformatic
problem: the prediction of biological phenotypes and
ecological roles of uncharacterized microbial species from
their partial genome sequences.

The representation of microbial genomes by their
protein-coding genes, associated to orthologous or homo-
logous groups, is the most widely used approach for the
organization of large-scale genomic data [6-8]. A wide
range of applications, e.g. the prediction of metabolic func-
tions [9] or protein-protein interactions [10], utilize
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clusters of orthologous groups (COGs). COGs are phylo-
genetic abstractions of genes on the last universal com-
mon ancestor (LUCA) level. NOGs extend this concept to
non-supervised groups [7]. So far the highest phylogenetic
and ecological diversity of published genome sequences
has been achieved for bacteria. During the last years also
an increasing number of archaea and unicellular eukar-
yotes have been included in genome databases [11].
According to fundamental principles of microbial genome
evolution, such as the preference for compact and stream-
lined genomes [12], the presence or absence of COGs in
microbial genomes is highly informative. The continuing
growth of genome databases therefore holds an enormous
potential for advanced computational methods making
use of large-scale comparative genomics.

Phenotypic traits of microbes can be very diverse. Struc-
tured and computer-readable organization of trait descrip-
tions has been suggested e.g. in the Ontology of Microbial
Phenotypes [13]. They range from morphologic and
physiological traits to specific molecular or metabolic cap-
abilities. Numerous traits, such as cell envelope structure,
as indicated by the Gram stain, have been acquired early
in evolution and are therefore encoded in the core section
of the pan-genome [14]. Other traits, such as protein
secretion capabilities, are evolutionarily more dynamic and
are encoded in the variable section of the pan-genome. It
can be speculated that the broad evolutionary diversity of
microbial traits will be a substantial challenge for compu-
tational methods. Generic computational methods, namely
those based on large databases of COGs, will most likely
represent a first layer of methods for trait prediction.
Additional specific models describing well-defined traits
based on metabolic and/or regulatory models [e.g. used
in [15]] will be needed for a deeper interpretation of a
microbial genotype.

Previous work on such generic methods was in many
cases limited to searching for one-to-one relations
between genes and phenotypic traits. This strategy works
very reasonably for simple metabolic traits. E.g., the amoA
gene encoding ammonia monooxygenase [16] is character-
istic for ammonia oxidizing archaea and bacteria.
However, single marker genes are of limited predictive
power for many other traits. Recent methodological
improvements utilize heuristic association rule mining
(ARM) to find many-to-one relations. They are based on
mutual information [17] or predictive associations [18].
MacDonald and Beiko [18] developed a software frame-
work for comparison of different phenotype prediction
methods (PICA), which operates on the level of COG
presence or absence in genomes. It includes plug-ins for
CPAR and 1ibSVM [19] among others. While PICA
features support vector classification with the latter, the
original authors focused on ARM and a conditional
weighted mutual information metric.
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In this study we investigate the application of purely
SVM-based classification for phenotypic trait prediction
in microbiology and microbial ecology, with an empha-
sis on metagenomic sequences and vastly increasing
data amounts. We further present a novel model for
prediction of obligate intracellular microorganisms.

Methods

Prediction software and evaluation data sets

Phenotypic trait prediction was performed by machine
learning techniques provided by the PICA framework,
which is publicly available at http://kiwi.cs.dal.ca/Software/
PICA[18]. It provides plug-ins for association rule (CPAR)
and support vector classification (SVM) [18]. A mixed
approach utilizing association rule mining as a feature-
selection step for support vector classification is also avail-
able (CPAR2SVM). PICA operates on the level of presence
or absence of genetic features, using clusters of ortholo-
gous groups by default. It features example data sets based
on genotype profiles from the eggNOG 2.0 database [20]
and phenotypic trait labels from JGI IMG [21] and NCBI
Genomes [11]. We follow the nomenclature used in [18]
for ten example traits with slight adaptations: aerobic
(aerobe), anaerobic (anaerobe), facultative anaerobic
(facult), Gram-negative (gramneg), halophilic (halo),
motility (motile), photosynthetic (photo), psychrophilic
(psychro), endospore-forming (spore) and thermophilic
(therm).

Genotype data

COG will be used as a collective term for both COGs and
NOGs throughout the article. COG profiles were obtained
for all genomes from the eggNOG 4.0 database [7], if the
corresponding species is either part of its core or periphery
set. Otherwise we called genes with PRODIGAL v2.60
using the default translation table [22] and mapped them
with the NCBI cognitor software [23] to an in-house
generated sequence reference representing all proteins
from eggNOG 4.0 COGs.

