
RESEARCH Open Access

Integrating microRNA target predictions for the
discovery of gene regulatory networks: a
semi-supervised ensemble learning approach
Gianvito Pio1, Donato Malerba1, Domenica D’Elia2, Michelangelo Ceci1*

From Integrated Bio-Search: 12th International Workshop on Network Tools and Applications in Biology
(NETTAB 2012)
Como, Italy. 14-16 November 2012

Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs which play a key role in the post-transcriptional
regulation of many genes. Elucidating miRNA-regulated gene networks is crucial for the understanding of
mechanisms and functions of miRNAs in many biological processes, such as cell proliferation, development,
differentiation and cell homeostasis, as well as in many types of human tumors. To this aim, we have recently
presented the biclustering method HOCCLUS2, for the discovery of miRNA regulatory networks. Experiments on
predicted interactions revealed that the statistical and biological consistency of the obtained networks is negatively
affected by the poor reliability of the output of miRNA target prediction algorithms. Recently, some learning
approaches have been proposed to learn to combine the outputs of distinct prediction algorithms and improve
their accuracy. However, the application of classical supervised learning algorithms presents two challenges: i) the
presence of only positive examples in datasets of experimentally verified interactions and ii) unbalanced number of
labeled and unlabeled examples.

Results: We present a learning algorithm that learns to combine the score returned by several prediction
algorithms, by exploiting information conveyed by (only positively labeled/) validated and unlabeled examples of
interactions. To face the two related challenges, we resort to a semi-supervised ensemble learning setting. Results
obtained using miRTarBase as the set of labeled (positive) interactions and mirDIP as the set of unlabeled
interactions show a significant improvement, over competitive approaches, in the quality of the predictions. This
solution also improves the effectiveness of HOCCLUS2 in discovering biologically realistic miRNA:mRNA regulatory
networks from large-scale prediction data. Using the miR-17-92 gene cluster family as a reference system and
comparing results with previous experiments, we find a large increase in the number of significantly enriched
biclusters in pathways, consistent with miR-17-92 functions.

Conclusion: The proposed approach proves to be fundamental for the computational discovery of miRNA
regulatory networks from large-scale predictions. This paves the way to the systematic application of HOCCLUS2
for a comprehensive reconstruction of all the possible multiple interactions established by miRNAs in regulating
the expression of gene networks, which would be otherwise impossible to reconstruct by considering only
experimentally validated interactions.
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Background
MicroRNAs (miRNAs) are small non-coding RNA mole-
cules (~22 nucleotides in length) representing one of the
most interesting class of gene regulators. Since their dis-
covery in 1993 [1], the number of scientific reports on
their functional characterization in a great variety of
organisms has been growing at an impressive rate. They
regulate cell cycle, modulate cell development and dif-
ferentiation, are involved in the maintenance of cell
homeostasis and apoptosis, and ultimately can influence
the development and progression of many types of
human tumors [2]. The growing amount of evidence of
their key role in cancer and recent evidence of their pre-
sence in body fluids, such as serum and plasma, has
further sparked the interest of the scientific community,
emphasizing the possibility of using them as therapeutic
targets and noninvasive biomarkers of diseases and of
therapy response [3]. However, the full potential of their
possible applications in the clinical domain depends on
the understanding of their mechanisms and functions.
Basically, miRNAs are post-transcriptional regulators
that inhibit translation of messenger RNAs (mRNAs) by
binding to complementary short sequences (6-8 nt in
length), located inside the 3’ untranslated regions (3’-UTRs)
of transcripts. Depending on perfect or only partial comple-
mentarity between the miRNA seed sequence and its target
site on the mRNA, the RNAi-induced silencing complex
(RISC) associated to the miRNA can mediate the inhibition
of translation initiation and/or mRNA decay [4]. More
recent experimental evidence of miRNA functional target-
ing in gene promoter regions suggests that miRNAs may
also play an important role in the transcriptional regulation
of a great number of genes [5]. Moreover, the discovery
of miRNAs’ functional targeting in the 5’ untranslated
region (5’-UTR) and in the coding sequence (CDS) of
mRNAs further complicates the understanding of their
mechanisms.
According to current knowledge, the ability of miRNAs

to act as a balance for a large variety of biological pro-
cesses relies on their capacity to coordinately orchestrate
cell signaling pathways by the multiple binding of many
key effectors. Therefore, the identification of individual
miRNA:mRNA interactions is not sufficient to catch the
capacity of miRNAs to regulate complex gene networks.
For this reason, much of the research in this field focuses
on the development and application of biclustering
algorithms [6,7].
In [7] we have recently proposed a method to identify

significant miRNA:mRNA networks, by exploiting a novel
biclustering algorithm. However, experiments performed
on both experimentally validated and predicted interac-
tions revealed that, although the latter provides a much
larger amount of data to analyze, the significance of the
networks obtained can be substantially affected by the

reliability of the predictions. Indeed, prediction algorithms
exhaustively analyze all the possible miRNA:mRNA pairs,
searching for structural evidence that could suggest the
existence of an interaction.
Examples of such algorithms are RNAhybrid [8], miR-

anda [9], TargesScan [10], DIANA-microT [11] and
picTar [12]. Although these approaches are significantly
cheaper than those based on experimental validation,
results of these methods are in many cases uncorrelated
to each other and their degree of overlap is poor. Their
weakness depends on many factors, especially on the
impossibility to incorporate in a single model all the pos-
sible interplaying variants that can influence the effects of
the miRNA targeting, especially in mammals. Different
results can also depend on the approach used and on the
rules considered for the miRNA targeting, as well as on
the type of resource of sequences they use as a reference
dataset [13,14].
Furthermore, in [15] the authors showed that the relia-

bility of such algorithms, in terms of precision and recall
values computed against validated interactions, is, in gen-
eral, very low. One of the approaches to overcome this
issue consists in the combination of the predictions of
several algorithms. In [16], some different approaches for
combining predictions were compared, i.e. majority vote,
ranking aggregation and Bayesian network classification.
This last strategy represents one of the first attempts to
exploit machine learning approaches to learn to combine
predictions and, in this way, to identify a more reliable
set of predicted interactions. In particular, the authors
proposed the application of a supervised learning algo-
rithm, i.e. a Bayesian network learner, to distinct sets of
features considered in three well-known prediction algo-
rithms, i.e. RNAhybrid, miRanda and TargesScan.
Although they are promising, existing machine learning

solutions for learning to combine predictions are still at
an embryonic stage [17]. For example, the applicability of
the method proposed in [16] is limited to those scenarios
in which a large number of both positive and negative
examples is available. In general, when exploiting
machine learning approaches to learn to combine inter-
actions predicted, some issues have to be taken into
account: i) Very few interactions are experimentally vali-
dated and can be considered as “stable” training exam-
ples. ii) Only positive examples of interactions are
available, whereas negative examples are not generally
available and, when available, their number is relatively
small. iii) Prediction algorithms consider similar features
and their simple combination can lead to the so-called
collinearity problem [18].
All these issues are considered in this paper. In order to

face i), we propose a semi-supervised learning algorithm,
which takes into account both (positively) labeled exam-
ples and the huge amount of unlabeled (unknown)

Pio et al. BMC Bioinformatics 2014, 15(Suppl 1):S4
http://www.biomedcentral.com/1471-2105/15/S1/S4

Page 2 of 17



instances during the learning phase. In order to overcome
issue ii), the proposed learning algorithm is able to learn
from only positive examples. As for iii), the collinearity
problem can be alleviated by considering as features the
scores (outputs) obtained by several prediction algorithms
(instead of the original features), resorting to a solution
which is similar to those adopted in meta-learning algo-
rithms. The advantage of applying machine learning tech-
niques to the outputs of several prediction algorithms
consists in automatically adapting to unknown patterns of
the outputs and associating more reliable prediction values
when these patterns occur.
The proposed learning algorithm can be used either as

a stand-alone software or in combination with the system
HOCCLUS2 (an extension of the algorithm HOCCLUS
[19]), in order to discover more complete and realistic
miRNA:mRNA regulatory networks.

Related work
The research reported in this paper has its roots in work
which studies semi-supervised learning algorithms for
learning from only positive examples. It also originates
from work which studies the opportunity of combining
the results of distinct miRNA target prediction algorithms,
with the goal of obtaining more reliable predictions.
Learning a classifier from only positive and unlabeled
training examples
The problem of learning a classifier in a semi-supervised
setting (or in a transductive setting [20]) and, in particular,
from only positively labeled examples, has already been
investigated in many research papers. In general, as
reported in [21], two main approaches have been followed
in previous works. The most common consists in the
identification of the most likely negative examples from
the unlabeled set and in the application of a standard
supervised learning algorithm [22-25]. This approach is
sometimes extended to identify also additional positive
examples from the unlabeled set [26].
The less common approach consists in assigning

weights to unlabeled examples and then training a classi-
fier which interprets them as weighted negative exam-
ples. This approach is used for instance in [27,28] and
has been recently considered in [21], which inspired the
method proposed in the present paper. The peculiarities
of this last work are: first, it provides a principled way of
choosing weights; second, it assigns a different weight to
each unlabeled example, instead of assigning the same
weight to every unlabeled example. However, contrary to
our solution, the authors assume that each unlabeled
example can be viewed as being both a weighted negative
example and a weighted positive example, where the
weights represent the probability that an unlabeled exam-
ple is negative/positive. Since the two probabilities are
not independent, this solution may generate redundancy

