Kim and Shin BMC Bioinformatics 2014, 15(Suppl 16):52
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/516/52

BMC
Bioinformatics

RESEARCH Open Access

An integrative model of multi-organ drug-induced
toxicity prediction using gene-expression data

Jinwoo Kim, Miyoung Shin”

From Asia Pacific Bioinformatics Network (APBioNet) Thirteenth International Conference on Bioinformatics
(InCoB2014)
Sydney, Australia. 31 July - 2 August 2014

Abstract

Background: In practice, some drugs produce a number of negative biological effects that can mitigate their
effectiveness as a remedy. To address this issue, several studies have been performed for the prediction of drug-
induced toxicity from gene-expression data, and a significant amount of work has been done on predicting limited
drug-induced symptoms or single-organ toxicity. Since drugs often lead to some injuries in several organs like liver
or kidney, however, it would be very useful to forecast the drug-induced injuries for multiple organs. Therefore, in

gene-expression data.

a variety of other multi-organ toxicology applications.

this work, our aim was to develop a multi-organ toxicity prediction model using an integrative model of

Results: To train our integrative model, we used 3708 in-vivo samples of gene-expression profiles exposed to one
of 41 drugs related to 21 distinct physiological changes divided between liver and kidney (liver 11, kidney 10).
Specifically, we used the gene-expression profiles to learn an ensemble classifier for each of 21 pathology
prediction models. Subsequently, these classifiers were combined with weights to generate an integrative model
for each pathological finding. The integrative model outputs the likeliness of presenting the trained pathology in a
given test sample of gene-expression profile, called an integrative prediction score (IPS). For the evaluation of an
integrative model, we estimated the prediction performance with the k-fold cross-validation. Our results
demonstrate that the proposed integrative model is superior to individual pathology prediction models in
predicting multi-organ drug-induced toxicities over all the targeted pathological findings. On average, the AUC of
the integrative models was 88% while the AUC of individual pathology prediction models was 68%.

Conclusions: Not only does this integrative model produce comparable prediction performance to existing
approaches, but also it produces very stable performance overall. In addition, our approach is easily expandable to

Background

With the advent of high-throughput technologies (such as
microarrays), an explosive growth of gene-expression data
in toxicology applications has given us new insights into
the biological processes of hepatotoxicity or nephrotoxicity
[1]. Thus, many studies have worked on using gene-
expression profiles for the prediction of the potential nega-
tive effects of new drugs under development [1,2]. Because
new drugs often lead to some injuries in the liver or
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kidney, which present various pathological findings, it
would be very useful to predict the drug-induced toxicity
for multiple organs. However, thus far, most of the earlier
works focused on predicting single-organ toxicity with
only limited pathological symptoms [3-9].

For example, Cui et al. [3] used gene-expression profiles
obtained from kidney RNA samples with rat cONA micro-
arrays to develop an SVM-based prediction model that
groups gene-expression profiles into four classes according
to the severity and type of pathology. Using this model,
they could predict the pathologies of 28 test profiles with
100% specificity and 82% sensitivity. Lingkang et al. [4]
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grouped liver samples by the level of necrosis exhibited in
the tissue and used them to develop a random forest classi-
fier with 21 genes. They achieved 90%, 80%, and 60% pre-
diction accuracies against test data derived from the livers
of rats exposed to three different hepatotoxins, respectively.
Kedar et al. [5] proposed a network model to assess
chronic hepatotoxicity based on sub-chronic hepatic gene-
expression data in rats, where the directed graph accounts
for the interactions among drugs, differentially expressed
genes and chronic hepatotoxicity. They estimated phenoty-
pical exposure risk such as toxic hepatopathy, diffuse fatty
change and hepatocellular adenoma from gene-expression
profile of rats. Low et al. [6] proposed a hybrid model of
chemical descriptors and gene-expression data to predict
hepatotoxicity. Although the hybrid models did not show
better accuracy than the model based on only gene-expres-
sion data, the use of chemical descriptors could enrich the
interpretation of the model. Minowa et al. [7] developed
the prediction model for the onset of drug-induced proxi-
mal tubular injury from gene-expression data, and achieved
93% sensitivity and 90% specificity. Bowles et al. [8] quanti-
fied several pathological findings and DILI severity and
then constructed statistical prediction models from gene-
expression profiles for liver pathology in rats and for drug-
induced liver injury. For this purpose, they used the Lasso
regression and “glmnet” algorithm to extract models for rat
liver pathology prediction and used stochastic gradient
boosting to extract models for drug-induced liver injury.
Zhang et al. [9] employed gene-expression data, cell-based
assays, and pathological data to obtain a network of early-
response genes as a consensus signature of drug-induced
in-vitro and in-vivo toxicity, and used the network to pre-
dict liver or kidney toxicity from gene-expression data. The
accuracy of prediction model was between 80% and 97% in
both liver and kidney.

