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Abstract

Background: Flow cytometry (FC)-based computer-aided diagnostics is an emerging technique utilizing modern
multiparametric cytometry systems.The major difficulty in using machine-learning approaches for classification of FC
data arises from limited access to a wide variety of anomalous samples for training. In consequence, any learning with
an abundance of normal cases and a limited set of specific anomalous cases is biased towards the types of anomalies
represented in the training set. Such models do not accurately identify anomalies, whether previously known or
unknown, that may exist in future samples tested. Although one-class classifiers trained using only normal cases
would avoid such a bias, robust sample characterization is critical for a generalizable model. Owing to sample
heterogeneity and instrumental variability, arbitrary characterization of samples usually introduces feature noise that
may lead to poor predictive performance. Herein, we present a non-parametric Bayesian algorithm called ASPIRE
(anomalous sample phenotype identification with random effects) that identifies phenotypic differences across a
batch of samples in the presence of random effects. Our approach involves simultaneous clustering of cellular
measurements in individual samples and matching of discovered clusters across all samples in order to recover global
clusters using probabilistic sampling techniques in a systematic way.

Results: We demonstrate the performance of the proposed method in identifying anomalous samples in two
different FC data sets, one of which represents a set of samples including acute myeloid leukemia (AML) cases, and
the other a generic 5-parameter peripheral-blood immunophenotyping. Results are evaluated in terms of the area
under the receiver operating characteristics curve (AUC). ASPIRE achieved AUCs of 0.99 and 1.0 on the AML and
generic blood immunophenotyping data sets, respectively.

Conclusions: These results demonstrate that anomalous samples can be identified by ASPIRE with almost perfect
accuracy without a priori access to samples of anomalous subtypes in the training set. The ASPIRE approach is unique
in its ability to form generalizations regarding normal and anomalous states given only very weak assumptions
regarding sample characteristics and origin. Thus, ASPIRE could become highly instrumental in providing unique
insights about observed biological phenomena in the absence of full information about the investigated samples.
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Background
Automated analysis of cytometry data
Flow cytometry (FC) is a leading technology for cell anal-
ysis, allowing rapid evaluation of heterogeneous cellular
populations in a single-cell setting, i.e., interrogating sep-
arately every individual cell in a sample. The analysis
process uses fluorescently labeled antibodies to tag cellu-
lar epitopes known from their association with a specific
cell function or state. This methodology in combination
with various probes for cell viability, structure, and func-
tion can provide information-rich data sets describing
the phenotypic effects of various natural physiological
phenomena or the impact of external perturbants on
characteristics of cell populations [1]. FC-based single-
cell analysis is employed in various fields of life sciences
ranging from immunology, hematology, and oncology to
environmental studies and oceanography [2,3].
FC plays a key role in diagnosis of immunological dis-

orders, including HIV, as well as in cancer research [4].
When used in a diagnostic role, cytometry analysis is typ-
ically performed on patient blood or bone-marrow sam-
ples. The subsequent data-processing analysis is usually
done manually, by delineating various cellular popula-
tions using 2-D scatter plots and reporting the presence
or absence of cellular populations and the proportional
composition of the sample [5].
Recently there have been a number of attempts to auto-

mate the tasks of interpreting FC measurements [6-14].
Although the methods published vary in their under-
lining philosophy, the prevailing strategy offered by the
researchers cited is strikingly consistent. The algorithms
propose various custommodifications of state-of-art clus-
tering techniques ranging in complexity from k-means to
mixture modeling.
However, with the exception of the recent report by

Cron et al. [15], the published methodology attempts to
perform clustering one sample at a time, ignoring the
fact that multiple samples can be considered as differ-
ent realizations of a single underlying model reflecting
the biological reality. For samples containing abundant
and well-separated biological populations this limitation
is of no practical consequence. The individual samples
may be clustered, and the biological populations present
in multiple samples can be aligned and matched post-
clustering in order to perform a secondary analysis (such
as longitudinal studies, or comparison of multiple experi-
ments). Multiple efficient methods have been proposed to
accomplish this task [16-18].
This conventional approach will fail if some of the cel-

lular classes are represented by a low number of cells,
if the population locations significantly vary from sam-
ple to sample, or if populations disappear or appear
between samples. Indeed, researchers have offered inge-
nious methods to alleviate some of these problems. For