in the representation. The second difference is that in
[21], balancing is assumed between positive and unla-
beled examples. This assumption does not hold in our
case, where the number of miRNA:mRNA validated
interactions is significantly lower than the number of
possible miRNA:mRNA pairs. This last aspect motivates
the use of the ensemble learning approach we have
adopted, as explained in the rest of the paper.
Combining the output of miRNA target prediction
algorithms
In [29], the authors identified two distinct approaches for
data integration: the “low-level” approach, which directly
deals with multi-factorial raw data and the “high-level”
approach, which combines multiple same-type results
from different studies. Following this classification, in
[15] the authors evaluate a high-level solution that com-
bines predictions provided by several existing algorithms.
An interaction is considered reliable if at least k algo-
rithms confirm it. In this case, however, the decision is
taken on the basis of a simple counting of the algorithms
that confirm a prediction. This means that this solution
does not identify patterns of the outputs and does not
adapt the final prediction to them. Finally, it is highly
sensitive to the collinearity problem: algorithms that
work on the same features will produce similar predic-
tions, affecting the counting.
Similarly, StarBase [30], a recently developed database

for exploring miRNA:mRNA interaction maps from
argonauta CLIP-Seq (high-throughput sequencing of
RNA isolated by crosslinking immunoprecipitation) and
degradome-seq data (parallel analysis of RNA ends -
PARE), intersects experimental results with predictions
from six target prediction algorithms, to enhance preci-
sion and recall and identify miRNA-target regulatory
relationships in six different organisms.
In [16], the authors evaluated the performance of single

target prediction algorithms and of some high and low-
level integration approaches to improve prediction accu-
racy. In particular, for high-level approaches they propose
a simple majority voting solution and a ranking aggrega-
tion solution. As regards low-level approaches, the authors
propose the application of a machine learning algorithm
(i.e. Bayesian Network classification algorithm), which is
able to provide a high level of adaptivity. The considered
sets of features (low-level approach) are generated through
combinatorially combining the sets of features taken into
account by each single algorithm. Although the basic idea
is similar to ours, the application of the machine learning
algorithm to basic (possibly redundant) features could
cause collinearity problems.
In addition to [16], in [31] the authors propose improv-

ing prediction capabilities through the application of
machine learning solutions. However, in this case, a mixed
high/low-level approach is followed. In particular, the
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authors propose the application of a Naïve Bayes classifier
on a dataset of possible interactions represented by 57
structural features. The goal is to filter the output of the
prediction algorithm miRanda, in order to decrease the
amount of false positives. The problem of the absence of
negative examples is solved by randomly generating
dummy miRNAs and dummy interactions. The drawback
of this solution is that the learned model is not deter-
ministically determined and might be subject to some
biases implicitly introduced in the artificially generated
negative set.
Finally, in [32], the authors propose a high-level

approach to learn a logistic regression model from the
output of several miRNA target prediction algorithms.
The proposed approach works in the classical supervised
learning setting and does not exploit information from
unlabeled examples (potential interactions) during the
learning phase. This makes the approach difficult to apply
when only few labeled interactions are available during
learning and a huge amount of possible interactions have
to be predicted. Moreover, the problem of negative exam-
ples does not apply in this case, since TarBase [33] + LCL
[34], which contains both positive and negative examples,
is used. Although the use of these datasets is, in this
respect, beneficial, it limits the training set to a small num-
ber of interactions which is not comparable to the number
of interactions we take into account during the learning
phase (thousands vs. millions).

Methods
The learning solution we present in this section is framed
in the semi-supervised learning setting which, in addition
to positive examples, takes advantage from unlabeled
examples. Indeed, since we do not have negative exam-
ples in the training set, it becomes necessary to resort to
this learning setting.
Before formally introducing the problem we intend to

solve, some useful definitions are necessary. Let:

• M and G be the sets of miRNAs and mRNAs,
respectively;
• x = 〈m, g〉 ∈ (M × G) be a (possible) interaction
between miRNA m and mRNA g;
• pk(x) be the prediction score for the interaction x
returned by the k-th target prediction algorithm, 1 ≤
k ≤ s;
• p(x) = [p1(x), p2(x), ..., ps(x)] be the vector of pre-
diction scores for the interaction x;
• l(x) be a function which returns 1 if x is a labeled
(experimentally validated) interaction, 0 otherwise;
• f(x) be an ideal function which returns 1 if x repre-
sents a true interaction, 0 otherwise;
• L = {x|x ∈ (M × G) ∧ l(x) = 1} be the subset of
labeled interactions;

• U = (M × G) − L be the subset of unlabeled
interactions.

In our case, since only positive interactions are labeled,
the following equation holds:

P(f (x) = 1|l(x) = 1) = 1 (1)

The goal is to learn a function f ′ (p (x)
)
which

approximates the probability that f(x) = 1, that is
f ′ (p (x)

) ≈ P
(
f (x) = 1

)
. As suggested in [21], it can be

learned by exploiting (1) in the following steps:

P(l(x) = 1) = P(f (x) = 1 ∧ l(x) = 1)
= P(l(x) = 1|f (x) = 1)) · P(f (x) = 1)

This means that

f ′(p(x)) ≈ P(f (x) = 1) =
P(l(x) = 1)

P(l(x) = 1|f (x) = 1))
(2)

In this equation, both the numerator and the denomina-
tor can be estimated by an ad-hoc probabilistic classifier
specifically used for this purpose. In [21], this classifier is
called nontraditional classifier. The following subsection is
devoted to explaining how this classifier is used.
Estimating P(l(x) = 1) and P(l(x) = 1|f(x) = 1))
In our work, the nontraditional classifier is learned

through the LIBSVM algorithm [35] with Platt scaling
[36], in order to get probability estimates. We choose a
Support Vector Machine (SVM)-based algorithm mainly
for the following reasons: 1) they have a (relatively) good
computational efficiency, especially in the prediction
phase which is based on a very limited number of exam-
ples (support vectors); 2) they are robust to noise and to
feature redundancy [37]; 3) their effectiveness (with Platt
scaling) has already been evaluated and proved in the
semi-supervised setting described in the paper which
inspired our research [21]. However, it is noteworthy that
every other algorithm that exhibits similar properties can
be plugged into our framework.
LIBSVM is applied in order to solve the following

problem:
Given: a set of training examples {(p(x), l(x))}x, where

p(x) is the vector of prediction scores associated to the
interaction x and l(x) (1 if the example is labeled, 0 other-
wise) represents the class for the nontraditional classifier;
Find: a probability function g : Rs → R which takes as

its input a vector of prediction scores p(x) and returns
the probability that the interaction x is labeled. In this
way, g(p(x)) ≈ P(l(x) = 1).
In the way we use LIBSVM, we do not have testing

examples and g(p(x)) represents the posterior class prob-
ability that a training example p(x) is classified as positive
(that is, labeled), according to the optimal separating
hyperplane of the nontraditional classifier.
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As for the denominator, we assume that all labeled
positive examples are taken completely randomly from
all positive examples. Formally:

P(l(x) = 1|f (x) = 1)) = P(l(·) = 1|f (·) = 1)) (3)

In other words, P(l (x) = 1| f (x) = 1)) is independent
of the specific interaction x. This assumption is essential
for the purpose of learning from only positive examples
and is coherent with the “selected completely at ran-
dom” assumption in [21,38]. In this particular domain,
this assumption could appear too much strong, since
mRNA:miRNA pairs are generally not chosen randomly
for biological validation. However, this happens in many
other application domains, where examples are chosen
on the basis of the trainer/expert’s background knowl-
edge. Moreover, it is noteworthy that this assumption is
similar to that which is typically made for the classical
classification task, where we assume that the underlying
distribution of (labeled) positive and (labeled) negative
examples in the training set is similar to that of the
examples to be classified. This analogous assumption is
typically considered also in the application of classifiers
for prediction tasks in the biological domain (e.g. pro-
tein function prediction).
Assumption (3) allows us to use g(p(x)) also in the com-

putation of P(l (x) = 1|f (x) = 1)). In particular, since a
possible estimator of P

(
l (·) = 1|f (·) = 1

)
) is the average

value of g(p(x)) for all labeled positive examples, we have:

P(l(x) = 1|f (x) = 1)) = P(l(·) = 1|f (·) = 1)) ≈ 1
|L|

∑
x∈L

g(p(x)) (4)

Differently from [21], in our case, we have to deal with
the problem of unbalanced class distributions when
learning the nontraditional classifier to obtain g(p(x)).
Indeed, since the ratio between labeled and unlabeled
examples is about 1/2000 (see Section “Results and
Discussion”), LIBSVM would always learn a classifier
which predicts all the interactions as unlabeled, inde-
pendently of the considered interaction. In order to
solve this problem, we resort to a sampling solution
which is illustrated in the following.

Ensemble learning g(·)
The sampling procedure considered in this work is similar
to that used in bootstrap estimation of the value of an eva-
luation measure (e.g., predictive accuracy of a classifier)
[39], as well as in some ensemble data mining methods,
such as bagging [40], which combine multiple models to
achieve better prediction accuracy than any of the indivi-
dual models.
More precisely, LIBSVM is run K times. At each

execution, it is applied to the set of examples

L ∪ Uj (j = 1, 2, . . . ,K
)
, that is, to all the labeled

examples L and to a subset Uj of the unlabeled set U
(Figure 1). In this way, we learn K nontraditional classifiers
gj(p(x)), j = 1, ..., K that are combined to obtain g(p(x)).
The K subsets of unlabeled examples are built by ran-

domly sampling, with replacement, n examples from U.
The proportion of unlabeled examples in each Uj is n

|U|.
It is noteworthy that the K samples Uj are neither

mutually exclusive nor exhaustive, i.e., they do not parti-
tion the original data set, so, for instance, even K = 10
samples with n = 0.1·|U| do not generally cover the entire
set of unlabeled examples U. The probability that a parti-
cular unlabeled example is in ∪j Uj is the following:

γ = 1 −
(
1 − 1

|U|
)n·K

(5)

When K = |U|/n, the above probability approximates 1 -
e-1 for large |U|, where e is Euler’s number (≈ 2.7183).
Since e-1 ≈ 0.368, this means that the expected number of
unlabeled examples in ∪jU

j is 63.2% of those in U.
Since we are interested in covering a given proportion

g of negative examples (e.g. 90%), we rewrite (5) in
terms of the expected number of samples necessary to
cover at least g unlabeled examples:

K =
1
n

· log(1 − γ )

log(1 − 1
|U| )

(6)

Differently from data partitioning, which is affected
by only one parameter K (the number of partitions),
the data sampling procedure used in this work is con-
trolled by two parameters: n and g. The first parameter
represents the number of unlabeled examples in each
sample and can be reasonably chosen on the basis of
the number of labeled examples, so that the unbalan-
cing problem is mitigated. The second parameter
represents the percentage of unlabeled examples we
intend to cover.