In this work, we attempt to develop an integrative
model of drug-induced toxicity prediction applicable to
the prediction of multiple organ pathologies. To achieve
this end, we investigated the relationships between dis-
tinct pathologies by exploring co-occurrences of pathol-
ogies within training samples, and used them to
combine individual pathology prediction models for
drug-induced toxicity. Consequently, for a test sample,
our integrative model can predict the occurrence of the
trained pathologies presented in multiple organs.

Methods

Target pathological findings in multi-organs

For experiments, our toxicity prediction model targets 11
liver physiological changes (pathological findings) that sig-
nal the presence of developing pathology (Eosinophilic
change, Cellular infiltration, Hypertrophy, Degeneration,
Pigment deposit, Increased mitosis, Necrosis, Single cell
necrosis, Cytoplasmic vacuolization, Proliferation, Fibrosis)

and 10 kidney pathological findings (Cellular infiltration,
Hypertrophy, Degeneration, Necrosis, Hyaline droplet,
Hyaline cast, Dilatation, Basophilic change, Cytoplasmic
vacuolization, Regeneration), carefully chosen from Open
TG-GATEs http://toxico.nibio.go.jp [10].

In fact, according to TG-GATEs, the researchers
extracted the slides of the liver or kidney from all in-vivo
samples, and pathologists examined these slides to detect
pathological symptoms and their severity in various parts
of the liver or kidney. (See Additional file 1, 2) Due to the
limitation of available gene-expression data in both the
liver and kidney, which cannot cover all possible patholo-
gical symptoms, we targeted only the 21 findings, as men-
tioned above.

For 37 liver and 26 kidney drug-induced pathological
findings observed in in-vivo rat samples exposed to one
of 131 drugs in TG-GATEs, we simplified them into
general terms (e.g., grouping the subtypes of liver degen-
eration into ‘liver degeneration’, or grouping the necrosis
of bile duct or hepatocyte into liver necrosis.) and then
selected only the pathology terms that were induced by
at least 5 drugs or more, as the targets of our prediction
model.

Training data for toxicity prediction model

For the learning of the toxicity prediction model, we
used confirmed case and control samples, with gene-
expression profiles for cases with targeted pathological
findings and expression profiles for controls without the
targeted pathological finding, respectively. All the gene-
expression profiles in the training data were normalized
by using a robust multi-array average (RMA) method
with the RefPlus R package [11], where the reference
model was built by selecting 5% of the training samples
in each organ and used to derive reference quartiles and
probe effects for normalization. To construct the toxi-
city prediction model, we need to identify gene signa-
tures particular to each of the 21 pathological findings.
For this purpose, we applied the ¢-test to the training
data of confirmed case/control samples in each patholo-
gical finding and selected the top 5% ranked genes in
the increasing order of p-values.