instance, Azad et al. developed a procedure for matching
corresponding clusters across samples in order to pro-
duce meta-clusters and to construct a high-dimensional
template as a collection of meta-clusters for each class of
samples [17].
Thus, one of the major problems in the characterization

of FC samples is the identification of global, biologically
relevant clusters (meta-clusters) corresponding to distinct
cell types. Existing methods can be adapted to this prob-
lem in two different ways. First, all sample data can be
pooled before an algorithm is used to cluster these data.
Subsequently, the cell proportions in the recovered clus-
ters may be used to characterize individual samples. flow-
Peaks [14], FLOCK [19], flowMeans [20], SWIFT [21], and
DPGMM [22] are among many clustering techniques that
belong in this category. Such an approach will have lim-
ited success with many real-world FC data because in the
presence of random effects, local clusters belonging to a
given global cluster may significantly overlap local clus-
ters of another meta-cluster. As a result, the meta-clusters
recovered this way are unlikely to possess a well-defined
biological meaning.
Alternatively, a technique such as FLAME that performs

joint cell clustering and cluster matching can be used for
sample characterization [9]. FLAME first identifies local
clusters in each individual sample and then matches them
across samples to recover meta-clusters. Although this
approach may indeed perform better compared to the
first set of techniques that operate on pooled data, clus-
ter matching in the presence of random effects will remain
a big challenge. As a result, extraneous clusters may be
generated and global clusters corresponding to distinct
cell types may be split into multiple sub-clusters. These
extraneous clusters appear as feature noise during sample
characterization, affecting the robustness of the system.

Hierarchical clustering models
An alternative model can be envisioned for processing
large collections of FC samples. Instead of considering
every sample as a separate entity, we explicitly model sam-
ples as being specific manifestations of a more general
underlying model. In this hierarchical setting, the indi-
vidual sample is just a noisy realization of a latent, more
general biological population mixture. This reformulation
has more than just a semantic consequence. It allows us
to build a statistical model that takes under consideration
all the available information simultaneously, rather than
building a single independent model for every sample.
Herein, we present a non-parametric Bayesian algo-

rithm called ASPIRE (anomalous sample phenotype iden-
tification with random effects) that identifies biologically
significant phenotypes across a batch of samples in the
presence of random effects. We do not assume a priori
the number of cell types (global clusters or meta-clusters)
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present in the biological samples analyzed, whether they
are normal or anomalous. We assume, however, that
samples share common characteristics, as they represent
snapshots of the same underlying biological phenomenon
(e.g., response of the immune system to an external stim-
ulant). Therefore, we expect that certain cell types would
occur in multiple samples, forming noisy realizations of
global clusters. Our goals are (1) to infer the most likely
organization of cell clusters defining normal samples and
(2) to detect the presence of anomalous samples.
A related, although simpler, approach has been pre-

sented recently by Cron et al. [15]. The authors utilized
a hierarchical version of a Dirichlet-process Gaussian-
mixture model (DPGMM), extending their previous work
[23]. Our proposed approach also belongs to the cate-
gory of non-parametric Bayesian models using Dirichlet
processes. However, in contrast to the method offered by
Cron et al. we explicitly model random effects to allow for
sample-to-sample variability and subject-specific effects.
We provide a complete mathematical framework allow-
ing other researchers to use our methodology, as well as
Matlab and C code demonstrating in practice the imple-
mentation of the technique.

Anomaly detection
The presented results demonstrate that the hierarchical
model with random effects is superior to traditional per-
sample clustering techniques such as FLAME, flowPeaks,
and DPGMM as well as to the hierarchical model pro-
posed by Cron et al. In our report we specifically focus on
the area of anomaly detection, which is rarely addressed
in a systematic manner in the field of cytometry.
An anomaly detection process is extremely difficult to

automate using traditional sample-clustering methods.
However, an automated anomaly-detection system would
provide practical value for computer-aided diagnostics.
The majority of results observed in clinical FC are consid-
ered “normal,” and detecting relatively rare “anomalous”
samples requires the immense experience and practice of
a well-trained FC practitioner (typically an immunologist
or a pathologist).
By dictionary definition an “anomaly” is an oddity or