The training data for intracellular lifestyle comprise 43
obligate intracellular, 6 facultative intracellular and 48
free-living bacterial species. Their taxonomic diversity is
depicted in Additional File 1: Figures S1-S3. The data
amounts to a total of 97 genomes, containing 30455
unique COGs.

Phenotypic trait data

The assignment of completely sequenced genomes to
obligate intracellular, facultative intracellular, and
free-living phenotypes was performed by manual
knowledge extraction from scientific literature [such as
[24-29]]. All assignments are listed in Additional file 1:
Table S1.
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Machine learning and statistics

Association rule mining in PICA is based on the CPAR
algorithm [18]. Support vector classification was
performed with PICA standard parameters (linear kernel,
soft-margin cost parameter C = 5), unless stated otherwise.
The feature ranking is based on the absolute values of the
linear SVM weights as described in [30]. Prediction quali-
ties are measured as balanced accuracy, i.e. the mean of
sensitivity and selectivity as described in Equation (1).
They are obtained in 5-fold cross-validation procedures
with 10 replicates. True and false predictions are counted
per replicate. Balanced accuracies are calculated from
these numbers and subsequently averaged over all repli-
cates to obtain mean balanced accuracies and standard
deviation.

TP TN ) ()

1
Balanced accuracy = ) (TP EN T IN . EP
+ +

Legend: TP, TN, FP, FN signify the number of true
positive, true negative, false positive and false negative
predictions, respectively.

Scaling the problem size

In order to estimate run time and memory consumption
in a scenario of increasing input data sizes, 5000 virtual
species were created. They comprise genotype profiles of
sizes comparable to average genomes in eggNOG 4.0 [7]
with virtual features selected at random from a set of
nearly 200,000. This figure was derived from the current
number of COGs in eggNOG, and raised slightly as to
account for a possible increase in future versions of the
database. We expect this number to be higher than abso-
lutely necessary, since not all COGs are relevant to
microbes. However, we make use for it as a worst-case
scenario and demonstrate feasible phenotype prediction
even under unfavorable circumstances. Labels for virtual
phenotypic traits were assigned to the virtual genomes at
random.

Results and discussion

Software development

The PICA framework was initially released in 2010 and
has not received further improvements by the original
developers since then. We downloaded the open-source
code from the project’s webpage. The initial release did
not highlight SVM as a stand-alone method. Therefore,
we re-wrote parts of PICA’s SVM plug-in as to enable its
use for phenotype prediction in novel genomes. For
instance, we ensured that all COGs are always mapped to
correct SVM features, especially if not all COGs in the
prediction set had already been present in the training
data. In addition, we extended the software by implement-
ing a function to extract the most predictive features from
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linear SVM models. Dumping and ranking features
enables the user to interpret the models from a biological
perspective: the COGs with the highest discriminative
power for presence or absence of a phenotype are ranked
at the top. If specific proteins are already known to be part
of the genetic underpinning of a phenotype of interest, the
user finding the according COGs ranked highly in the list
might gain confidence in the biological relevance of the
predictions. Unexpected high-ranking COGs hint at pre-
viously unknown protein functions associated with the
phenotype. However, these may also derive from taxo-
nomic correlations rather than a shared phenotype, which
can be caused by insufficient training data. Several minor
changes were applied to the software in order to improve
code quality. The current release can be obtained from
the PICA website or directly from https://github.com/
univieCUBE/PICA

Machine learning considerations

The original publication for PICA focused primarily
on association rule mining for phenotype prediction
[18]. The authors introduced SVMs as an alternative for
decision-tree classifiers and trained those only with
COGs from association rule antecedents mined before-
hand (CPAR2SVM). We re-evaluated the example data
sets and performed 10 replicates of 5-fold cross-validation
with the SVM and CPAR2SVM approaches. We observed
no significant difference in phenotype prediction quality
between the two methods (Figure 1). However, the run
time was approximately three times lower (average over
ten phenotypic traits) using SVM only (Figure 2). Consid-
ering these results, we decided to drop association rule
mining and performed all further predictions based solely
on support vector classification. Furthermore, we repeated
the evaluation employing additional SVM kernels. The
linear kernel, which is used by PICA by default, is often
suboptimal compared to others like e.g. radial basis func-
tions (RBF). Nevertheless, our results clearly show the
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Figure 1 Phenotype prediction quality of different machine
learning techniques. Quality for ten exemplary traits measured as

balanced accuracy in 10 replicate 5-fold cross-validations. Error bars
indicate standard deviation.
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Figure 2 Effect of different machine learning techniques for
phenotype prediction on run time. Run time for cross-validations
described in Fig. 1. This amounts to the combined time for training
and testing 50 subsets of the complete data set (plus some
overhead).

linear kernel performing better than or at least as good as
RBF, sigmoid and polynomial kernels for all ten phenoty-
pic traits (Figure 3). Besides from being most accurate in
our test cases, the linear kernel has further general advan-
tages: it is computationally less expensive than other
kernels and facilitates feature ranking, which is a non-
trivial problem for other kernels.