Figure 1 Ensemble learning approach. A graphical representation
of the adopted ensemble learning approach. Each Uj contains a
subset of the unlabeled examples.
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Once the K classifiers are learned, each classifier gj(p(x))
is applied to obtain an estimate of P(l(x) = 1) for all the
examples in Uj. Since the same unlabeled example can
belong to more than one sample, the following equation is
used:

g(p(x)) = average
{j|x∈Uj}

gj(p(x)) (7)

Ensemble learning f ′ (·)
In order to identify the function f ′ (p (x)

)
, a straightfor-

ward solution would be to directly apply Equation (2).
However, as empirically proved in [21], a more effective
solution consists in the computation of a weight for
each example and in training a further (traditional)
classifier.
Specifically, we compute the probability that an unla-

beled example x represents a positive example as:

P(f (x) = 1|l(x) = 0) =
P(l(x) = 0, f (x) = 1)P(f (x) = 1)

P(l(x) = 0)

=
[1 − P(l(x) = 1|f (x) = 1)]P(f (x) = 1)

1 − P(l(x) = 1)

=
[1 − P(l(x) = 1|f (x) = 1)] · P(l(x)=1)

P(l(x)=1|f (x)=1)
1 − P(l(x) = 1)

(8)

which, according to Equation (4), can be approximated
to:

P(f (x) = 1|l(x) = 0) ≈ 1 − c

c
· P(l(x) = 1)
1 − P(l(x) = 1)

(9)

where c =
1
|L|

∑
x∈L g(p(x))and P(l(x) = 1) is approxi-

mated to g(p(x)).
The training set for the traditional classifier which is

in charge of learning f’(p(x)) is then built as follows:

training label(x) =

⎧⎪⎨
⎪⎩
+ if x ∈ L

+ if x ∈ U ∧ P(f (x) = 1|l(x) = 0) ≥ P(f (x) = 0|l(x) = 0)

− otherwise
(10)

weight(x) =

⎧⎪⎨
⎪⎩
1.0 if x ∈ L

P(f (x) = 1|l(x) = 0) if x ∈ U ∧ P(f (x) = 1|l(x) = 0) ≥ P(f (x) = 0|l(x) = 0)

1 − P(f (x) = 1|l(x) = 0) otherwise
(11)

f ′ (p (x)
)
is learned by applying a variant of LIBSVM

(www.csie.ntu.edu.tw/~cjlin/libsvmtools/#weights_for_-
data_instances) which allows us to specify a weight for
each example. In general, in this algorithm, the weight
assigned to an example represents the cost of misclassi-
fying it, which is then exploited in the SVM optimiza-
tion process. In our case, the strategy adopted to
compute the weight exploits the probability (Equation
(11)) that the assigned label (Equation (10)) is correct.
In this way, intuitively, the misclassification cost for a
given example will be proportional to the confidence we
have in the assigned label.

The strategy we adopt for learning the traditional clas-
sifier differs from that adopted in [21], which, as pre-
viously stated, represents each unlabeled example as both
a positive example with weight P(f (x) = 1|l (x) = 0) and a
negative example with weight 1 − P

(
f (x) = 1|l (x) = 0

)
.

This generates redundancy in the representation and
possibly prevents the algorithm from learning a good
separating hyperplane.
Similarly to the nontraditional classifier, also in this

case, we solve the class unbalancing problem (in this
case, unbalancing is between positive examples and
negative examples, instead of labeled and unlabeled
examples), by resorting to the same bagging procedure
described in the previous section. The procedure in this
case is still necessary since the number of true miRNA:
mRNA interactions (positive examples) is significantly
smaller than the number of remaining possible miRNA:
mRNA pairs (negative examples).
A final remark is made to explain how our algorithm

faces the collinearity problem [18]. Collinearity is the
problem according to which if some features are (nearly)
linearly dependent on the others, a predictive model may
not be well estimated. In our case, it is possible that used
prediction algorithms consider highly overlapping char-
acteristics and, although we work on their outputs and
not directly on the characteristics, the collinearity pro-
blem may still be present. In this respect, an important
advantage introduced by our algorithm is that it automa-
tically adapts to highly redundant characteristics and
does not require a preliminary feature selection step.
This important property is achieved through the use of
an SVM-based solution, which, as in other scientific
fields, has proved to be robust to noise and to highly
redundant features [37].

Results and discussion
In this section, we present the considered datasets, define
the experimental setting, introduce evaluation measures
and present a discussion about obtained results.

Datasets
In order to evaluate our approach, we have considered as
data sources a set of experimentally verified miRNA:
mRNA interactions, i.e. miRTarBase [41], as well as the set
of miRNA target predictions in mirDIP [15]. Interactions
from miRTarBase have been used as positive/labeled
examples and interactions from mirDIP, but not present
in miRTarBase, have been considered as unlabeled exam-
ples. In the learning phase, examples are represented
according to the standardized scores returned by the algo-
rithms that mirDIP integrates (standardization is per-
formed by mirDIP; although standardization makes scores
comparable for the human expert, our algorithm does not
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strictly require it). Furthermore, we have used TarBase
[33] as a testing set because it contains both positive and
negative experimentally verified miRNA:mRNA interac-
tions. It is noteworthy that TarBase can also be used in
the training phase. However, in this work we have decided
to use it in the testing phase, in order to provide good esti-
mates of the algorithm performance on a valid indepen-
dent test set.
The miRTarBase ver. 3.5 dataset (http://mirtarbase.mbc.

nctu.edu.tw/) contains 4,867 experimentally verified
miRNA-target interactions between 729 miRNAs and
2,789 target genes among 17 species. miRNA-target inter-
actions are collected by manually surveying pertinent lit-
erature after applying text mining techniques to filter
research articles related to functional studies of miRNAs.
Generally, the collected interactions are validated experi-
mentally by reporter assay, western blot, or microarray
experiments with overexpression or knockdown of miR-
NAs. In our study, we only consider the human dataset.
The mirDIP dataset (http://ophid.utoronto.ca/mirDIP/)

is an integrated database which includes miRNA target
predictions of twelve different datasets. In this study, we
consider only the predictions which refer to the 3’ UTR
region, i.e. those returned by DIANA-microT [11], micro-
Cosm [42], miRanda [9], picTar 4-way and picTar 5-way
[12], PITA All Targets and PITA Top Targets [43], Tar-
getScan Conserved and TargetScan Non-Conserved [10]
and RNA22 3’ UTR [44]. As anticipated in the previous
section, the high redundancy among the features consid-
ered by these datasets motivates the SVM-based solution.
The mirDIP dataset used in our experiments contains
approximately 5 million predicted interactions between
934 miRNAs and 30,875 mRNAs. The number of predic-
tions returned by each algorithm is reported in Table 1.
TarBase 6.0 (http://www.microrna.gr/tarbase) is the

largest available manually curated target database, index-
ing more than 65,000 miRNA-gene interactions. The
database includes targets derived from gene-specific and
high throughput experiments.

Experimental setting
The main goal of the experiments is twofold: a) To evalu-
ate the accuracy of the predictions provided by our algo-
rithm by taking as input unlabeled (a large set of predicted
miRNA:mRNA interactions) and positive examples. b) To
evaluate whether our algorithm can improve the identifi-
cation of meaningful regulatory networks. Indeed, as
shown in [7], working with a large set of interactions does
not always lead to the improvement of the quality of the
obtained results. On the contrary, especially when the
input data are affected by a huge amount of false positives
and false negatives, the significance of the obtained regula-
tory networks may be compromised. The complete work-
flow of the experiments is reported in Figure 2.

As for a), we have used TarBase [33] as a test set,
which, although limited in the number of included inter-
actions, contains both positive and negative examples. In
order to guarantee a fair comparison, we have removed
from TarBase all the examples that are also reported in
miRTarBase, since they could give an advantage to our
approach because used in the learning phase. We also
removed inconsistent examples, that is, interactions
labeled as both positive and negative. At the end, the
considered test set contains 29,091 positive examples and
3,910 negative examples of interactions.
In this study, we compare our approach with several

alternative solutions:

• Single prediction algorithms (DIANA-microT, micro-
Cosm, miRanda, picTar 4-way, picTar 5-way, PITA All
Targets, PITA Top Targets, TargetScan Conserved,
TargetScan Non-Conserved, RNA22 3’ UTR).
• Score averaging (SA): a simple algorithm that equally
weights the contribution of each single prediction
algorithm.
• Score averaging - three best (SA-3B): an algorithm
that equally weights the contribution of the best
three prediction algorithms (TargetScan Conserved,
PITA Top Hits and picTar 5-way), according to [15].
• Weighted score averaging - three best (WSA-3B): an
algorithm that weights the contribution of the best
three prediction algorithms (TargetScan Conserved,
PITA Top Hits and picTar 5-way). Weights are pro-
portional to the reliability (computed on the basis of
the F-Score) of each algorithm, according to [15].

The last two solutions have been proposed in [7]. It is
noteworthy that these combination strategies can be
considered a finer variant of the majority vote [16] and
counting [15] strategies, since the scores of the predic-
tions are taken into account.
As regards b), in order to identify regulatory networks,

we used the system HOCCLUS2 [7], which is based on

Table 1 Number of predictions returned by each
considered algorithm in mirDIP.

