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Abstract

Background: Distinction between true protein interactions and crystal packing contacts is important for structural
bioinformatics studies to respond to the need of accurate classification of the rapidly increasing protein structures.
There are many unannotated crystal contacts and there also exist false annotations in this rapidly expanding volume
of data. Previous tools have been proposed to address this problem. However, challenging issues still remain, such as
low performance when the training and test data contain mixed interfaces having diverse sizes of contact areas.

Methods and results: B factor is a measure to quantify the vibrational motion of an atom, a more relevant feature
than interface size to characterize protein binding. We propose to use three features related to B factor for the
classification between biological interfaces and crystal packing contacts. The first feature is the sum of the normalized
B factors of the interfacial atoms in the contact area, the second is the average of the interfacial B factor per residue
in the chain, and the third is the average number of interfacial atoms with a negative normalized B factor per residue
in the chain. We investigate the distribution properties of these basic features and a compound feature on four
datasets of biological binding and crystal packing, and on a protein binding-only dataset with known binding affinity.
We also compare the cross-dataset classification performance of these features with existing methods and with a
widely-used and the most effective feature interface area. The results demonstrate that our features outperform the
interface area approach and the existing prediction methods remarkably for many tests on all of these datasets.

Conclusions: The proposed B factor related features are more effective than interface area to distinguish crystal
packing from biological binding interfaces. Our computational methods have a potential for large-scale and accurate
identification of biological interactions from the experimentally determined structural data stored at PDB which may
have diverse interface sizes.

Background
With the breakthrough of protein structure determination
technologies, in particular X-ray crystallography, rapidly
increasing 3D structures of proteins become available. For
example, PDB (protein data bank) has stored 90,358
entries which are solved by X-ray crystallography as of

July 2014. These quaternary structures can be used to
uncover the binding mechanisms of proteins and to anno-
tate protein functions. However, crystal packing contacts,
which are a kind of false protein binding, also exist in PDB
to blur the analysis of quaternary structures. In fact, crystal
packing is due to the artifact of the crystallographic pack-
ing environments and it is randomly formed during the
crystallization process. It does not occur in solution or in
physiological states [1]. The immediate question is how to
accurately determine whether a crystal contact produced
from a PDB entry is a true biological interaction. This
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problem is difficult especially when a protein complex
consists of a large number of protein chains, a common
situation in PDB and also in real biological systems.
This research problem has attracted intensive interests.

Methods have been proposed to understand the difference
of interfacial properties between biological binding and
crystal packing. For example, biological interfaces were
found to be much larger [2-8], or more conserved than
crystal packing [2,3], or more abundant in aromatic resi-
dues [3]. Biological interactions were also found to have dif-
ferent residue composition from the rest of protein surfaces
[4,9,10], while crystal packing interfaces possess similar
composition to the rest of protein surfaces as a whole [8].
Complicated computational methods have also been

proposed to classify true biological binding and false bind-
ing. An idea is to break an interface down to contacting
atomic or residue pairs, and then uses the enrichment or
frequency of these pairs as features for the classification.
Based on the atomic pair representation idea, Weng’s
group [11] and Klebe’s group [12] have both utilized
machine-learning algorithms to construct effective classi-
fiers for distinguishing different types of protein binding,
such as crystal packing, permanent and transient interac-
tions [11,12]. Liu et al. have used a new definition of
atomic contacts named b contacts in atomic pair represen-
tation for interfaces, and demonstrated that it is a novel
idea to outperform the existing methods in distinguishing
crystal packing from homodimers [13]. Using residue pairs
to describe interfaces, Bernauer et al. have constructed an
SVM classifier DiMoVo for identifying biological protein
interactions [14]. Liu and Li have designed the propensity
vector of residue contacts within the O-ring to develop
OringPV for the distinction between crystal packing and
biological interactions [15]. Many other features have also
been used. For example, the PITA method scores crystal
packing using the properties of contact size and chemical
complementarity [16]. Zhu et al. [3] have extracted six
properties from interfaces, such as interface size, amino
acid composition and gap volume, and then used them as
an SVM input to train their NOXclass classifier to discri-
minate between crystal packing, obligate and non-obligate
interactions [3]. Recently, Capitani’s group [17] have pro-
posed to use core size and evolutionary metrics of interfa-
cial residues to classify small biological interfaces from
large crystal contacts. Their method EPPIC can outper-
form a widely-used method PISA [18].
Despite the intensive research on the characterization of