Construction of individual pathology prediction models

For each of the 21 pathological findings, we trained an
ensemble model of n k-nearest neighbor (KNN) classi-
fiers (i.e., an ensemble of n sub-prediction models) to
construct an individual pathology prediction model. The
main reason of developing »n sub-prediction models for
each pathology prediction is to handle the data imbal-
ance problem (i.e., handling the situation in which the
number of case samples is much smaller than the num-
ber of control samples), a problem that commonly
occurs in training data for adverse drugs reaction
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[12,13]. Each sub-prediction model was developed with
each of n jackknife samples generated from training
data, in which each jackknife sample includes all the
confirmed case samples and a randomly selected subset
of control samples. The final output of any individual
pathology prediction model is determined by aggregat-
ing all the outputs of n sub-prediction models for each
pathology finding. That is, for a test sample s of gene-
expression profile with exposure to a certain drug, our
pathology prediction model produces the pathology pre-
diction score (PPS)MF,(s) as an output for a pathology
finding F; by averaging all the outputs of #n sub-predic-
tion models as follows:

1 n
Mr(s)= D~ sub M (s)

The score of M£(s) is in the range of 0[1], where values
approaching 0 indicate that a pathological finding F will
not occur in the sample s and values closer to 1 indicate
that F will occur in the sample s. If Mg(s) is higher than a
certain threshold, we predict that the pathological finding
F would occur in the sample s. Figure 1 illustrates the pro-
cedure of producing the PPS as an output of individual
pathology prediction.

Pathology relationships extraction

To investigate the relationships between pathological
findings for drug-induced toxicity prediction, we con-
structed a pathology occurrence matrix that describes
the presentation states of training samples for the tar-
geted pathology findings (i.e., 11 liver and 10 kidney).
From this matrix, we can derive the pathology occur-
rence vector for each pathology finding and use them to
calculate the Jaccard similarities between confirmed case
samples displaying two different pathological symptoms.
Specifically, assuming that there are # training samples
and k pathological findings of interest, the pathology
occurrence matrix @ is defined by:

I'he individual prediction model for pathological finding F,

Learning data

Randomly select as much as
number of case samples

Sub_prediction
model 1 Sub_prediction B
-~ model 2 Sub_prediction

Sub_prediction
model 4
/
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Select all samples

Test data
mput
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My ($)=0.75
output f

Figure 1 The procedure of producing the pathology prediction
score (PPS) in an individual pathology prediction model.

on - Pik

O = [ By -

@n1 * - Pnk

Where ¢;; = if a pathology F; occurred in the i™ train-
ing sample and ¢,; otherwise. Also, the similarity between
F;, and F; is defined as the Jaccard coefficient between
their pathology occurrence vectors (i.e., ®; and ®;) which
measures the commonness of sample occurrences of two
pathology findings. Formally, the pathology similarity S
between F; and F; is calculated by:

Nn

S(Fi Fj) = Jaccard(®i, @;) = Noi + Nyg + Ny

where Np; is the total number of training samples in
which F; does not occur and F; does occur, Niq is the
total number of training samples in which F; occur and
F; does not occur, and Nj; is the total number of train-
ing samples in which both F; and F; does occur. The
value of pathology similarity is in the range of 0[1], and
some examples of pathology similarities for 4 pathologi-
cal findings (i.e., liver eosinophilic change, liver cellular
infiltration, kidney cytoplasmic vacuolization, and kidney
regeneration) are shown in Table 1.

The rationale of pathology relationships can be
explained as follows: A drug-induced toxicity can pre-
sent several pathological findings in liver or kidney, and
the occurrence of certain pathological finding may be
associated with the occurrence of some other pathologi-
cal finding(s). This is because a drug-induced toxicity
can perturb certain gene-expressions or protein activities
followed by the perturbation of several pathway activ-
ities, leading to various toxicity symptoms [14]. For
example, the PPAR-alpha gene is related to liver hyper-
trophy [15], which is also related to kidney tubular
necrosis [16,17]. ARG1 gene is related to both biliary
injury and single cell necrosis [18]. Hence, some symp-
tom(s) of toxicity might be the indirect evidence of
other symptom(s) of toxicity. To implement this ratio-
nale in our experiments, we estimated the degree of the
association between two pathological findings by calcu-
lating the Jaccard similarity between their pathology
occurrence vectors.

The integrative model for drug-induced toxicity
prediction

The construction of the integrative model for drug-induced
toxicity prediction is done by the weighted combination of
all the 21 individual pathology prediction models. For this
purpose, we first obtain the normalized pathology similari-
ties N(F; F)) from the pairwise pathology relationships S(F;
F;) defined as above by exploring co-occurrence samples of
two pathological findings. That is, when having k different
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Table 1 Examples of the pathology similarities for 4 pathological findings.