Algorithm N. Predictions

DIANA-microT 1,434,409

microCosm 568,103

miRanda 956,667

picTar 4-way 56,232

picTar 5-way 17,226

PITA All Targets 4,010,550

PITA Top Targets 208,940

TargetScan Conserved 189,078

TargetScan Non-Conserved 1,457,487

RNA22 264,633

Pio et al. BMC Bioinformatics 2014, 15(Suppl 1):S4
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a biclustering algorithm that has been proved to be a valid
tool for supporting biologists in this task. In particular,
HOCCLUS2 is able to extract cohesiveness-preserving
biclusters, when compared with competitive approaches,
containing mRNAs which are statistically more function-
ally similar than mRNAs which belong to different biclus-
ters. HOCCLUS2 requires two parameters: a, which is the
minimum cohesiveness value (see next section for details
about the cohesiveness) a bicluster must satisfy after mer-
ging, and b, which is the minimum score that must be
associated to an interaction to be considered as reliable.
Experiments have been conducted with different values of
a and b. This is necessary in order to understand if, with
the proposed approach, the quality of discovered interac-
tion networks depends on their values.
Coherently with the experimental setting a), HOC-

CLUS2 has been applied to different data sets of predicted
interactions, obtained by applying our approach and three
other combination strategies, that is, SA, SA-3B, WSA-3B.

Evaluation measures
In order to evaluate the accuracy of the predictive mod-
els learned by the proposed algorithm we consider the
Area Under the ROC Curve (AUC) [45].
In order to evaluate the quality of extracted biclusters,

we use the average biclustering cohesiveness and a
statistical measures based on the Student’s t-test.
The average biclustering cohesiveness measures the
average strength of the intra-bicluster connections:

μq(Lj,A) = 1∑
Ci∈Lj |Ci|

∑
Ci∈Lj

|Ci|q(Ci,A), where Lj is the

set of biclusters obtained at the j-th hierarchy level, Ci is
a bicluster, |Ci| is the number of miRNAs and mRNAs in

Ci and q is defined as q(C,A) =
∑

x∈C (miRNA)
∑

y∈C (mRNA) Ax,y

|C(miRNA)|·|C(mRNA)| .

In the definition of q(C, A), C(miRNA) is the set of miRNAs
in the biscluster C, C(mRNA) is the set of mRNAs in C and
Ax,y is the score of the interaction (in mirDIP) between
the miRNA x and the mRNA y. This function measures
the weighted (i.e. by considering the score of the interac-
tions) percentage of interactions in a bicluster, normal-
ized by the maximum number of possible interactions.
In addition to μq(), we also use an evaluation mea-

sure which is based on the statistical properties of the
obtained biclusters. In particular, we use the inde-
pendent two-sample Student’s t-test to evaluate the
null hypothesis H0 : μ′

0(Lj) = μ′(Lj) against the
alternative hypothesis H1 : μ′

0(Lj) = μ′(Lj), where μ′
0(Lj)

is the average intra-bicluster functional similarity

μ′
0(Lj) =

1
|Lj|

∑
C∈Lj

μ0(C),μ′(Lj) is the average inter-

bicluster functional similarity defined as

μ′(Lj) =
1

|Lj| · (|Lj| − 1)

∑
C1∈Lj,C2∈Lj,C1 �=C2

(∑
x1∈(C(mRNA)

1 \C(mRNA)
2 ),x2∈(C(mRNA)

2 \C(mRNA)
1 ) SimGIC(x1, x2)

|C(mRNA)
1 \C(mRNA)

2 )| · |C(mRNA)
2 \C(mRNA)

1 |

)
(12)

and

μ0(C) =
1

|Cr| · (|Cr| − 1)

∑
x1∈Cr ,∈x2∈Cr ,x1 �=x2

SimGIC(x1, x2) (13)

In (12) and (13) SimGIC [46] is a semantic similarity
measure computed between two genes, according to the
UniProt Homo sapiens GO annotations.
The lower the p-value (obtained by the two-sample

Student’s t-test), the higher the difference between the
average intra-functional similarity and the average inter-
functional similarity. We use both GO Biological Process
(BP) and GO Molecular Function (MF) hierarchies to
compute SimGIC. Henceforth we will refer to the p-values
computed on BP and MF as pBP and pM F, respectively.

Figure 2 Two experimental settings. After the model f ′() is learned, it is used for comparison with other strategies and for the identification
of regulatory networks through the use of HOCCLUS2.

Pio et al. BMC Bioinformatics 2014, 15(Suppl 1):S4
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Results
In Table 2 we report AUC results obtained by our
approach with different values of the sampling para-
meters n and g. As expected, the higher the value of g
the better the performance of the algorithm, since a lar-
ger amount of unlabeled examples is considered. On the
other hand, setting g to a value which is close to 1 leads
to an infinite number of samples (according to Equation

(6), lim
γ→1−

1
n

· log(1 − γ )

log(1 − 1
|U| )

= +∞). This means that g has

to be set by keeping in mind a good balance between
effectiveness and efficiency.
Moreover, changing the number of unlabeled exam-

ples in each sample n does not lead to a significant dif-
ference in the results, although results with n = 10,000
outperform those obtained with other values of n. For
the experiments reported in the rest of the paper we
selected the parameters which let us obtain the best
results, i.e. n = 10,000 and g = 0.9.
In Table 3 we report AUC results for all the considered

algorithms/approaches. They clearly show that results
obtained with our approach outperform those obtained
with all the single prediction algorithms. This confirms
previous findings [15] and, in particular, that combined
approaches, in general, are able to outperform single algo-
rithms. The only algorithm which is able to produce
results which are comparable to those obtained by our
approach is PITA All Targets. This result is motivated by
the high number of interactions in this dataset (see Table
1), which make the predictor more informed about
TarBase interactions (test set). However (as we will argue
later), it is not able to generate high-quality biclusters, due
to the large amount of false positives it predicts.
Figure 3 provides additional details on results reported

in Table 3. In fact, as it can be seen, the most conserva-
tive algorithms are those for which the ROC curve pro-
vides good True Positive rate (TPr) values for small False
Positive rate (FPr) values (concentrating on the bottom-
left corner of the chart, see Figure 3(b)). This provides a
way to refine what is suggested in [15]. In particular, one
might suggest using the prediction algorithms as follows:
1) when looking for confirmatory evidence of a particular
interaction, it is better to use a database with superior
recall, such as TargetScan Conserved or TargetScan

Non-Conserved (which have high TPr for low FPr).
Contrary to results reported in [15], in our case, micro-
Cosm does not appear to satisfy these properties (see
Figure 3(b)). 2) When identifying any possible targets for
a particular microRNA to form the basis for in vitro or
in vivo experiments, it would be best to consult a conser-
vative algorithm, that is, an algorithm which returns a
limited number of (possibly reliable) interactions, such as
picTar 5-way (see Table 1). 3) When finding in silico evi-
dence for an interaction of a microRNA and a gene of a
certain family or function, it is best to use an algorithm
with a more even balance between precision and recall
such as PITA All Targets and TargetScan Non-Conserved
(which have high AUC, graphically, the area under the
curve). This last conclusion is different from that drawn in
[15], where the use of PITA Top Targets is suggested. A
possible motivation for differences between our conclu-
sions and those reported in [15] can be the use of a differ-
ent test set (we use TarBase, while in [15] results of 15
publicly available microRNA over-expression/knockdown
experiments are considered) and different evaluation mea-
sures (we use AUC instead of fixed threshold-based preci-
sion and recall).
If we consider combined approaches, we see that, in

general, they are able to reach predictive capabilities (in
terms of AUC) which are comparable to the best predic-
tion algorithms (see Figure 4). They are also able to work
well for low FPr values. If we consider the specific case of
our approach, it is able to outperform of a great margin
all the combined approaches and all the prediction
algorithms.
The results reported in Table 4 refer to the problem of

identifying regulatory networks in the form of biclusters
extracted by HOCCLUS2. In particular, Table 4 reports

Table 2 AUC results obtained by our approach with
different values of the parameters n and $\gamma$.

n g

0.5 0.6 0.7 0.8 0.9

5,000 0.582 0.599 0.614 0.629 0.647

10,000 0.585 0.601 0.616 0.634 0.649

15,000 0.579 0.594 0.601 0.625 0.640

Table 3 AUC TarBase results.

Algorithm/Strategy AUC

DIANA-microT 0.500

microCosm 0.519

miRanda 0.544

picTar 4-way 0.509

picTar 5-way 0.507

PITA All Targets 0.640

PITA Top Targets 0.528

TargetScan Conserved 0.536

TargetScan Non-Conserved 0.563

RNA22 0.509

SA-3B 0.543

SAWA-3B 0.543

SA 0.608

Our Approach 0.649

The upper part of the table contains AUC results of single prediction
algorithms. The lower part reports AUC results obtained by combination
strategies.

Pio et al. BMC Bioinformatics 2014, 15(Suppl 1):S4
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the quantitative results obtained for the first hierarchy
level, the last hierarchy level and the best hierarchy level
(according to pBP and pMF values), using different values
of a and b. Observing the best level, it is possible to see
that the proposed approach always leads to the identifica-
tion of at least one level with very low pBP and pMF values,
independently of the choice of the parameters of HOC-
CLUS2. Moreover, comparing the results with those
obtained with the SA approach (which is the best among
the considered competitors), it is noteworthy that our
approach always lets HOCCLUS2 extract a smaller num-
ber of biclusters, grouping less miRNAs and mRNAs. This
is due to the fact that our approach is able to better filter

out false positives and allows HOCCLUS2 to focus only
on more reliable interactions (lower FPr, for a given TPr).
Different considerations can be drawn from the analysis

of results obtained by HOCCLUS2 on the single predic-
tion algorithm which shows the best AUC value, that is,
PITA All Targets. In fact, results with a = 0.2 and b = 0.5
(best configuration of HOCCLUS2) lead to pMF, pBP and
μq results which are, for the levels of the hierarchy whose
results can profitably used by the expert (≥ 2), not com-
parable to those obtained by combined approaches (see
Table 5). Indeed, the higher the level, the worse the
performance in terms of all the considered evaluation
measures. This is motivated by the high number of false

Figure 3 Performance of single prediction algorithms. (a) ROC curves for single prediction algorithms. (b) A zoom on the bottom left corner.