crystal packing and biological binding, it still remains an
important issue to design a good method which can be
always effective across multiple datasets containing inter-
faces of diverse sizes, and especially on those datasets
where crystal packing and biological binding have similar
interface sizes [14,17]. It is even more challenging to
detect one single discriminative feature which can clearly

characterize crystal packing interfaces having different
sizes across multiple datasets.
In this work, we propose to use B factor to distinguish

biological interfaces from crystal packing contacts. B factor
is a measure to capture the atomic vibrational motion. We
propose to use three features derived from B factor for
this classification problem. One is denoted as ΣB; it is the
sum of the normalized B factors of the interfacial atoms at
a binding interface. The second is the ratio of ΣB over the
logarithm of minr + 1 (the smaller one of the average
numbers of residues per chain in the two units of an inter-
action). This feature is denoted by avgΣB. The third fea-
ture is denoted by avgNo.B which represents the ratio of
the number of interfacial atoms with a negative normal-
ized B factor over the logarithm of minr + 1. The fourth
new feature is a compound feature by integrating avgΣB
and avgNo.B through multiplication to amplify these two
features’ collective synergy.
To show the effectiveness and the interpretability of the

four features, we visualize their distribution properties
from four datasets of biological binding and crystal pack-
ing, and from a biological protein-protein and protein-
peptide binding dataset newly constructed from PDBbind
[19]. For the protein interactions in this new dataset, their
binding affinity is known and the complexes have diverse
interface sizes.
Because interface area is considered as one of the most

effective features by the existing research, we especially
compare our features with interface area. To show the
overall classification performance of these features, we
also compare the cross-dataset classification performance
of each of the four features with the performances
achieved by the interface area approach and those by exist-
ing methods. The results have demonstrated that each of
our four features, in particular avgΣB, avgNo.B and their
multiplication, consistently outperforms the feature inter-
face area and existing prediction methods across almost
all of the datasets. These features based on B factor thus
have a strong capability to distinguish true and false biolo-
gical interfaces of diverse sizes for real-world applications.

Data sets
Four datasets in the literature and a new dataset are used
to investigate the four features derived from B factor.
The first dataset (Bahadur) contains 187 crystal pack-

ing interfaces and 122 biological homodimers [4,5].
DiMoVo was trained on this dataset [14].
The second dataset (Ponstingl) has 92 crystal packing

interfaces and 76 homodimers [20]. This dataset was
used by several existing works [11,12], including PITA
[16] and PISA [18].
The third dataset (BNCPCS) comprises 75 obligate

interactions and 106 crystal packing interfaces [3].
NOXclass was trained on this dataset.
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The fourth dataset (DC) is composed of 82 crystal
packing interfaces and 82 biological interfaces [17]. The
uniqueness of this dataset is that crystal packing inter-
faces are larger and biological interfaces are smaller
than those in the first three datasets. EPPIC was trained
and optimized on this dataset [17].
A new dataset is constructed from the protein-protein

binding and protein-peptide binding data stored at
PDBbind [19]. All the complexes are annotated with a
binding affinity extracted from PDBbind. The binding bio-
logical units in PDB structures are obtained using an auto-
matic process according to the information provided in
PDBbind. An interface is included in this dataset, if the
PDB structure satisfies the following requirements. (i) The
PDB structure is determined by X-ray crystallography
rather than other techniques, and (ii) the resolution is bet-
ter than 2.5 Å. (iii) In the PDB entry, the number of atoms
should be 3+ times than the number of residues in order
to remove those PDB entries with a possible error. (iv) In
the complex, both of the binding partners have more than
5 residues. (v) In the interface, the number of atomic con-
tacts from non-standard residues is less than 20% of all
atomic contacts. This newly constructed dataset is com-
posed of 799 protein-protein or protein-peptide complexes
with binding affinity information. This dataset is denoted
as PDBbind. It is a bench-marking dataset for testing algo-
rithms on classifying biological binding interfaces of
diverse area sizes.