abnormality, hence a case difficult or impossible to clas-
sify into any predefined category. In the context of clinical
FC data analysis a sample is considered to be anoma-
lous if the phenotypes that it represents do not conform
with those expected in the case of a healthy patient. Thus,
a sample obtained from a sick patient would be labeled
as anomalous. Obviously there could be many possible
abnormalities, resulting in a possibly very large number
of phenotypic manifestations. Moreover, if a FC measure-
ment is perturbed by the presence of artifacts due to
instrument errors or by biological sample-processing or
handling errors, the results would also be recognized as

anomalous. Consequently, anomalous samples can be as
different from each other as they are from normal cases.
Although from the biological perspective anomalous cases
are extremely important and carry significant biologi-
cal information, from the machine-learning perspective
these samples typically offer only very limited informa-
tional value. Because of their rarity it is difficult, and often
completely impossible, to model them.
The challenging setting of the anomaly detection frame-

work limits the applicability of traditional supervised
methods. A training set may contain a large number of
normal cases and just a few anomalous cases, each of
which is different from the others. Additionally, those
anomalous samples may not be representative for a large
and heterogeneous landscape of possible abnormalities.
In the context of FC anomaly detection, our technique
can be considered semi-supervised as it uses normal sam-
ples containing known (predefined or labeled) cell types
in order to recognize anomalous samples that may contain
additional unknown, often rare cell types.

Methods
Data model
FC measurement allows researchers to characterize indi-
vidual cells present in a biological sample in terms of the
abundance of functional markers, such as surface pro-
teins. A data matrix obtained from a FC system upon sam-
ple analysis contains measurements of cells organized in
rows. The columns represent so-called cytometric param-
eters, which are typically fluorescence intensities of labels
attached to the markers of interest. The data matrix for
a typical FC sample may comprise several thousand to a
million cells (rows in a matrix), and several FC parameters
(columns).
Each biological sample contains multiple, functionally

distinct cell types, or “cell populations” in FC vernacu-
lar. These populations form multidimensional clusters in
the space defined by measured biological features (FC
parameters). Although the characteristics (size and mul-
tidimensional arrangement) of cell populations present in
normal samples are generally known, the number of pop-
ulations and the proportions of cells present in them could
be substantially different in anomalous samples.
We model the data from each sample by a mixture of a

potentially infinite number of Dirichlet-process Gaussian-
mixture models (DPGMMs), with each individual DPM
modeling the local distribution of a single class. Under
fairly weak assumptions and given enough components,
finite mixtures of Gaussian distributions can model any
given density arbitrarily closely [24]. The DPGMM itself
is a mixture of a potentially infinite number of Gaussian
distributions, with the actual number of mixture compo-
nents determined directly from the data during inference.
Thus, modeling local class distributions by DPGMMs



Dundar et al. BMC Bioinformatics 2014, 15:314 Page 4 of 15
http://www.biomedcentral.com/1471-2105/15/314

offers the flexibility needed to accommodate skewed or
multi-modal distributions. In this context global clusters
or meta-clusters refer to functional cell populations, and
local clusters or local distributions refer to local realiza-
tions of global clusters (cytometry cell populations found
in individual samples). Each local cluster is modeled by a
DPGMM, i.e., a mixture of a potentially infinite number
of Gaussian distributions.
We introduce dependencies across multiple samples by

placing a hierarchical DP prior over the base distributions
of individual DPGMM models [25]. This hierarchical
prior provides a sharing mechanism across samples and
allows for sharing of global mixture components across
different samples. In FC data analysis, sharing models
across multiple samples is a desirable property: a hier-
archical prior captures the underlying biological pattern
manifested across multiple samples.
We also recognize that limited precision of FC instru-

ments as well as natural biological variability may affect
the reproducibility of FC measurements. Therefore, we
expand the DPGMM model by postulating the presence
of random effects. To account for various sources of
sample-to-sample heterogeneity we presume that local
cell clusters (relevant populations in the immunopheno-
typic sense) are generated from noisy versions of corre-
sponding global clusters. Inspired by the random-effects
model introduced by Kim and Smyth, we address the ran-
dom effects by probabilistically modeling the deviations
of local cluster means from the means of corresponding
global clusters [26].
We provide the technical details of our data model in