Figure 4 ROC curves for the algorithms with the best AUC value.

Pio et al. BMC Bioinformatics 2014, 15(Suppl 1):S4
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positives of PITA All Targets which leads to a degenera-
tion of the quality of the extracted interaction networks. It
is noteworthy that this issue appears only during this eva-
luation, since HOCCLUS2 works on the whole set of
interactions of the dataset, whereas the AUC value is com-
puted only on the interactions that are reported in

TarBase. For these reasons, in the following we will focus
only on the results obtained by combined approaches.
In Table 6, we report the distribution of biclusters with

pBP ≤ 0.05 over different levels of the hierarchy. From the
table it is possible to see that, for all levels of the hierarchy,
the only approach that is comparable to ours is SA which,

Table 4 Quality of biclusters obtained by HOCCLUS2.

a b N
(mRNA/miRNA) level 1 max level best level

#cc pMF pBP μq lev #cc pMF pBP μq lev #cc pMF pBP μq

Predictions - SA-3B

0.1 9 56 0.000 0.000 0.12 2 350 0.000 0.000 0.41

0.2 0.3 5698/612 700 1.000 1.000 0.49 7 183 0.000 0.000 0.24 3 210 0.000 0.000 0.31

0.3 5 355 1.000 1.000 0.36 1 700 1.000 1.000 0.49

0.1 8 41 0.411 0.331 0.11 3 155 0.004 0.009 0.32

0.2 0.4 4735/607 619 1.000 1.000 0.52 7 144 0.006 0.001 0.24 7 144 0.006 0.001 0.24

0.3 6 274 1.000 1.000 0.35 1 619 1.000 1.000 0.52

0.1 8 34 0.284 0.273 0.12 4 77 0.345 0.167 0.27

0.2 0.5 3337/572 599 1.000 1.000 0.58 7 101 0.315 0.146 0.23 5 108 0.257 0.112 0.26

0.3 6 202 1.000 0.221 0.34 5 205 1.000 0.206 0.35

Predictions - WSA-3B

0.1 9 57 0.023 0.005 0.11 2 379 0.000 0.000 0.41

0.2 0.3 6209/618 758 1.000 1.000 0.50 7 194 0.016 0.004 0.25 3 221 0.001 0.000 0.31

0.3 6 374 1.000 1.000 0.36 1 758 1.000 1.000 0.50

0.1 7 42 0.434 0.206 0.11 4 58 0.094 0.016 0.21

0.2 0.4 5122/601 667 1.000 1.000 0.54 6 145 0.096 0.004 0.24 5 148 0.053 0.004 0.25

0.3 5 273 1.000 1.000 0.34 1 667 1.000 1.000 0.54

0.1 8 35 0.311 0.346 0.12 3 156 0.151 0.263 0.37

0.2 0.5 3653/570 622 1.000 1.000 0.60 7 105 0.221 1.000 0.24 3 168 0.123 0.298 0.38

0.3 6 205 0.374 1.000 0.36 2 314 0.256 1.000 0.50

Predictions - SA

0.2 0.3 8723/599 294 0.140 0.080 0.43 7 58 0.262 0.253 0.22 1 294 0.140 0.080 0.43

0.3 5 182 0.328 0.176 0.38 1 294 0.140 0.080 0.43

0.2 0.4 7772/620 1608 1.000 1.000 0.50 9 216 0.001 0.006 0.22 3 416 0.008 0.000 0.33

0.3 7 604 0.000 0.000 0.34 2 830 0.000 0.000 0.42

0.2 0.5 4336/627 1038 1.000 1.000 0.58 9 96 0.399 0.364 0.22 4 148 0.286 0.261 0.31

0.3 7 283 1.000 1.000 0.35 2 522 1.000 0.228 0.47

Predictions - Our Approach

0.1 8 40 0.013 0.020 0.11 2 444 0.000 0.000 0.52

0.2 0.3 2379/614 888 1.000 1.000 0.69 7 143 0.000 0.000 0.24 2 444 0.000 0.000 0.52

0.3 6 268 0.002 0.001 0.37 3 309 0.000 0.000 0.42

0.1 8 25 0.175 0.080 0.12 3 148 0.000 0.000 0.39

0.2 0.4 1626/544 591 0.404 1.000 0.77 7 84 0.015 0.001 0.24 3 152 0.000 0.000 0.39

0.3 6 161 0.001 0.377 0.38 2 298 0.000 0.001 0.57

0.1 8 16 0.079 0.053 0.12 3 105 0.000 0.000 0.43

0.2 0.5 1245/467 417 0.361 0.244 0.83 7 53 0.000 0.000 0.24 3 105 0.000 0.000 0.43

0.3 7 104 0.000 0.000 0.39 4 110 0.000 0.000 0.42

N represents the number of biclustered mRNAs and miRNAs. #cc is the number of biclusters. lev represents the level number. The “best” level is the level with

the lowest pMF+pBP
2

value.

Pio et al. BMC Bioinformatics 2014, 15(Suppl 1):S4
http://www.biomedcentral.com/1471-2105/15/S1/S4

Page 11 of 17



however, does not reach the same number of biclusters
with pBP ≤ 0.05. In particular, at lower and higher levels of
the hierarchy, the difference between the results obtained
in SA and our approach increases. Moreover, it is note-
worthy that there is no degeneration (possibly due to the
presence of false positives and false negatives) introduced
in the merging phase of HOCCLUS2. This is motivated by
the more reliable predictions provided by our algorithm
with respect to other approaches.

Evaluation of biological consistency of extracted
biclusters
In this subsection we report some examples of extracted
biclusters and discuss the results of their biological analy-
sis. Biclusters have been selected according to the stati-
stical ranking returned by HOCCLUS2. Biological
consistency of biclusters has been evaluated by consider-
ing: i) structural and functional properties of miRNAs;
ii) functional clustering and pathway mapping of target
genes; iii) information available from the literature
supporting the functional miRNA:mRNA relationships
suggested by the biclustering results. A series of web
resources, such as miRBase [42] and GeneCards [47],
have been used to retrieve information on gene families,
gene clusters and gene functions. Set Distiller [48], from
the GeneCards tool suite, and Reactome [49] have been
used for functional clustering and pathway mapping of
miRNA target genes, respectively. Other resources, such

as STRING [50], have been used for network-based
enrichment analysis of target genes, on the basis of
known and predicted protein interactions and functional
relationships.
Quantitative comparison of HOCCLUS2 results on the
miR-17-92 gene cluster family: new approach vs SA-3B
In our previous work [7], HOCCLUS2 was tested by using
two benchmarks, experimentally validated miRNA:mRNA
interactions, i.e., miRTarBase [51], and miRNA target site
predictions from mirDIP [15].
In order to prove the effectiveness of the new approach

on mirDIP data, we focus on biclusters containing mem-
bers of the miR-17-92 gene cluster family and its paralogs,
miR-106b-25 and miR-106a-363. They have been chosen
because of the wealth of information available from the
current literature, which can be exploited to verify whether
the obtained biclusters suggest biologically realistic
miRNA:mRNA regulatory networks. Furthermore, differ-
ent types of experimental evidence suggest that miRNAs
belonging to miR-17-92 may perform specific functions,
either individually or in combination, in a coordinated
rather than in an additive manner [52]. Due to this pecu-
liar feature, the miR-17-92 gene cluster family is, among
all the possible candidates, the best for proving the ability
of HOCCLUS2 to discover miRNA context-specific regu-
latory modules at different granularity levels, according to
the hierarchy of biclusters.
Looking at Tables 3 and 4, it would seem to be natural

to compare our results with those of SA, since it shows
a good AUC value as well as good pBP and pMF values.
However, a preliminary qualitative analysis of the
extracted biclusters revealed that significant biclusters (in
terms of pBP and pMF) appear mainly at high levels in the
hierarchy. Analyzing such biclusters with Reactome and
STRING, we notice that they do not show the expected
biological consistency. Furthermore, they group too many
miRNAs (also belonging to different families) in the same
bicluster. Although in principle this is a coherent behavior,
such situation does not allow the researchers to distin-
guish between specific and general interactions at different
granularity levels, which is the main goal of the task of dis-
covering interaction networks organized in a hierarchy.
This behavior is mainly due to the fact that SA averages
the scores of all the algorithms, including also unreliable
predictions. The consequence is that this algorithm tends
to “flatten” the score of all the interactions and, conse-
quently, to affect the possibility that HOCCLUS2 focuses
only on reliable interactions. For these reasons, we com-
pare our results with those obtained with the SA-3B
setting that, although generally showing worse results in
terms of AUC, pBP and pMF, allowed us (also in the experi-
ments conducted in our previous work [7]) to perform an
analysis starting from the lowest (most specific) levels of
the hierarchy.

Table 5 Quality of biclusters obtained by HOCCLUS2 on
PITA All Targets

level pMF pBP μq

1 0.149 0.155 0.563

2 0.284 0.268 0.469

3 0.384 0.337 0.384

4 0.421 0.373 0.298

Table 6 Distribution of biclusters with pBP ≤ 0.05 over
different levels of the hierarchy.