Methods
In this section, we describe what is B factor and how it is
normalized. Then, we describe how to derive B factor
related features to represent an interface. We also show
how to detect the optimal distinguishability of each feature
on training datasets and then test it on other datasets.

B factor and its normalization

B factor is also known as temperature factor or Debye-
Waller factor. It measures and quantities the uncer-
tainty/mobility of an atom in dynamic protein 3D struc-
tures, namely, the displacement of the atomic positions
from its mean position. B factor is an indicator of the
relative vibrational motion or the disorder of an atom in
protein crystal. It is calculated using Bi = 8π2U2

i , where
U2

i is the mean square displacement of atom i. B factor
increases as U2

i increases. A low B factor implies that
the atom is in the well-ordered parts of the structure,
while a large B factor generally suggests a very high flex-
ibility of this atom.
Protein flexibility is closely related to protein functions

such as catalysis and allostery [21]. Deeply buried atoms in
the core of the protein are usually rigid with a low B factor
[22], and interfacial residues in protein binding complexes

also have lower B-factors in comparison to the rest of the
tertiary structural surface [23]. For different PDB struc-
tures, the distribution of B factors varies greatly. Thus, a
normalized B factor is used in this work and calculated by
Equation 1.

Bi
norm =

Bi − B̄
δB

× 1
1.645

B̈i
norm = min[max(Bi

norm,−1), 1]

(1)

where Bi is the B factor of atom i, B̄ and δB are the mean
and the standard deviation of the B factor of all atoms
within a binding unit of the PDB biological complexes,
and Bi

norm is the normalized B factor of atom i. The num-
ber 1.645 is a typical threshold under a standard normal
distribution, indicating the 0.05 probability of a value out-
side [−1.645, 1.645] for each of the two tails. min means
the minimum of two values, while max returns the maxi-
mum. The first equation in Equation 1 is used to normal-
ize and scale the 90% confidence interval of the B factor to
[-1, 1]. The second equation in Equation 1 is used to set
any value outside the 90% confidence interval to either -1
or 1, whichever is closer. The normalization is performed
individually on each contact partner in a complex, no mat-
ter the contact is false or true.

Using B factor related features to characterize an
interface
Interfacial atoms
An atom from a biological unit is defined as an interfacial
atom if it has at least one b contacts with the partner bio-
logical unit. We note that a biological unit may contain
more than one chain. b contact is a new definition of
atomic contact [13]. It requires that there is no other atom
interrupting the contact. Formally, given a quaternary
structure of a protein complex p, a b contact between two
atoms i and j in p requires that (i) the spatial distance
between i and j is less than a threshold Td plus the sum of
their van der Waals radii defined by [24], (ii) i and j share
a Voronoi facet in p’s Voronoi diagram, and (iii) the con-
tact cannot break p’s b-skeleton. The b-skeleton [25] of a
discrete set p is an undirected graph in computational geo-
metry. In this graph, two points i and j have an edge if
angle ikj is sharper than a threshold determined by b, ∀k
∈ p, k ≠ i, j. This angle threshold is denoted as ∠b, which
actually defines a forbidden region fr of the contact
between i and j. The forbidden region fr of a b contact
usually does not cover any other atoms. Otherwise, if
there is an atom k in fr, the contact between i and j is not
a b contact. A b contact suggests that its two atoms should
have enough direct contact area to form an important
interaction. The number of atomic b contacts in protein
binding interfaces is only a small fraction number of dis-
tance-based contacts or less than half the number of
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contacts in the Voronoi diagrams [13]. Interestingly, it has
been demonstrated that the use of b contacts can achieve
better prediction performance for distinguishing false
binding of crystal packing from homodimers [13], for pre-
dicting binding hot spots and the change of binding free
energy after mutations [26], and for estimating protein-
ligand binding affinity [27].
In this work, an interfacial atom is used for further ana-

lysis if and only when the number of its local contacts
across the interface is more than 2. The local contacts of
an atom include the contacts of the atom itself and the
contacts of its covalently-bonded nearby atoms. The cova-
lently-bonded nearby atoms of a given atom i are those
atoms within two covalent-bond steps from i. For exam-
ple, given a chain of covalent bonds i − j − k − l − m,
where − indicates a covalent bond. From i, the covalently-
bonded step is 0 to i, is 1 to j, is 2 to k, is 3 to l, and is 4 to
m. Thus, i, j and k are the covalently-bonded nearby
atoms of atom i, while l and m are not. The requirement
of the number of local contacts is used to detect non-iso-
lated atomic contacts.
Four interfacial features related to B factor
B factor score (denoted by ΣB) The first feature to
describe an interface is the sum of the normalized B fac-
tors of all of the interfacial atoms. That is,