four stages, following the increasing complexity. In the
first stage, we assume that each sample is modeled by a
single DPGMM and that DPGMMs across multiple sam-
ples are independent. In the second stage, we introduce
dependencies across DPGMMs and impose exact sharing
of mixture components corresponding to classes across
samples. This is equivalent to the HDPGMM model by
Cron et al. [15]. In the third stage, we tackle the random
effects problem by relaxing the exact sharing of mixture
components, allowing local clusters to inherit noisy real-
izations of classes in individual samples. This approach
is equivalent to the HDPGMM-RE model by Kim and
Smyth [26]. Finally, in the fourth stage we describe our
proposed ASPIRE framework, which models each sample
by a potentially infinite mixture of DPGMMs.

Independentmodeling of samples
As mentioned above, the ASPIRE algorithm models each
sample by a DPGMM, a Gaussian-mixture model (GMM)
with a Dirichlet-process (DP) prior defined over mixture
components [22,27]. The traditional approach to fitting
a Gaussian mixture model onto the data involves using
the well-known expectation-maximization algorithm to

estimate component parameters [28]. The major limita-
tion of this technique is the need to define the number
of clusters in advance. Although there are several ways
to estimate the number of clusters in an off-line manner,
these methods are in general suboptimal as they decou-
ple two interdependent tasks: predicting the number of
clusters and predicting model parameters.
Unlike traditional mixture modeling, DPGMM predicts

the number of clusters across multiple samples while
simultaneously performing model inference. A DP prior
belongs to a group of non-parametric Bayesian models.
It is considered “non-parametric” because the number of
clusters can arbitrarily grow as needed to accommodate
the data. However, the DP prior contains other parame-
ters, the first of which is the precision parameter control-
ling the prior probability of producing a new cluster and
thus indirectly influencing the total number of clusters.
The second parameter – the base distribution – defines
the Bayesian aspect of the DPGMM. One can utilize the
base distribution to encode the existing knowledge of
the domain by defining prior distributions over the mean
vectors and covariance matrices of components.
We denote cell i in sample j by xji ∈ �d, where i ={
1, . . . , nj.

}
and j = {1, . . . , J}, nj. is the number of cells

in sample j, and J is the total number of samples. In the
DPGMM model xji is associated with a mixture compo-
nent defined by θji = {

μji,�ji
}
, which in turn is generated

i.i.d. from a DP as follows:

xji ∼ p(·|θji)
θji ∼ Gj

(1)

Gj are random probability measures distributed i.i.d.
according to a DP with a base distribution G0 and a
precision parameter α.

Gj ∼ DP(G0,α) (2)

Using the stick-breaking construction according to
Ishwaran and James [29], we can express Gj as Gj =∑∞

t=1 βjtδψjt where βjt = β ′
jt

∏t−1
l=1

(
1 − β ′

jl

)
, β ′

jt ∼
Beta(1,α), and ψjt ∼ G0. The points ψjt are called the
atoms of Gj. Note that unlike a continuous distribution,
the probability of sampling the same ψjt twice from Gj is
not zero and is proportional to βjt . Thus, Gj is considered
a discrete distribution and offers a clustering property, as
the same ψjt can be sampled for different θji. In this model
α is the parameter that controls the prior’s probability of
assigning a cell to a new cluster and thus plays a critical
role in determining the number of clusters generated.
For the base distribution G0, from which ψjt are drawn,

we define a bivariate prior:

p (μ,�) = N
(

μ|μ0,
�

κ0

)
× W−1 (�|�0,m) (3)
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where μ0 is the prior mean and κ0 is a scaling constant
that controls the deviation of the cluster means from the
prior mean. The smaller the κ0, the larger the separation
between the cluster means. The parameter �0 is a pos-
itive definite matrix that encodes our prior belief about
the expected �, i.e., E(�) = �0

m−d−1 . The parameter m is
a scalar that is negatively correlated with the degrees of
freedom. In other words, the larger the m, the less � will
deviate from E(�), and vice versa.