% of biclusters with pBP ≤ 0.05

Hierarchy
Level

SA-3B WSA-3B SA Our Approach

L1 0.0 0.0 26.5 32.6

L2 34.0 33.0 34.5 36.4

L3 34.0 33.9 35.1 40.0

L4 37.6 33.3 37.2 37.1

L5 38.9 32.1 40.2 41.4

L6 38.2 30.8 40.4 42.6

L7 38.6 30.5 40.8 43.4

L8 - - 40.2 -

L9 - - 40.6 -

Results are obtained with a = 0.2, b = 0.5.
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Hereafter, the whole set of biclusters obtained on the
basis of SA-3B setting and with the new approach will be
referred to as mirDIP-A and mirDIP-B, respectively. Com-
parison takes into account the number of biclusters, their
biological statistical significance (pBP value) and cohesive-
ness values (μq). In particular, we focus on biclusters
extracted by HOCCLUS2 with a = 0.2 and b = 0.5.
As shown in Table 7, the results obtained in the two

experiments are significantly different. In particular, they
show a considerable improvement of the system perfor-
mance with the new approach with respect to the SA-3B
setting. Indeed, among mirDIP-A biclusters, the total
number of biclusters containing miR-17 is 13 and, among
them, only one (about 8% of the total) has pBP ≤ 0.05 (i.e.,
bicluster 511-512 for which pBP = 9.85 E - 5). In mirDIP-
B, the total number of biclusters including miR-17 is 26
and, among them, 16 (more than 60%) have a significant
pBP value. This result is even more surprising if we con-
sider the total number of biclusters obtained by the two
experiments at all levels of the hierarchy. Indeed, despite
the doubling of biclusters containing miR-17, from mir-
DIP-A to mirDIP-B, the total number of mirDIP-B biclus-
ters is smaller (996) than that of mirDIP-A biclusters
(1192), with a size decrease in mirDIP-B of about 27%.
This is due to better precision and recall capabilities pro-
vided by the new algorithm, which lead to an improve-
ment of HOCCLUS2’s sensitivity in detecting, among all
those possible, the miRNA:mRNA biclusters which are
more functionally related.
From an overall evaluation of cohesiveness values, we

can see that they are generally higher in mirDIP-B
biclusters. This result, combined with lower pBP and
pMF values, indicates a higher biological consistency of
biclusters extracted by HOCCLUS2 when exploiting
interactions identified by the new algorithm.
Finally, the smaller dimension of biclusters in mirDIP-

B and the balanced distribution of significant biclusters
among the different levels of the HOCCLUS2 hierarchy
allow us to interpret better the results. In particular, this
provides the necessary information to detect alternative
co-targeting of miRNAs on different and potentially co-
regulated groups of target genes.
Biological evaluation of miR-17-92 biclusters in mirDIP-A
and mirDIP-B
In the previous experiments (reported in [7]), we identi-
fied a series of highly-ranked biclusters extracted from
miRTarBase, containing the members of the miR-17-92
gene cluster family (see Table 8 in [7]). We also exten-
sively discussed miRNA functions and multiple associa-
tions that might be consistent with functions and
mechanisms of miR-17-92 reported in the literature. We
were also able to demonstrate how the functional asso-
ciations suggested by the analysis of HOCCLUS2 pro-
vide new clues on potential cooperative interactions of

some members of miR-17-92 with other miRNAs that
could be, in turn, the determining factors for a context-
specific activity of miR-17-92.
In spite of a good result obtained from miRTarBase, the

biological evaluation of miR-17-92 biclusters extracted
from mirDIP with the SA-3B setting was quite disappoint-
ing. Indeed, as shown in Table 7, mirDIP-A contains only
one bicluster including miR-17 with pBP ≤ 0.05. This
bicluster (i.e., 511-512) groups six different members of
the miR-17-92 gene cluster family (i.e., miR-17, miR-93,
miR-20a and b, and miR-106a and b) that potentially
co-target 116 different genes. Although the analysis of this
bicluster with Reactome (see Additional File 1) does not
provide a mapping for 68 out of the 116 genes, their over-
representation analysis proves to be consistent with many
of the known functions of miR-17-92 [52]. However,
although significantly better than results obtained in the

Table 7 Biclucters containing members of the miR-17-92
gene cluster family in mirDIP-A and mirDIP-B.

Level ID miRNAs mRNAs q pBP pMF

mirDIP-A biclusters containing members of miR-17-92

L1 412 3 4 0.541 1.0 0.0

455 8 7 0.608 1.0 1.03E-10

503 3 57 0.581 1.0 1.0

511 3 58 0.603 0.40 1.0

514 5 58 0.619 1.0 0.040

L2 412-514 6 65 0.617 1.0 0.25

455-503 8 62 0.521 1.0 1.0

511-512 6 116 0.598 9.85E-5 5.14E-7

L3 208-381-455-503 12 67 0.376 1.0 1.0

412-514-511-512 6 178 0.603 0.091 5.80E-4

mirDIP-B biclusters containing members of miR-17-92

L1 181 3 2 0.837 1.0 1.0

189 3 17 0.865 0.01 1.0

197 3 2 0.852 1.0 1.0

294 3 2 0.79 1.0 1.0

379 3 4 1.0 0.0 0.0

400 3 6 0.889 0.23E-3 1.0

405 3 7 0.911 1.0 1.0

409 3 9 0.891 0.0 0.0

413 3 9 0.767 0.0 1.0

415 3 13 0.936 0.0 7.71E-31

L2 181-294 4 4 0.706 1.0 1.0

189-400 4 19 0.779 0.10E-3 1.0

197-413 4 11 0.6 0.06 1.0

379-405 4 11 0.725 0.0 1.0

409-415 4 22 0.809 0.0 0.0

L3 54-290-197-413 7 23 0.356 1.0 1.0

160-275-409-415 5 34 0.691 8.90E-31 3.46E-30

181-294-189-400 5 22 0.673 7.94E-4 1.0

348-356-379-405 6 17 0.597 4.06E-12 1.0
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preliminary analysis of SA, they still return a picture that is
too general, because of the high number of target genes
included in the bicluster. On the other hand, the unavail-
ability of enough biclusters with a statistical functional
significance at different levels of the hierarchy affects the
possibility of detecting alternative contributions of each
member of the family on specific events or pathways i) in
different combinations with other members of miR-17-92
in the same bicluster and ii) with other members not
included in the bicluster.
The analysis of miR-17-92 biclusters in mirDIP-B shows

how the new approach helps to overcome these limita-
tions. Indeed, as reported in the previous subsection, the
approach presented in this paper has allowed HOCCLUS2
to identify many biclusters with a significant pBP value.
The functional analysis of these biclusters demonstrates
that they group together functionally related miRNAs and
target genes. A significant example, among many that
could be reported, is represented by bicluster 379, that is
one of the top-ranked biclusters at level 1 of the hierarchy
(see Table 7). This bicluster shows a significant enrich-
ment in the TGF-b/BMP pathway, which regulates
embryonic and adult cell proliferation and differentiation,
and that is a well-known target of miR-17-92. Bicluster
379 groups together TGFBR2, BMPR2, SMAD and PTEN
as targets of miR-17, miR-19 and miR-20a, which are
members of the miR-17-92 gene cluster. BMPR2 and
TGFBR2 are key factors for the activation of TGF-b/BMP
receptor complexes and for the transduction of the signal
from the cell surface to the cytosol. SMAD4 is essential
for the transduction of the signal to the nucleus and the
transcriptional activation of a series of effectors. PTEN is
another key component of the TGF-b signaling cascade
and, like other genes in this bicluster, it is a validated tar-
get of miR-17-92 [53]. This bicluster is particularly inter-
esting because it mimes bicluster 66, obtained in our
experiment on miRTarBase data, as reported in [7]. This
result is a good indicator of the higher functional cohesive-
ness that is obtained by the use of the new algorithm on
miRNA target site predictions.
Moreover, at level 2 of the hierarchy, bicluster 379 is

merged with bicluster 405, which groups together miR-
17 and miR-20a (belonging to the miR-17-92 gene
cluster), with miR-20b (belonging to the miR-160a-363
gene cluster). As shown in Table 7, the pBP value of
bilcuster 405 is not significant. Indeed, its target
genes (i.e., BCL2, CRTC3, MUC17, VEGFA, WDFY2,
C6ORF151, KIAA1462) do not show any evident func-
tional relationship. However, they appear functionally
related after merging them with genes of bicluster 379.
Indeed, analyzing bicluster 379-405 with STRING, we
have found that BCL2, CRTC3, VGFA and WDFY2 are
included in the interaction network of all the genes in
bicluster 379 (see Additional File 2). This result shows

a potential cooperation of miR-106a-363 with miR-17-
92 in mediating specific events, functionally related to
the general control of miR-17-92 on the TGF-b signal-
ing pathway, that could be context- or tissue-specific. A
further confirmation of this observation comes from the
analysis of genes excluded by the interaction network in
the STRING analysis, i.e. MUC17, C6ORF151 and
KIAA1462. In particular, MUC17 is a membrane mucin
that probably plays a role in maintaining homeostasis
on mucosal surfaces and that is mainly expressed in the
digestive tract. It may conduct signals in response to
external stimuli that lead to cellular responses, including
proliferation, differentiation, apoptosis or secretion of
cellular products, such as other membrane-bound
mucin members [54]. According to [54], this gene is a
validated target of miR-17, miR-20a, miR-20b. As for
C6ORF151 and KIAA1462, the only information that
can be retrieved is that C6ORF151 is a nuclear ribonu-
cleoprotein and that KIAA1462 is a junctional protein
associated with coronary artery disease. Although these
two last genes do not appear to be directly related to
the others in the bicluster, we cannot exclude that their
potential functional relationships are not detected
because of the still poor availability of functional data or
of missing annotations in the main web resources.
Indeed, as demonstrated for MUC17, neither Reactome
nor STRING analysis have been able to detect its func-
tional relationship with other genes in bicluster 319-405.
Finally, it is important to underline that MUC17 was
not associated with miR-17-92 in the previous analysis
[7] of miRTarBase.
Another interesting example that we can provide is