�B =
∑N

j=1 B̈
ij
norm, where N is the number of interfacial

atoms and ij is an interfacial atom, 1 ≤ j ≤ N.
Average ΣB (denoted by avgΣB) A recent published

work has suggested that the area size of protein inter-
faces is related to the size of proteins [28]. Thus, we cal-
culate the ratio of ΣB over the logarithm of minr + 1,
and name this ratio average ΣB, denoted by avgΣB. For-
mally, avgΣB = ΣB/log(minr + 1). Here, minr is the smal-
ler number of the average numbers of residues per chain
for the two biological units in a complex. The logarithm
is used to decrease the effect of minr on avgΣB when
minr is extremely large.
The number of interfacial atoms with a negative nor-

malized B factor (denoted by No.B) We also calculate
the number of interfacial atoms having a normalized B fac-
tor less than 0. It is denoted by No.B. Similarly, we produce
the ratio of No.B over log(minr + 1) based on the same rea-
son for avgΣB. This ratio feature is denoted by avgNo.B.
A combined feature–avgΣB*avgNo.B We also multiply

avgNo.B and avgΣB/100 as a feature to describe an inter-
face. This feature is denoted by avgΣB*avgNo.B. The intui-
tion behind this new feature is to amplify the collective
synergy of avgΣB and avgNo.B through multiplication.

Interface area (ΔASA)
An effective feature widely used by the existing works to
distinguish biological binding and crystal packing is
interface area (ΔASA). Interface area measures half of

the change of a surface area upon protein complex for-
mation. The classification performance of this feature is
considered as a baseline performance here. ΔASA of a
protein complex is calculated through Equation 2.

�ASA = (ASA1 + ASA2 − ASAC)/2 (2)

where ASA1 and ASA2 are the surface areas of the two
biological units of the protein complex and ASAC is the
surface area of the protein complex.
Similarly, the ratio of ΔASA over the logarithm of

minr + 1 is denoted by avgΔASA. Both ΔASA and
avgΔASA are compared with the B factor based features
for identifying biological binding interfaces from PDB
structure data.

Optimization of the scoring threshold for each feature
For each of the features introduced above, we use the fol-
lowing process to find the best threshold point on a learn-
ing dataset for the classification of test data. We explore
all possible split points for a feature, and assess the MCC
performance with regard to every split point. Then, we
collect all those split points which produce the top 10%
performance, and take the average of these split points as
the optimal split threshold for the feature in the learning
process. This threshold is used to predict interaction types
(biological binding or crystal packing) for the structure
data from the other datasets. Using the average of the top
10% best split points instead of the best split point is for
the purpose of increasing performance stability and gener-
alizability of the feature. When the PDBbind dataset is
used for learning, the value at the first 25% quantile, which
is close to 0, is used as the threshold and tested on the
other datasets. This is because PDBbind is constructed
using an automatic process without manual checking, and
it is possible that some true complexes are wrongly col-
lected. The threshold value 25% is not optimal. There is
no gold standard to select an optimal threshold on
PDBbind, because only positive samples are given.

Assessment measures
Prediction performance is measured by precision(pre.),
recall(rec.), specificity(spec.) accuracy(acc.) and MCC
whose definitions are given in Equation 3.

precision(pre.) =
TP

TP + FP
recall(rec.) =

TP

TP + FN
specificity(spec.) =

TN
TN + FP

accuracy(acc.) =
TP + TN

TP + TN + FP + FN
MCC =

TP ∗ TN − FP ∗ FN
√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3)

where binding complexes are considered as the true
cases, while crystal packing as the false cases; TP, FP, TN
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and FN are the number of true positives, false positives,
true negatives and false negatives, respectively. Hence, pre-
cision is the number of correct binding complex predic-
tions divided by the number of positive predictions, recall
is the fraction of correct binding complex predictions over
all true binding complexes, while accuracy is the number
of correct predictions divided by the number of all true or
false complexes.