Introducing dependencies across samples
In the previous section we introduced a clustering prop-
erty across cells in an individual sample by placing a DP
prior over Gj as in Equation (2). Since Gj is a discrete dis-
tribution, this prior enables sharing of the same cluster
parameter by different cells. When dealing with multiple
samples a higher level of sharing occurs. Each local cluster
in an individual sample is associated with a global clus-
ter (meta-cluster) representing a specific cell phenotype.
Thus, as we cluster cells in each sample, we also group
local clusters into appropriate meta-clusters. This group-
ing can be achieved by placing a hierarchical DP prior
over G0, which introduces dependencies across individ-
ual DPGMMs. The hierarchical DPGMM (HDPGMM)
for cell clustering and cluster matching across multiple
samples becomes

xji ∼ p
(·|θji)

θji ∼ Gj
Gj ∼ DP (G0,α)

G0 ∼ DP (H , γ )

(4)

where γ is the precision parameter for the higher-level DP
prior and H has the same form as in (3).
Using the stick-breaking construction we can express

G0 as G0 = ∑∞
k=1 βkδφk , where βk = β ′

k
∏k−1

l=1 (1 − β ′
k),

β ′
k ∼ Beta(1,α), and φk = {

μk ,�k
} ∼ H . With this

update, instead of letting G0 be distributed according to
(3) as in the independent modeling of samples, we let H
be distributed according to (3), and let the atoms of G0 be
distributed according to H. The distinct set of parameters
φk corresponding to global clusters is sampled fromH and
local cluster parameters are sampled fromGj. SinceGj is a
discrete distribution with its atoms sampled from G0, and
G0 is a discrete distribution with its atoms sampled from
H, each local cluster in turn inherits one of the φk , i.e.,
ψjt ∈ {φk}Kk=1 and θji ∈ {

ψjt
}mj.
t=1, where K is the number

of global clusters andmj. is the number of local clusters in
sample j.
Therefore, this model not only groups data points (rep-

resenting cells) within each sample into clusters, but also
groups the local clusters across samples into global clus-
ters (meta-clusters). In other words, clustering and cluster
matching are simultaneously addressed and depend on
one another.

Modeling random effects
In the standard HDPGMM the same parameters are
inherited by all local realizations of a global cluster. How-
ever, owing to potential random effects caused by biologi-
cal variability and limited instrument precision this simple
framework may be unrealistic. Therefore, to account for
random effects we further presume that sample data are
generated by noisy versions of the parameters defining
global clusters. This change can be incorporated into the
data model by updating the model in (4) as follows:

xji ∼ p
(·|θji)

θji ∼ Gj
Gj ∼ DP

(
G0j,α

)
G0 ∼ DP (H , γ )

(5)

where G0j = ∑∞
k=1 βkδφjk is a discrete distribution whose

atoms are noisy versions of the corresponding atoms in
G0. With this correction to the model each individual
sample now inherits different noisy realizations of global
parameters, i.e., ψjt ∈ {

φjk
}K
k=1.

Modeling individual sample data with multiple DPGMMs
Both HDPGMM and HDPGMM-RE assume that local
distributions of classes can be closely approximated by
a single Gaussian distribution. This assumption is quite
restrictive for many practical settings, as local class data,
which are produced subject to random effects, may
emerge in the form of skewed as well as multi-mode distri-
butions. As a result, fitting a single Gaussian distribution
for local class distributions creates artificial classes that
may not be easily distinguished from other significant
classes.
ASPIRE uses a potentially infinite mixture of DPGMMs

to model each sample’s data, where individual DPGMMs
are linked together through a hierarchical DP prior. This
hierarchical prior not only identifies local DPGMMs asso-
ciated with the same class through sharing of a global
parameter, but also models the specific subset of classes
present and their proportions in each sample.
We update our indexing notation and introduce an addi-

tional subscript k to account for multiple DPGMMs in
each sample. We denote point i of class k in sample j by
xjki ∈ �d, where i = {

1, . . . , njk.
}
, k = {1, . . . ,K}, and

j = {1, . . . , J}, njk. is the number of points from class k in
sample j, K is the total number of classes, and J is the total
number of samples. The proposed ASPIRE data model
becomes

xjki ∼ p
(·|θjki)

θjki ∼ Gjk
Gjk ∼ DP

(
Fφk ,α

)
φk ∼ G0
G0 ∼ DP (H , γ )