represented by bicluster 415. It is another top-ranked
bicluster at level 1 of the hierarchy which, similarly to
bicluster 379, mimes a bicluster obtained by the pre-
vious analysis [7] on miRTarBase, i.e. bicluster 72.
Bicluster 415 is highly enriched in genes specifically
involved in the cell cycle. Namely, it includes six
(i.e., E2F3, RB1, RBL2, CCND2, WEE1, CCND1) out of
13 genes in the mitotic G1-G1/S phases as specific tar-
gets of miR-17, miR-20a and miR-106b. In addition,
bicluster 415 includes three genes that Reactome does
not annotate, that are BECN1, C20ORF82 (i.e., p300 or
KAT3B) and FAIM2. Similarly to bicluster 379-405, the
over-representation analysis of Reactome significantly
maps only the genes involved in the cell cycle (Additional
File 3), whereas STRING is able to find functional rela-
tionships among 10 out of the 13 genes included in the
bicluster (see Additional File 4).
Many other significant examples could be reported, but

the discussion of all the biological implications that they
highlight would require too much space in the context of
the present paper. Just as a last example, other interesting
observations arise in the analysis of miR-17-92 biclusters
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at higher levels of the hierarchy in mirDIP-B. Indeed, the
functional analysis of biclusters at levels 4, 5 and 6 of the
identified hierarchy, that observed a degeneration in
mirDIP-A, has surprisingly shown in mirDIP-B a good
distribution and a statistical over-representation in path-
ways that are perfectly consistent with miR-17-92 known
biological functions. What is of more interest is that
these biclusters group together miR-17-92 gene cluster
members with those belonging to another important
miRNA gene cluster, i.e. miR-520. This finding is func-
tionally related to the role of miR-17-92 in the cell cycle,
development and differentiation. Indeed, the functional
inter-relationship between miR-17-92 and miR-520 has
been experimentally demonstrated in a study for investi-
gating the molecular mechanisms responsible for the
simultaneous maintenance of human embryonic stem
(hES) cells, their self-renewal properties and undifferen-
tiated state [55]. The elucidation of the coordinated activ-
ity of miR-17-92 and miR-520 miRNAs, as well as of the
regulatory networks that they are able to establish with
their target genes, can largely contribute to i) the under-
standing of the physiology of hES cells development and
differentiation and to ii) the exploitation of their poten-
tial as best candidate resources for both cell replacement
therapy and development research. The association of
miR-17-92 with miR-520 was not detected either in
mirDIP-A or in biclusters extracted from miRTarBase.
The conclusions that arise from the reported analysis

clearly show the effectiveness of the proposed approach
in improving the performance of HOCCLUS2 on mirDIP
data under many aspects. In particular, it gives HOC-
CLUS2 the ability to extract biologically realistic biclus-
ters, which appear more related at different levels of the
hierarchy and, more importantly, which represent consis-
tent functional interactions not detected on experimental
data. This last aspect demonstrates that, in general, the
use of large-scale prediction data of miRNAs target sites
can reveal functional connections otherwise impossible to
detect from experimental data that are usually context-
specific and, hence, lack a comprehensive view of the
system.

Conclusions
In this work we have investigated the possibility to
improve the reliability of miRNA:miRNA predicted inter-
actions. In particular, we have proposed the application
of a machine learning technique, in order to learn to
combine the outputs of several prediction algorithms.
Since the domain in hand is characterized by the avail-
ability of a small number of labeled examples and a very
large number of unlabeled examples, the proposed
approach relies on a semi-supervised algorithm, which
exploits information conveyed by both positive/labeled

and unlabeled examples. Moreover, the unbalancing
between the number of labeled and unlabeled examples
is tackled by adopting an ensemble learning approach.
The effectiveness of the proposed approach has been

evaluated according to many criteria. First, the predic-
tive performance of the proposed approach on an inde-
pendent set of experimentally validated interactions is
higher than that obtained by single prediction algo-
rithms and by other baseline combination strategies.
Second, HOCCLUS2 has been applied to different data-
sets of predicted interactions, according to different
combination strategies. Results prove that the proposed
approach is able to better filter out false positives and
allows HOCCLUS2 to focus on only reliable interac-
tions. This leads to the identification of more precise
and significant interaction networks. Finally, an in depth
biological analysis of some examples of extracted biclus-
ters has been performed. This analysis shows how the
proposed approach leads to the discovery of a hierarchy
with a balanced distribution of significant biclusters
among different levels, which, in general, improves the
possibility to interpret results from a biological view-
point. Moreover, we focused on biclusters that group
together members of the miR-17-92 gene cluster family.
In this case, we have observed that the functional analy-
sis of biclusters at higher levels of the hierarchy, that
appears highly degenerated with the other combination
strategies, surprisingly shows a good distribution and a
statistical over-representation in pathways that are per-
fectly consistent with the known miR-17-92 biological
functions. Above all, HOCCLUS2 was able to group
together, at high levels of the hierarchy, members of the
miR-17-92 gene cluster with those belonging to the
miR-520 gene cluster. Its relation with mir-17-92 has
been experimentally proved and was not identified
either from experimentally validated interactions or
from predicted interactions originating from other com-
bination strategies.
These results prove that the contribution of the pro-

posed approach is, in general, fundamental in the compu-
tational discovery of reliable miRNA:mRNA interactions.
In particular, it is essential for the extraction of biological
realistic networks of interactions between miRNAs and
their target genes from prediction data. This last aspect
opens up the possibility to expand the application of
HOCCLUS2 on a “genome-scale” dimension for a com-
prehensive reconstruction of all the possible multiple
interactions established by miRNAs to regulate the
expression of gene networks, which are otherwise impos-
sible to identify when only experimentally validated inter-
actions are considered.
For future work, we intend to investigate the possibility

of integrating low-level features in the learning phase,
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with the aim of improving the predictive capabilities of
the proposed approach.
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Project Home Page: www.di.uniba.it/~ceci/micFiles/sys-
tems/semisupervised_HOCCLUS2/index.html
Available resources: The proposed system, all the

datasets and all the obtained results.

Additional material

Additional file 1: Reactome mapping of bicluster 511-512 in mirDIP-
A.

Additional file 2: STRING network of bicluster 379-405 in mirDIP-B.

Additional file 3: Reactome mapping of bicluster 415 in mirDIP-B.

Additional file 4: STRING network of bicluster 415 in mirDIP-B.

List of abbreviations
5’ UTR: 5’ Untranslated Region; AUC: Area Under the ROC Curve; BP:
Biological Process; CDS: Coding Sequence; CLIP-Seq: Cross-Linking
Immunoprecipitation-High-Throughput Sequencing; FPr: False Positive rate;
hES cells: Human Embryonic Stem Cells; MF: Molecular Function; miRNA:
microRNA; mRNA: messenger RNA; PARE: Parallel Analysis of RNA ends; RISC:
RNAi-Induced Silencing Complex; SA: Score Averaging; SA-3B: Score
averaging - Three Best; SVM: Support Vector Machine; TPr: True Positive rate;
WSA-3B: Weighted score averaging - Three Best.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MC and GP contributed to the definition of the method. DD contributed to
the conception of the biological investigation. GP and MC contributed to
the software design. GP and DD took care of the review and selection of
bioinformatic resources. GP implemented the system and ran the
experiments. DD performed the biological analysis and validation of the
results. GP and MC performed the analysis of the results, from the computer
science point of view. MC, GP and DD contributed to the manuscript
drafting. MC, GP, DD and DM contributed to the manuscript finalization. DM
and MC supervised the study. All the authors read and approved the final
manuscript.

Acknowledgements
We would like to acknowledge the support of the European Commission
through the project MAESTRA - Learning from Massive, Incompletely
annotated, and Structured Data (Grant number ICT-2013-612944). This work
was also funded by the project “PON01 02589 - MicroMap” project
“Caratterizzazione su larga scala del profilo metatrascrittomico e
metagenomico di campioni animali in diverse condizioni fisiopatologiche”.
The authors thank Lynn Rudd for reading through the paper.

Declarations
Publication of this article was supported by the project “MBLab: The
Molecular Biodiversity LABoratory Initiative” (MIUR DM 19410).
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 1, 2014: Integrated Bio-Search: Selected Works from the 12th
International Workshop on Network Tools and Applications in Biology
(NETTAB 2012). The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S1.

Authors’ details
1Department of Computer Science, University of Bari “Aldo Moro”, Bari, I-
70125, Italy. 2Institute for Biomedical Technologies, CNR, Bari, I-70126, Italy.

Published: 10 January 2014

References
1. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4

encodes small RNAs with antisense complementarity to lin-14. Cell 1993,
75(5):843-854.

2. Huang Y, Shen X, Zou Q, Wang S, Tang S, Zhang G: Biological functions of
microRNAs: a review. J Physiol Biochem 2011, 67:129-139.

3. Roth C, Rack B, Müller V, Janni W, Pantel K, Schwarzenbach H: Circulating
microRNAs as blood-based markers for patients with primary and
metastatic breast cancer. Breast Cancer Res 2010, 12:1-8.

4. Jacek Krol WF, Inga Loedige: The widespread regulation of microRNA
biogenesis, function and decay. Nature Reviews Genetics 2010,
11(9):597-610.

5. Piriyapongsa J, Bootchai C, Ngamphiw C, Tongsima S: microPIR: An
Integrated Database of MicroRNA Target Sites within Human Promoter
Sequences. PLoS ONE 2012, 7:33888.

6. Zhang SH, Li Q, Liu J, Zhou XJ: A novel computational framework for
simultaneous integration of multiple types of genomic data to identify
microRNA-gene regulatory modules. Bioinformatics [ISMB/ECCB] 2011,
27(13):401-409.

7. Pio G, Ceci M, D’Elia D, Loglisci C, Malerba D: A Novel Biclustering
Algorithm for the Discovery of Meaningful Biological Correlations
between microRNAs and their Target Genes. BMC Bioinformatics 2013,
14(Suppl 7):8.

8. Krüger J, Rehmsmeier M: RNAhybrid: microRNA target prediction easy,
fast and flexible. Nucl Acids Res 2006, 34(Web-Server):451-454.