Results
We report cross-dataset classification performances
achieved by each of the B-factor based features in compar-
ison with the performance by the feature interface size
(ΔASA). It is observed that avgΣB, avgNo.B and avgΣ-
B*avgNo.B have much better performance than ΔASA.
We then present a detailed distribution analysis for these
features’ scores of the protein structures from the five
datasets. We also compare avgΣB with two published
methods EPPIC [17] and PISA [18] to highlight our better
classification performance.

Cross-dataset classification performance by single
features
Comparison between ΣB and ΔASA: ΔASA is a geometri-
cal feature widely used by existing methods, and it is con-
sidered as an effective approach to the classification
between crystal packing and true biological binding. It has
been suggested to use 856 Å2 [20] as a threshold to distin-
guish crystal packing contacts from homodimers, achiev-
ing an accuracy of 85% on the Ponstingl data set. In [3], it

is shown that a cutoff of ΔASA at 650Å2 has approxi-
mately 7% error rates on the BNCPCS dataset including
62 non-obligate interactions. However, these methods
have limits to achieve good performance when the biologi-
cal binding interfaces and crystal packing contact areas
have diverse interface sizes.
Table 1 shows the classification performance for ΣB and

ΔASA on the five datasets. It can be seen that ΣB has
much better classification performances than ΔASA under
almost all of these tests. In particular, when tested on DC,
ΔASA has three negative MCC performance and another
two low MCC values less than 0.3. But, ΣB always has
positive MCC values larger than 0.3. This performance dif-
ference is mainly attributed to the hard case that similar
sizes of the interface areas exist between the crystal pack-
ing contacts and the real biological binding interfaces in
DC. Under this situation, the classification capability of
ΔASA is lost.
When tested on the Bahadur and Ponstingl datasets, ΣB

outperforms ΔASA for all cases, achieving at least 0.1
MCC improvement in 5 of the 8 cross-dataset compari-
sons, and achieving 0.05 - 0.1 MCC improvement in
another 2 comparisons. When tested on BNCPCS, ΣB has
also achieved higher MCC performance than ΔASA when
both ΣB and ΔASA are optimized on DC and Bahadur.
ΔASA has only achieved a higher MCC performance than
ΣB on BNCPCS, when optimized on the Ponstingl dataset.
We note that crystal packing contacts from BNCPCS are
easy to be distinguished–both ΣB and ΔASA have
achieved an accuracy higher than 0.94. When PDBbind is

Table 1 Cross-dataset classification performances.

Training dataset Feature Tested datasets

BNCPCS DC Bahadur Ponstingl

BNCPCS ΣB 0.93(0.97) 0.32(0.65) 0.65(0.82) 0.82(0.91)

ΔASA 0.92(0.96) -0.18(0.47) 0.59(0.78) 0.73(0.86)

avgΣB 0.92(0.96) 0.37(0.68) 0.64(0.82) 0.80(0.90)

avgNo.B 0.95(0.98) 0.25(0.60) 0.70(0.84) 0.84(0.92)

avgΣB*avgNo.B 0.94(0.97) 0.33(0.66) 0.70(0.85) 0.82(0.91)

avgΔASA 0.91(0.96) -0.16(0.48) 0.64(0.81) 0.72(0.86)

DC ΣB 0.85(0.92) 0.38(0.69) 0.68(0.85) 0.81(0.90)

ΔASA 0.73(0.86) 0.15(0.57) 0.66(0.84) 0.62(0.80)

avgΣB 0.88(0.94) 0.45(0.73) 0.73(0.87) 0.80(0.90)

avgNo.B 0.80(0.90) 0.46(0.72) 0.74(0.87) 0.70(0.84)

avgΣB*avgNo.B 0.86(0.93) 0.45(0.73) 0.75(0.88) 0.81(0.90)

avgΔASA 0.76(0.88) 0.27(0.63) 0.68(0.85) 0.66(0.82)

Bahadur ΣB 0.84(0.92) 0.38(0.69) 0.71(0.86) 0.79(0.89)