Liver Change, Liver Cellular Kidney Vacuolization, Kidney
eosinophilic infiltration cytoplasmic Regeneration

Liver Change, eosinophilic 1.00 0.21 0.05 0.00
Liver Cellular infiltration 0.21 1.00 0.02 0.04
Liver Hypertrophy 0.04 0.10 0.08 0.12
Liver Degeneration 0.00 0.20 0.00 0.10
Liver Deposit, pigment 0.02 0.05 0.00 0.02
Liver Increased mitosis 0.08 0.04 0.00 0.02
Liver Necrosis 0.05 0.32 003 0.05
Liver Single cell necrosis 0.04 0.20 0.00 0.06
Liver Vacuolization, cytoplasmic 0.05 0.00 0.14 0.08
Liver Proliferation 0.04 0.14 0.08 0.07
Liver Fibrosis 0.00 0.15 0.05 0.04
Kidney Cellular infiltration 0.00 0.01 0.00 0.1
Kidney Hypertrophy 0.00 0.02 0.00 0.04
Kidney Degeneration 0.04 0.04 0.09 0.29
Kidney Necrosis 0.10 0.02 0.1 0.16
Kidney Hyaline droplet 0.01 0.00 0.05 0.10
Kidney Cast, hyaline 0.02 0.02 0.19 0.1
Kidney Dilatation 0.04 0.01 0.05 0.16
Kidney Change, basophilic 0.02 0.02 0.03 0.00
Kidney Vacuolization, 0.05 0.02 1.00 0.03
cytoplasmic

Kidney Regeneration 0.00 0.04 0.03 1.00

pathological findings, the normalized pathology similarity
between F; and F; is defined by

S(Fi, Fy)
Vb S(E B

Then, our integrative model produces the integrative
prediction score IPSE,(s)of a test sample s for each patho-
logical finding F;, which is calculated by

N(F;, F) =

IPS(s) = anl N(F;, Fn) - Mg, (5)

If the score of IPS,(s) is higher than a certain threshold,
it is predicted that the pathology finding F; would occur in
the test sample s. Thus, for k distinct pathological findings,
our integrative model produces a k-dimensional vector of
the IPSs of a test sample s as follows:

1PS: (s) N(Fy, F1) N(Fy, Fy) N(Fy, F3) ... N(Fy, Fy) Mg, (s)
IPSE, (s) N(F2, F1) N(Fy, F2) N(F2, F3) ... N(Fy, F) Mg, (s)
1PS(s) = | IPSk(s) | = | N(Fs, F1) N(Fs, F) N(F3, F) ... N(F3, F) | . | Mp,(s)
85,6 | LN F) N E) NG E) oo NG D | | M)

An illustrative example of the integrative model
For better understanding, we illustrate the integrative
model by a toy example (Figure 2). Suppose that we

have 4 different pathological findings of interest. Firstly,
we develop 4 individual pathology prediction models,
producing Mr,(s), i = 1, ..., 4, as in Figure 2(a). Secondly,
the relationships among the 4 pathological findings are
extracted by exploring co-occurrence cases of two differ-
ent findings in training data, as in Figure 2(b). Thus, if
we assume that Mp(s1) =04, Mg (51) =04,
Mp,(s1) = 0.5, and Mg, (s1) = 0.7 for a sample s; and
MF7 (Sz) = 00, MF7 (52) = 00, 1\/11:3 (52) = 06, and
Mr,(s2) = 0.8 for a sample s,, our integrative model
would produce the scores of IPSf, (s1) =0.521 and
IPSE, (s2) = 0.479, as shown in Figure 2(c). From this
example, we can notice that the IPS for a certain patho-
logical finding is affected by both the degree of the asso-
ciation with other pathology findings and the results of
other pathology prediction models. That is, in the case
of a pathological finding F; of s;, the score of
IPSE,(s1) = 0.521 gets higher than the score
Mp, (s1) = 0.4 of an individual pathology prediction
model because its highly associated finding F, produces
a relatively high score of Mp,(s1) = 0.4. On the other
hand, in the sample of s,, the IPSk, (s2) = 0.479 gets
lower than the score Mr, (s2) = 0.5 of an individual
pathology prediction model because its highly associated
finding F, produces a low score of M, (s2) = 0.0. Thus,