(6)
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where φk are global parameters each of which is associated
with a different class. Individual DPGMMs associated
with the same class inherit the same φk across samples.
The notation Fφk indicates a distribution F centered at
φk and defines class-specific base distributions of indi-
vidual DPGMMs. Although Fφk is same for all DPGMMs
associated with the same class, local clusters between
samples are generated i.i.d. given φk of corresponding
DPGMMs. Thus, each local realization of a given class is
modeled by a different DPGMM, allowing us to account
for sample-to-sample variations in a systematic manner.
For the sake of simplicity and to preserve conjugacy we

assume that the covariance matrices of all local clusters
associated with the same class are identical and limit the
susceptibility of local clusters to noise with their mean
vectors. More specifically, μjki ∼ Gjk , �jki = �k , and Fφk
is defined as

Fφk={μk ,�k} = N
(

μk ,
�k
κ1

)
. (7)

Note that the covariance matrix of the base distribution
Fφk is a function of �k ; hence conjugacy of the model is
preserved. Conjugacy of the model is important since it
enables us to implement a collapsed version of the Gibbs
sampler as discussed in the next section. The scaling con-
stant κ1 adjusts the degree of deviation of local means
from the corresponding global mean. A smaller κ1 results
in a situation where local realizations of global means
deviate significantly from one sample to another, suggest-
ing significant random effects. On the other hand, a larger
κ1 value limits these deviations, resulting in few to no
random effects.

Model inference
Posterior inference for the proposed model in (6) can
be performed by a Gibbs sampler by iteratively sampling

local-cluster indicator variables t =
{{{

tjki
}njk.
i=1

}K
k=1

}J

j=1
,

class indicator variables c =
{{{

cjkt
}mjk
t=1

}K
k=1

}J

j=1
, and

local-cluster parameters ψ =
{{{

ψjkt
}mjk
t=1

}K
k=1

}J

j=1
given

the state of all other variables. Including ψ in the Gibbs
sampler significantly increases the size of the state space
and severely retards the convergence of the Gibbs sampler
to the equilibrium distribution. Fortunately, our model
uses a conjugate pair ofH and p(·|ψjkt), which allows us to
integrate out ψjkt analytically. Thus, we omit the discus-
sion of sampling of ψ and describe the sampling process
for t and c only.
When sampling the local-cluster indicator variable tjki

for xjki we first remove xjki from its current cluster

and update the corresponding predictive distribution
p(xjki|D.cjkt .,Djkt). Then, we evaluate the likelihood of
xjki’s belonging to an existing cluster by computing
p(xjki|D.cjkt .,Djkt) for all local clusters associated with
global cluster k in sample j, and its likelihood of origi-
nating from a new cluster by finding the predictive dis-
tribution for an empty cluster, i.e., p(xjki). Finally, we
sample tjki based on the normalized values of the prod-
uct of prior probabilities and the corresponding likelihood
values. This can be expressed by the following equation:

p(tjki = t|t−jki, c,D...) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αp(xjki)
if t = mjk + 1
n−jki
jkt p

(
xjki|D.cjkt .,D

−jki
jkt

)
if t � mjk

(8)

where t−jki is the set of all cluster indicator variables,
excluding the one for point i of class k in sample j, D...

denotes the set of all points across all samples, D.cjkt .
denotes the subset of points sharing class cjkt across all
samples, D−jki

jkt denotes the subset of points in sample j
belonging to cluster t of class k, excluding point i, mjk is
the number of clusters associated with class k in sample j,
and n−jki

jkt is the number of data points in cluster t of class
k in sample j, excluding point i.
As we model local clusters by Gaussian distributions

with Gaussian and inverted Wishart priors defined over
their mean vectors and covariance matrices, respectively,
the predictive distribution p(xjki|D.cjkt .,Djkt) turns out to
be in the form of a Student-t distribution, the derivation
of which is provided in Additional file 1.
When sampling the class indicator variable cjkt for clus-

ter t of class k in sample jwe remove pointsDjkt fromD.cjkt .
and update the parameters of the predictive distribution
for class cjkt . Then, we evaluate the joint likelihood of cell
data in Djkt for existing classes as well as for a new class.
Finally, we sample cjkt based on the normalized values of
the product of prior probabilities of classes and the corre-
sponding joint likelihood values. This can be expressed by
the following formula:

p(cjkt = k|t, c−jkt ,D...) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ
∏

i:tjki=t p(xjki)
if k = K + 1
m−jkt

.k
∏

i:tjki=t p
(
xjki|D−jkt

.k.