ΔASA 0.73(0.86) 0.15(0.57) 0.66(0.84) 0.62(0.80)

avgΣB 0.84(0.92) 0.41(0.70) 0.75(0.88) 0.81(0.90)

avgNo.B 0.86(0.93) 0.33(0.66) 0.75(0.88) 0.77(0.88)

avgΣB*avgNo.B 0.88(0.94) 0.45(0.73) 0.77(0.89) 0.83(0.91)

avgΔASA 0.81(0.90) 0.21(0.60) 0.69(0.85) 0.69(0.84)
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used in learning process and the other datasets are used
for testing, ΣB always outperforms ΔASA remarkably.
Comparison between avgΣB and avgΔASA: When the

two average-smoothed features, i.e., avgΣB and
avgΔASA, are used in the classification, their perfor-
mance is better than the non-smoothed features ΣB and
ΔASA, respectively. This affirms that taking average is a
good way to deal with the issue of relative size of an
interface compared to its chains. This idea is especially
meaningful when protein-peptide binding interfaces are
considered for classification where peptides are usually
of small sizes and the corresponding binding interfaces
are always much smaller than protein-protein binding
interfaces. Table 1 also shows the superior performance
of avgΣB in comparison with avgΔASA for almost all of
the cross-dataset tests.
The performance of avgNo.B and of avgΣB*avgNo.B:

The feature avgNo.B is also useful to classify crystal pack-
ing from biological binding. But its performance is a bit
unstable in comparison with ΣB or avgΣB. Nevertheless,
it still has a stabler than ΔASA. The cross-dataset classifi-
cation performance by avgΣB*avgNo.B (the multiplication
of avgΣB and avgNo.B) is presented in the middle row of
Table 1 for each of the datasets. This performance is
competitive to the best performance achieved by avgΣB
or avgNo.B. This feature also outperforms ΔASA and
avgΔASA for almost all of the across-dataset tests.

The value distributions of our B factor based features and
the value distribution of the feature interface size
The value distributions of the features on the five datasets
are drawn in Figures 1, 2 and 3. The p-values of these dis-
tributions for the two types of interfaces are reported in
Table 2. It is clear from Figure 1(a) and Figure 2(a) that B
factor related features such as ΣB are more powerful than

interface size to distinguish between biological binding
interfaces and crystal packing interfaces.
In particular on the DC dataset, crystal packing con-

tacts have very similar area sizes with those of the bio-
logical binding interfaces. Features ΣB and avgΣB can

Table 1 Cross-dataset classification performances. (Continued)

Ponstingl ΣB 0.88(0.94) 0.39(0.70) 0.69(0.85) 0.81(0.90)

ΔASA 0.91(0.96) -0.18(0.47) 0.59(0.79) 0.72(0.86)

avgΣB 0.90(0.95) 0.43(0.71) 0.73(0.87) 0.82(0.91)

avgNo.B 0.95(0.98) 0.25(0.60) 0.70(0.84) 0.84(0.92)

avgΣB*avgNo.B 0.90(0.95) 0.40(0.70) 0.75(0.88) 0.83(0.92)

avgΔASA 0.92(0.96) -0.19(0.46) 0.65(0.82) 0.78(0.89)

PDBbind ΣB 0.93(0.97) 0.38(0.68) 0.62(0.79) 0.72(0.86)

ΔASA 0.88(0.94) -0.16(0.48) 0.49(0.68) 0.62(0.79)

avgΣB 0.88(0.94) 0.41(0.71) 0.71(0.86) 0.83(0.92)

avgNo.B 0.92(0.96) 0.38(0.68) 0.74(0.88) 0.80(0.90)

avgΣB*avgNo.B 0.90(0.95) 0.38(0.69) 0.76(0.88) 0.86(0.93)

avgΔASA 0.88(0.94) 0.02(0.51) 0.66(0.84) 0.70(0.85)

X.XX(Y.YY) represent the classification performances where X.XX is the MCC score and Y.YY is the accuracy score. The italic numbers are the learning
performances, and thus they are not used in the comparison. The bold-font numbers are the better performances when comparing ΣB and avgΣB*avgNo.B with
ΔASA, and ΣB with ΔASA.