Kim and Shin BMC Bioinformatics 2014, 15(Suppl 16):52
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/516/S2

Page 5 of 9

are provided in both the liver and kidney samples in all
cases. As discussed above, we developed 21 individual

Individual pathology Pathology relationships .
prediction models between F;and the others Integrative model for F;
M, (s;)=0.4 Mr3(51)=0-5 H
M (s,)=0.0 My [s,)=0.6 :
S(FLF,)= 04 S(F,,F3)=0.1
o IPS; (s,)=0.521
M 5,104 s IPS; (5,)=0.479
M,-Iisz) =0.5 s(r-'l FJ=00 |
M (s,)=0.7
M; (s,)=0.8 i
(a) (b) (c)
Figure 2 An illustrative example of integrative model.

\ J

if the threshold of IPS is set to 0.5, our model predicts
that the pathological finding F; will be presented in the
sample s; and not in the sample s,.

Results and discussion

Evaluation of individual pathology prediction models for
multi-organ drug-induced toxicity

To evaluate the performance of individual pathology pre-
diction models in forecasting multi-organ drug-induced
toxicity over the targeted pathological findings, we used
3708 rat in-vivo samples exposed to one of our chosen 41
drugs. (See Additional file 3) Here, 41 drugs were chosen
from TG-GATEs of which the gene expression profiles

pathology prediction models for our targeted pathologi-
cal findings (i.e., 11 in liver and 10 in kidney) using the
KNN-based ensemble classifiers, which produced the
outputs of the pathology prediction scores (PPSs). If the
PPS output of a pathology prediction model for a test
sample is greater than a given threshold, then we predict
that the targeted pathological finding will occur in the
test sample.

We estimated the prediction performance of each
individual pathology prediction model in terms of sensi-
tivity and specificity using the k-fold cross-validation
method. That is, original training data of the in-vivo
samples mentioned in Methods were divided into k
groups of equal size in the unit of drugs. To avoid an
over-fitting problem, we used the samples of k-1 groups
for model development (including gene signature selec-
tion for the targeted pathology, pathology relationship
extraction, and prediction model learning), and used the
samples of 1 remaining group to test model perfor-
mance. This process was iterated k times for different
selection of a test group (See Additional file 4). Here,
the threshold value of PPS in each pathology prediction
model was set to maximize the geometric mean of sen-
sitivity and specificity. The geometric mean of sensitivity
and specificity is often used to evaluate a prediction
model with imbalanced data set.

\
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Figure 3 Evaluation of the individual prediction models in forecasting 11 liver and 10 kidney pathological findings.
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Figure 3 displays the evaluation results of the 21 indivi-
dual pathology prediction models. As seen in this figure,
all the individual pathology prediction models tend to
show relatively lower sensitivities (approximately 70% on
average) than specificities (approximately 87% on average)
overall in predicting the targeted pathological findings. In
addition, the standard deviations of sensitivity over all the
models seems to be considerably high, +18% in liver
pathology and +17% in kidney pathology, compared to

those of specificity, i.e., +8% in liver pathology and +9% in
kidney pathology. Even the sensitivities of several pathol-
ogy prediction models (e.g., models for liver single cell
necrosis and kidney hypertrophy) are extremely low as
<50%. Since the performance of individual pathology pre-
diction models depends on the choice of the PPS thresh-
olds, it is worthwhile to draw ROC curves for model
evaluation. The ROC curves of 6 pathology prediction
models, which show the most distinction between PPS-
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based models and IPS-based models, are given in Figure 4.
All the ROC curves of 21 pathology prediction models are
also given in Additional file 5.

Evaluation of the proposed integrative models for multi-
organ drug-induced toxicity

We evaluated the prediction performance of the pro-
posed integrative models in the same manner as for the
individual pathology prediction models, using the k-fold
cross-validation method. Particularly, we extracted
pathology relationships only based on the samples of k-
1 groups chosen as training set. (See Additional file 4)
Here, the threshold of IPS was also set to maximize the
geometric mean of sensitivity and specificity in forecast-
ing the targeted pathological changes.