Coping with increasing problem sizes

We initially evaluated PICA with its example data set,
which comprises COG profiles based on eggNOG 2.0 [20].
This database has been updated to version 4.0 [7] since
PICA was released to the public, which brought several
changes. One important difference for our purposes is the
increasing number of COGs overall as well as specifically
on LUCA level. The number the COGs present in at least
one of the species from the example data set increased
from 47,615 to 192,421. We repeated the evaluation of the
ten example phenotypic traits with COG profiles from
eggNOG 4.0, while maintaining the original phenotypic
trait profiles, in order to estimate the impact of increasing
dimensionality on computation time. The average time
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Figure 3 Phenotype prediction quality for different SVM
kernels measured as balanced accuracy in 10 replicate 5-fold
cross-validation. Kernel abbreviations: lin... linear, poly... polynomial,
rbf... radial basis function, sigmoid. For each kernel, PICA standard
parameters were used. Error bars indicate standard deviation.
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required for the cross-validation procedure increased from
12 minutes to 43 minutes. Thus, we deem phenotype pre-
dictions based on eggNOG 4.0 profiles computationally
tractable. No significant differences were observed for
prediction accuracy (data not shown).

Furthermore, we created virtual species to assess the
effect of an increasing number of genomes in training sets
in terms of run time and memory consumption. For real
traits, it will be impossible to increase the sizes of genome
sets to arbitrary numbers, because of insufficient biological
knowledge. Several sets of increasing size were compiled
and cross-validations were performed for virtual phenoty-
pic traits. Our results indicate that problem sizes of 5,000
genomes with approximately 200,000 different COGs in
the training set are still computationally feasible (Figure 4).
A typical phenotype prediction scenario currently involves
only several hundred genomes with trait labels. We expect
the number of COGs not to rise dramatically in upcoming
eggNOG versions. Also, not all present COGs are relevant
for microbes. Thus, we conclude that PICA is capable of
dealing with future large data sets.

Assessing the applicability for metagenomic data

The accuracy of phenotype prediction in metagenomes is
bounded by genome completeness. Bins extracted from
metagenomes are often incomplete due to limitations and
prediction errors of assembly and binning algorithms. We
therefore assessed the prediction quality for incomplete
genomes in the following procedure: at first, 10 replicates
of 5-fold cross-validation were performed for the ten
example traits based on eggNOG 4.0 genotype data. The
results of these represent a performance baseline, i.e. an
estimation of maximal accuracy per trait. In further cross-
validations, phenotypic trait models were built from
complete genomes in the training set. The genomes in the
test sets were simulated for incompleteness by random
removal of x percent of the total number of COGs per
genome (for x in [10, 20, ..., 90]; 3 replicates). Conse-
quently, phenotypic trait prediction was conducted on
these incomplete genomes. All models show approxi-
mately sigmoidal response curves for increasing complete-
ness (Figure 5). No values below 50 percent balanced
accuracy were observed, because the SVMs tend to assign
all genomes to one class in cases of insufficient data,
which necessarily produces balanced accuracies of 0.5.
Most models achieve almost maximal performance with
60-70 percent complete genomes. The model for detecting
Gram-negative type cell envelopes works well in complete-
ness regimes as low as 30-40 percent. On the other hand,
predicting psychrophily is difficult even for complete
genomes, which may be caused by the very small training
set (17 positives). For the generally well performing mod-
els, only the endospore-forming and photosynthetic traits
profit significantly from completeness higher than
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70 percent. We conclude that sensible phenotypic trait
predictions are possible for metagenomic bins that do not
comprise complete genomes.

Application on a novel trait based on genome reduction

So far we have investigated the phenotype prediction of
traits, which can be inferred mainly from the presence of
certain proteins. For instance, genes encoding particular
porins are essential for the outer cell membrane of Gram-
negative bacteria, or genes encoding specific regulators are
characteristic for genomes of spore-forming microbes.
However, phenotypes might also be determined by the
absence of genes. In order to assess the possibility of pre-
dicting such traits, we investigated obligate intracellular
lifestyle in bacteria. We hypothesize, that this trait should
largely be predicted by absence of genes in the reduced