Figure 1 The score distributions of ΣB and ΔASA in boxplot for
the five datasets. The p-values are shown in Table 2. The
horizontal lines represent the best split points for each of the four
datasets and the 25% quantile point for PDBbind.
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classify these two types of interfaces very well. This
classification is quantified as in Table 2 where B factor
related features always have much smaller and more
significant p-values than those of ΔASA. However,
ΔASA even has insignificant p-value 0.184 on the DC
dataset. Features avgNo.B and avgΣB*avgNo.B (Figure
3) can also separate the two types of interfaces with a
clearer boundary than ΔASA does (Figure 1(b) and
Figure 2(b)).
The scatter plots of avgΣB and ΔASA on the five data-

sets are presented in Figure 4. Figure 4(a) indicates that
ΔASA wrongly classifies many of those protein binding
interfaces of PDBbind below the horizontal line as crystal
packing contacts, while avgΣB misclassifies much less
number of protein binding interfaces on the right-hand
side of the vertical line (142 vs 322). Further, Figure 4(b)
suggests that a cross-dataset ΔASA threshold is useless on
DC. Figure 4(c) on the Bahadur dataset and Figure 4(d)
on the Ponstingl dataset both demonstrate that many of
the crystal packing contacts with a large interfaces can
have a small avgΣB values and thus they can be correctly
classified by avgΣB. In Figure 4(e) on BNCPCS, both
ΔASA and avgΣB are powerful to distinguish between
crystal packing and biological binding.

In conclusion, avgΣB and avgΣB*avgNo.B have a con-
sistent classification performance across the datasets
with diverse interface sizes, including those large inter-
faces of crystal packing and small interfaces of biological
binding.

Classification performance comparison with PISA and EPPIC
The performances by avgΣB and avgΣB*avgNo.B are
compared with a widely-used method PISA and a newly
published method EPPIC (Table 3). Although much less

Figure 2 The score distributions of AvgΣB and avgΔASA in
boxplot for the five datasets. The p-values are shown in Table 2.
The horizontal lines represent the best split points for each of the
four datasets and the 25% quantile point on PDBbind.

Figure 3 The score distributions of Average No.B (avgNo.B)
and avgΣB*avgNo.B in boxplot for the five datasets. The p-
values are shown in Table 2. The horizontal lines represent the best
split points for each of the four datasets and the 25% quantile point
on PDBbind. avgΣB*avgNo.B is divided by 100 for better visualization
but without changing its value distribution between the two types
of interfaces.

Table 2 p-values of different features for the two types
of interfaces in the four datasets.

Feature Datasets

BNCPCS DC Bahadur Ponstingl

ΣB 9.89e-20 4.47e-09 5.68e-28 1.68e-19

ΔASA 5.58e-17 0.184 1.21e-21 4.02e-14

avgΣB 1.72e-21 4.61e-10 2.70e-31 3.02e-22

avgNo.B 2.41e-19 1.71e-09 2.15e-27 6.01e-19

avgΣB*avgNo.B 6.91e-19 6.51e-09 3.40e-28 3.07e-18

avgΔASA 4.62e-18 0.00141 2.30e-24 1.12e-16
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number of features are used by our approach, our single
feature avgΣB can outperform both EPPIC and PISA.
On both the Ponstingl and the Bahadur datasets, the
MCC scores of EPPIC are quite close to those of avgΣB,
and also much higher than those of PISA.
Our method also has much higher specificity and

higher precision, indicating that the predicted biological
binding interfaces are more likely to be true binding. It
is thus quite useful to automatically compile protein-
binding datasets from PDB for large-scale structural
analysis where crystal packing contacts should be cor-
rectly labeled and then excluded to enhance the analysis
results.

Feature avg ΣB can be used to correct errors in biological
binding annotation: an example
The B factor feature avgΣB is able to correct annotation
errors. We demonstrate such corrections in Figure 5 by
examining two derived protein complexes from PDB
entry 1UBY.
Figure 5(a) shows a one-side binding site of the inter-

face for a derived complex with regard to the biomole-
cule 2 of the REMARK 350 of 1UBY. This interface has
a ΔASA = 1766.75 Å2 and it is predicted to be dimeric
by a computational tool [29]. However, there are no bio-
logical evidences so far to claim it as a true dimer.
Figure 5(b) displays a one-side binding site of another
derived dimeric interface (according to the biomolecule
1 of the REMARK 350 in 1UBY). This binding interface
is actually recommended by the authors of 1UBY [30].
The interface in Figure 5(a) is manually mistaken as a