Figure 5 displays the evaluation results of our integrative
models for the prediction of 21 pathological findings. We
observe that overall prediction performance is quite
impressive, increasing sensitivity considerably (approxi-
mately 84% on average) without much sacrifice of specifi-
city (approximately 83% on average). In addition, the
variability of the prediction performance for all pathologies
in the integrative model is much lesser than the individual
pathology models it is comprised of, indicating that an
integrative approach can provide more stable performance.
Figure 4 shows the ROC curves of the integrative models

for the 6 pathological findings (3 in liver and 3 in kidney).
It is noted that the ROC curves of the IPS-based integra-
tive models are located completely above ROC curves of
the PPS-based individual models in several cases. We also
measured the area under the ROC curves (AUC) of the
IPS-based integrative models and the PPS-based individual
models (see Figure 6). As seen in Figure 6, the IPS-based
integrative models showed much better performance than
the PPS-based individual models overall. On average,
approximately 20% of AUC in the proposed integrative
models increased over all the pathology prediction, com-
pared to individual pathology models. Particularly, for some
pathological findings like liver single cell necrosis and kid-
ney cytoplasmic vacuolization, the IPS-based integrative
models achieved distinct improvement in prediction perfor-
mance. For example, regarding liver single cell necrosis, the
IPS-based integrative model can make high quality predic-
tions within 93% of its AUC, but the PPS-based individual
models only display this performance within 26% of AUC.
Furthermore, we compared our integrative model per-
formance with the prediction performance given by the
recent work of Bowles et al. (2013) [8] which also
employs TG-GATEs to train and evaluate the prediction
model. Table 2 shows the AUC comparison of the both
models in predicting liver toxicity only, since the work
of Bowles et al. only concerned itself with liver toxicity.
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Figure 5 Evaluation of the proposed integrative models in forecasting 11 liver and 10 kidney pathological findings.
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Figure 6 Comparison of prediction performance in the IPS-based integrative models with the PPS-based individual pathology models.
J

Table 2 AUC comparison of the proposed integrative model with the work of Bowles et al.

Liver necrosis

Liver hypertrophy

Liver cellular infiltration

Bowles et al.'s model 0.87

097

0.88

Our integrative model 0.87

0.91

0.89

Even if it shows limited comparison in predicting only
three liver pathological findings (liver necrosis, hypertro-
phy, cellular infiltration), our integrative model perfor-
mance seems to be comparable to their work.

Conclusions

We introduced an integrative model approach for multi-
organ drug-induced toxicity prediction. For the develop-
ment of integrative models, we investigated pathology
relationships by considering the co-occurrence of tar-
geted pathological states in training samples, and used
them to unite individual pathology prediction models.
Consequently, our integrative models produced better
prediction performance over all of the 21 targeted
pathological findings, than individual pathology predic-
tion models.

Even when the performance of individual pathology
prediction models is extremely low, our integrative
models could improve the prediction performance con-
siderably by referring to the prediction results of other

highly associated pathological findings. In this work, our
prediction models were developed using limited training
set, so it is expected that more training samples would
make the better estimation of the real associations
among toxicity pathological findings.

Additional material

Additional file 1: An example of slide image extracted from the
liver and kidney of an in-vivo sample.

Additional file 2: A table of detected pathological symptoms in
each part of the liver and kidney. This table is formatted for Excel. The
table contains type of pathology, part of liver of kidney in which the
pathology occurred, and number of drugs which induced the pathology
within experiments of TG-GATEs.

Additional file 3: A table of in-vivo samples which were used to
evaluate the prediction models. This table is formatted for Excel. The
table contains sample ID, type of medicated drug, and occurrences of
drug-induced targeted pathologies for each sample.

Additional file 4: An image to describe the cross-validation method
for evaluating toxicity prediction models. The image shows the
concept of cross-validation methods used to evaluate individual
pathology prediction models or integrative models.
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Additional file 5: ROC curves images for each 21 pathology
prediction models. These images are zip-compressed. Figure 4 is a part
of these images.
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