9. Enright A, John B, Gaul U, Tuschl T, Sander C, Marks D: MicroRNA targets
in Drosophila. Genome Biol 2003, 5:R1.

10. Lewis B, Burge C, Bartel D: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell 2005, 120:15-20.

11. Maragkakis M, Alexiou P, Papadopoulos G, Reczko M, Dalamagas T,
Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis V, Sethupathy P,
Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou A: Accurate
microRNA target prediction correlates with protein repression levels.
BMC Bioinformatics 2009, 10:1-10.

12. Grün D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N: microRNA
Target Predictions across Seven Drosophila Species and Comparison to
Mammalian Targets. PLoS Comput Biol 2005, 1:e13.

13. Ritchie W, Flamant S, Rasko JE: Predicting microRNA targets and
functions: traps for the unwary. Nat Methods 2009, 6(6):397-398.

14. Witkos TM, Koscianska E, Krzyzosiak WJ: Practical Aspects of microRNA
Target Prediction. Curr Mol Med 2011, 11(2):93-109.

15. Shirdel EA, Xie W, Mak TW, Jurisica I: NAViGaTing the Micronome - Using
Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-
Associated MicroRNAs. PLoS ONE 2011, 6(2):e17429.

16. Zhang Y, Verbeek FJ: Comparison and Integration of target prediction
algorithms for microRNA studies. J Integr Bioinform 2010, 7(3):127.

17. Pio G, Ceci M, Loglisci C, Malerba D, D’Elia D: The integration of microRNA
target data by biclustering techniques opens new roads for signaling
networks analysis. EMBnet journal 2012, 18(B):142-144.

18. Draper NR, Smith H: Applied Regression Analysis (Wiley Series in Probability
and Statistics). 3 edition. Wiley-Interscience; 1998.

19. Pio G, Ceci M, Loglisci C, D’Elia D, Malerba D: Hierarchical and Overlapping
Co-Clustering of mRNA: miRNA Interactions. In ECAI, Frontiers in Artificial
Intelligence and Applications. Volume 242. IOS Press; 2012:654-659.

20. Malerba D, Ceci M, Appice A: A relational approach to probabilistic
classification in a transductive setting. Eng Appl Artif Intell 2009,
22:109-116.

21. Elkan C, Noto K: Learning classifiers from only positive and unlabeled
data. Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining KDD ‘08, New York, NY, USA: ACM;
2008, 213-220.

22. Wang C, Ding CHQ, Meraz RF, Holbrook SR: PSoL: a positive sample only
learning algorithm for finding non-coding RNA genes. Bioinformatics
2006, 22(21):2590-2596.

23. Wu F, Weld DS: Autonomously semantifying wikipedia. Proceedings of
the sixteenth ACM conference on Conference on information and knowledge
management CIKM ‘07, New York, NY, USA: ACM; 2007, 41-50.

Pio et al. BMC Bioinformatics 2014, 15(Suppl 1):S4
http://www.biomedcentral.com/1471-2105/15/S1/S4

Page 16 of 17

www.di.uniba.it/~ceci/micFiles/systems/semisupervised_HOCCLUS2/index.html
www.di.uniba.it/~ceci/micFiles/systems/semisupervised_HOCCLUS2/index.html
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S4-S1.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S4-S2.png
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S4-S3.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-15-S1-S4-S4.png
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S1


24. Yu H: Single-Class Classification with Mapping Convergence. Mach Learn
2005, 61(1-3):49-69.

25. Yu H, Han J, Chang KCC: PEBL: Web Page Classification without Negative
Examples. IEEE Trans on Knowl and Data Eng 2004, 16:70-81.

26. Fung GPC, Yu JX, Lu H, Yu PS: Text Classification without Negative
Examples Revisit. IEEE Trans on Knowl and Data Eng 2006, 18:6-20.

27. Lee WS, Liu B: Learning with Positive and Unlabeled Examples Using
Weighted Logistic Regression. Proc of the Twentieth International
Conference on Machine Learning (ICML 2003) AAAI Press; 2003, 448-455.

28. Liu Z, Shi W, Li D, Qin Q: Partially supervised classification: based on
weighted unlabeled samples support vector machine. Proceedings of the
First international conference on Advanced Data Mining and Applications
ADMA’05, Berlin, Heidelberg: Springer-Verlag; 2005, 118-129.

29. Lin S, Ding J: Integration of ranked lists via cross entropy Monte Carlo
with applications to mRNA and microRNA studies. Biometrics 2009,
65:9-18.

30. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH: starBase: a database for
exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq
and Degradome-Seq data. Nucl Acids Res 2011, 39(suppl 1):D202-D209.

31. Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK: Naïve Bayes for
microRNA target predictions-machine learning for microRNA targets.
Bioinformatics 2007, 23(22):2987-2992.

32. Gamazon ER, Im HK, Duan S, Lussier YA, Cox NJ, Dolan ME, Zhang W:
ExprTarget: An Integrative Approach to Predicting Human MicroRNA
Targets. PLoS ONE 2010, 5(10):e13534+.

33. Sethupathy P, Corda B, Hatzigeorgiou AG: TarBase: A comprehensive
database of experimentally supported animal microRNA targets. RNA
(New York, NY) 2006, 12(2):192-197.

34. The International HapMap Consortium: The International HapMap Project.
Nature 2003, 426(6968):789-796.

35. Chang CC, Lin CJ: LIBSVM: A library for support vector machines. ACM
Trans Intell Syst Technol 2011, 2(3):27:1-27:27.

36. Platt JC: Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods. Advances in Large
Margin Classifiers 1999, 61-74.

37. Vapnik VN: Statistical learning theory. 1 edition. Wiley; 1998.
38. Ward G, Hastie T, Barry S, Elith J, Leathwick JR: Presence-only data and the

em algorithm. Biometrics 2009, 65(2):554-563.
39. Efron B, Tibshirani R: An Introduction to the Bootstrap London: Chapman

and Hall; 1994.
40. Breiman L: Bagging Predictors. Mach Learn 1996, 24(2):123-140.
41. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ,

Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD:
miRTarBase: a database curates experimentally validated microRNA-
target interactions. Nucl Acids Res 2011, 39:163-169.

42. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation
and deep-sequencing data. Nucl Acids Res 2011, 39:D152-D157.

43. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site
accessibility in microRNA target recognition. Nat Genet 2007,
39(10):1278-1284.

44. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B,
Rigoutsos I: A Pattern-Based Method for the Identification of MicroRNA
Binding Sites and Their Corresponding Heteroduplexes. Cell 2006,
126(6):1203-1217.

45. Provost F, Fawcett T: Robust Classification for Imprecise Environments.
Mach Learn 2001, 42(3):203-231.

46. Pesquita C, Faria D, Bastos HP, Ferreira AEN, Falc˜ao AO, Couto FM: Metrics
for GO based protein semantic similarity: a systematic evaluation. BMC
Bioinformatics 2008, 9(S-5):4.

47. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N,
Bahir I, Doniger T, Krug H, Sirota-Madi A, Olender T, Golan Y, Stelzer G,
Harel A, Lancet D: GeneCards Version 3: the human gene integrator.
Database (Oxford) 2010, baq020.

48. Stelzer G, Inger A, Olender T, Iny-Stein T, Dalah I, Harel A, Safran M,
Lancet D: GeneDecks paralog hunting and gene-set distillation with
GeneCards annotation. OMICS 2009, 13(6):477-487.

49. Haw R, Hermjakob H, D’Eustachio P, Stein L: Reactome pathway analysis
to enrich biological discovery in proteomics data sets. Proteomics 2011,
11(18):3598-3613.

50. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,
Doerks T, Stark M, Muller J, Bork P, Jensen LJ, Mering Cv: The STRING

database in 2011: functional interaction networks of proteins, globally
integrated and scored. Nucl Acids Res 2010, 39:D561-D568.

51. Hsu CW, Juan HF, Huang HC: Characterization of microRNA-regulated
protein-protein interaction network. Proteomics 2008, 8(10):1975-1979.

52. Olive V, Jiang I, He L: mir-17-92, a cluster of miRNAs in the midst of the
cancer network. Int J Biochem Cell Biol 2010, 42(8):1348-1354.

53. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ,
Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T:
Targeted deletion reveals essential and overlapping functions of the
miR-17 through 92 family of miRNA clusters. Cell 2008, 132(5):875-886.

54. Kitamoto S, Yamada N, Yokoyama S, Houjou I, Higashi M, Goto M, Batra S,
Yonezawa S: DNA methylation and histone H3-K9 modifications
contribute to MUC17 expression. Glycobiology 2011, 21(2):247-256.

55. Ren J, Jin P, Wang E, Marincola F, Stroncek D: MicroRNA and gene
expression patterns in the differentiation of human embryonic stem
cells. J Transl Med 2009, 7:20.

doi:10.1186/1471-2105-15-S1-S4
Cite this article as: Pio et al.: Integrating microRNA target predictions
for the discovery of gene regulatory networks: a semi-supervised
ensemble learning approach. BMC Bioinformatics 2014 15(Suppl 1):S4.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Pio et al. BMC Bioinformatics 2014, 15(Suppl 1):S4
http://www.biomedcentral.com/1471-2105/15/S1/S4

Page 17 of 17


	Abstract
	Background
	Results
	Conclusion

	Background
	Related work
	Learning a classifier from only positive and unlabeled training examples
	Combining the output of miRNA target prediction algorithms


	Methods
	Ensemble learning g(·)
	Ensemble learning f′(·)

	Results and discussion
	Datasets
	Experimental setting
	Evaluation measures
	Results
	Evaluation of biological consistency of extracted biclusters
	Quantitative comparison of HOCCLUS2 results on the miR-17-92 gene cluster family: new approach vs SA-3B
	Biological evaluation of miR-17-92 biclusters in mirDIP-A and mirDIP-B


	Conclusions
	Availability of supporting data
	List of abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