genomes of such microbes. We trained a model for
obligate intracellular against free-living species and
facultative intracellular species (Additional file 1: Table
S1). Only complete genomes were considered in this
case to enable inference based on feature absence. We
deemed a genome complete if at least 39 out of 40
universal prokaryotic marker COGs [31] were present.
Cross-validation was performed to estimate the model
quality. We observed a prediction accuracy of 0.997 +
0.010, which is all positives as well as all negatives
were predicted correctly in all cases, except for Cand.
Pelagibacter sp. IMCC9063. This free-living organism
with a small streamlined genome, which indeed shows
some features of obligate intracellular microbes [32],
was misclassified as obligate intracellular in 3 out of
10 folds.
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Subsequently, we created a model from all 97 species
with intracellular labels and performed feature ranking.
All top 50 features are negative predictors, i.e. their
absence is predictive for the obligate intracellular trait
(Additional file 1: Table S2). We only find 2 positive
predictors in the top 100 and 14 in the top 200 (data not
shown). Hence, predicting this phenotype is indeed
primarily based on gene absence.

We tested all prokaryotic species in eggNOG 4.0 (core
and periphery genomes filtered for marker COGs as
described above) for obligate intracellular lifestyle. A total
of 169 species is predicted intracellular, which consists of
160 bacteria (Figure 6) and 9 archaea (Additional file 1:
Table S3). As expected, many known intracellular bacteria
were found in our analysis, e.g. several Mycoplasma, Chla-
mydia, Borrelia and Rickettsia species, or Coxiella bur-
netti. Six Bartonella species were predicted obligate
intracellular although they are truly facultative intracellular
and can be cultivated in vitro. Yet they are highly
fastidious and show genome features indicative of a host-
integrated metabolism [33]. It is evident, that the discrimi-
native power of the model between obligate and facultative
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intracellular species is suboptimal so far. This is not sur-
prising as there is a smooth transition between these life
styles, largely blurred by our ability to meet growth
requirements or simulate intracellular conditions in the
lab for some microbes that are host-associated in nature.
In addition, the very small number of facultative intracel-
lular organisms (six bacteria) in the training set further
aggravated this distinction. A number of free-living Firmi-
cutes, including several Lactobacillus species, are examples
for predicted intracellular microbes, for which the reason
for their unexpected classification still needs to be deci-
phered. A number of archaea, including Crenarchaeota
from the class of Thermoprotei, have also been predicted
as obligate intracellular, but in fact represent free-living
microbes (Additional file 1, Table S3). This mis-classifica-
tion is not surprising as metabolic pathways show pro-
nounced differences between bacteria and archaea, with
archaea lacking many classical pathways and containing
unique modified variants [34]. A model based on a train-
ing set with exclusively intracellular bacteria is thus not
suited for the analysis of archaeal genomes. Future models
might be trained, however, for microbial eukaryotes.
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Figure 6 Taxonomy of predicted obligate intracellular bacteria in eggNOG 4.0. All species were considered whose genomes are flagged as
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intracellular or free-living species in the training set was predicted as obligate intracellular.




Feldbauer et al. BMC Bioinformatics 2015, 16(Suppl 14):S1
http://www.biomedcentral.com/1471-2105/16/S14/51

Conclusions

Inspired by the rapid progress in metagenomics, produ-
cing hundreds of high-quality genome bins from even a
single modern study [e.g., [5]], we have explored how phe-
notypic trait prediction might better contribute to micro-
biology and microbial ecology. We have therefore put
particular emphasis on incomplete genomes and vastly
increasing data amounts. We could demonstrate the
stability of the predictive power for phenotypic traits by
reproducing earlier results, indicating that this method is
not perturbed by the rapid growth of genome databases.
A new software tool was developed that facilitates the in-
depth analysis of phenotype models. It allows associating
expected and unexpected protein functions with particular
traits. Most of the traits can be reliably predicted in only
60-70% complete genomes, which allows reasonable pre-
dictions in genome bins from metagenomes.

We have established a new phenotypic model that pre-
dicts intracellular microorganisms. Thereby we could
demonstrate that also independently evolved phenotypic
traits, characterized by genome reduction, can be reliably
predicted based on comparative genomics. This model is
an example of a trait that cannot be associated to single
functional marker genes. The predictive power of its
model therefore arises from the combination of multiple
(mainly absence) genotypic signals. Currently ongoing
work indicates very good performance of phenotypic trait
prediction also for further, ecologically important traits, as
soon as sufficient training data are available. Although
these models recover known functional markers, they
substantially extend the marker concept by associating
many further genes to the phenotypic traits. Our results
suggest that the extended PICA framework developed
in this study can be used to automatically annotate pheno-
types in near-complete microbial genome sequences, as
generated in large numbers by modern metagenomics.
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