biological binding interface in the Bahadur dataset.
But, it is the interface in Figure 5(b), instead of that in
Figure 5(a), that should be in this dataset. Feature

avgΣB can correct this mistake with two reasonable
evidences as follows. Firstly, the interface in Figure 5(a)
has an avgΣB value of 14.96, which is in the top-right
region of Figure 4(c) with ‘+ ’. This avgΣB value is
extremely different from the avgΣB values of other bio-
logical binding interfaces as shown in Figure 4. Sec-
ondly, the interface in Figure 5(a) has atoms with
larger B factor in red, while the interface in Figure 5(b)
has atoms with much smaller B factor in blue. Thus,
avgΣB can make a reasonable prediction that the inter-
face in Figure 5(b) is dimeric and the interface in Fig-
ure 5(a) should not be. This is also consistent with the
biological evidence in the REMARK 350 of 1UBY [30].
Thus, the interface in Figure 5(a) needs more biological
evidences to be claimed as a true dimer. This example
illustrates that the B factor feature avgΣB can be used
to correct wrong annotations of biological binding
interfaces.

Conclusion
In this work, we have proposed to use B factor as a new
characteristic to distinguish between crystal packing
contacts and biological binding interfaces. Assessed on
five datasets, all of the B factor related features have
exhibited their excellent capability for classifying various
biological binding interfaces with diverse interface sizes.
Our B factor features have also achieved better classifi-
cation performances than the widely-used feature inter-
face size and two published methods PISA and EPPIC.
In particular, the average sum of normalized B factor of
interfacial atoms is a clear indictor for biological bind-
ing. As a future work, the B factor related features and
our method will be employed for a large scale annota-
tion of potential biological binding interfaces for PDB.

Table 3 Comparison with existing methods PISA and EPPIC.

Tested on Methods Prec Sens Spec Acc MCC

BNCPCS EPPIC-core 0.98 0.76 0.99 0.90 0.79

AvgΣB 1.00 0.85 1.00 0.94 0.88

avgΣB*avgNo.B 1.00 0.83 1.00 0.93 0.86

Ponstingl EPPIC-core 0.90 0.75 0.93 0.85 0.70

AvgΣB 0.94 0.83 0.96 0.90 0.80

avgΣB*avgNo.B 0.98 0.79 0.99 0.90 0.81

EPPIC 0.92 0.90 0.87 0.89 0.76

PISA 0.87 0.89 0.77 0.84 0.66

Bahadur EPPIC-core 0.92 0.80 0.95 0.89 0.77

AvgΣB 0.85 0.81 0.91 0.87 0.73

avgΣB*avgNo.B 0.89 0.80 0.94 0.88 0.75

EPPIC 0.78 0.89 0.84 0.86 0.72

PISA 0.65 0.89 0.69 0.77 0.57

All of these methods are optimized on the DC dataset. EPPIC-core is the classifier using the number of core residues in interfaces according to the definition in
EPPIC. The performance of EPPIC or PISA is borrowed from [17]. The scores of EPPIC and PISA are absent on the BNCPCS dataset.
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Figure 4 The relationship of ΔASA and avgΣB. Sign + represents a true binding interface, while ○ represents a crystal packing interface.
Those complexes with ΔASA larger than 2200 Å or avgΣB smaller than -16 are all true binding and thus are not drawn. The horizontal lines
have ΔASA = 800 Å, while the vertical lines have avgΣB = -5. Both the values are not optimized but used only for a better visualization of the
different distribution across datasets.
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Figure 5 Two interfaces derived from the PDB entry 1UBY. (a) The used dimer structure in the Bahadur dataset which is derived by a
computational tool with regard to the biomolecule 2 of REMARK 350 in 1UBY; (b) the dimer structure determined by the authors of 1UBY. The
original B factors in 1UBY are ranged between 13.22 and 83.45 according to Equation 1. The colors from blue to white and to red indicate B
factors from small to large. The structures are shown in the surface view. The regions without any surface view are the binding sites on chain A.
The binding sites on chain B are not shown due to the symmetry of the interfaces.
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