)
if k ≤ K

(9)

where D−jkt
.k. denotes the subset of points across all sam-

ples associated with class k, excluding points in cluster t
in sample j. The predictive distribution p(x|D.k.) is also
in the form of a Student-t distribution and can be readily
obtained from p(xjki|D.cjkt .,Djkt) by setting Djkt an empty
set.
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Sampling both tjki and cjkt requires evaluating the pre-
dictive distribution for a new, i.e., an empty, cluster. The
predictive distribution for a new cluster is denoted by
p(xjki) in (8) and (9). This distribution can be obtained
from p(x|D.k.) by setting D.k. an empty set.
During a single run of the ASPIRE algorithm one sweep

of the Gibbs sampler involves two main iterative loops. In
the first loop, tjki are sampled for all points across all sam-
ples. In the second, cjkt are sampled for all local clusters
across all samples. The Gibbs sampler is run for thou-
sand sweeps. The first 750 sweeps are ignored as burn-in,
and five samples drawn one every 50 sweeps are saved for
final evaluation. Herein we used an approach similar to
the one proposed in Cron et al. to deal with label switch-
ing [30]. The mode of cluster labels computed across five
samples is assigned as the final cluster label for each data
instance.
As the first loop iterates over all cell data across all

samples it is far more computationally expensive than
the second loop. Fortunately, during the sampling pro-
cess involving tjki global cluster parameters are fixed. This
allows us to sample tjki independently for each sample
during a single sweep and leads to significant improve-
ment in processing time on multi-processor machines.
For FC data containing 359,000 cells across 359 samples,
the current version of the ASPIRE algorithm implemented
in C++ runs in less than thirty minutes on an eight-core
computer.

Strategy for tuningmodel parameters
The ASPIRE model has seven free parameters
(α, γ ,�0,m, κ0,μ0, κ1), each reflecting a different aspect
of the underlying data-generating process. Although data
sets resulting from a wide range of experimental settings
can be more flexibly modeled by tuning these parameters,
an excessive number of free parameters increases the risk
of overfitting in addition to affecting the computational
time of model optimization. The following describes our
strategy to tune these parameters effectively.
As the sample batch may contain anomalous samples,

prior information about the potential number of local and
global clusters may not exist for most real-world FC data.
Thus, for α and γ we use vague priors by fixing their value
to 1. We set m to the minimum feasible value, which is
d+2, to achieve the maximum number of degrees of free-
dom. By doing this we let the actual covariance matrices
of local and global clusters deviate significantly from the
expected covariance matrix, which is E(�) = �0

m−d−1 . The
prior mean μ0 is set to the mean of the entire data. The
scale matrix �0 is set to I/s, where I is the identity matrix
and s is a scaling constant.
This leaves κ0, and κ1, and the scaling constant s of �0,

as the three free parameters that require tuning. We used
the FlowCAP 2010 competition lymphoma dataset [12] to

tune s and κ0 values empirically. The remaining parame-
ter κ1 is selected from the set of {0.05, 0.1, 0.25, 0.5, 1} to
optimize Gibbs likelihood, which is measured by the joint
sampling likelihood of all data points.

One-class classification by resampling
Once global clusters are identified we can derive a fea-
ture vector of global-cluster proportions characterizing
each sample. These feature vectors are used for training
and testing a one-class classifier. We used the resampling
technique to train the classifier [31]. In this approach, a
large number of samples is uniformly drawn from the sup-
port of the data distribution and all these samples are
considered as “positive”. Normal cases are considered as
“negative”. A binary classifier is trained to separate the
positive samples from the negative ones.
In the described setting, each sample is characterized by

a feature vector of global-cluster proportions whose ele-
ments add up to one. If K denotes the number of global
clusters and pjk , k = {1, . . . ,K} is the proportion of
component k in sample j, the support of such a data dis-
tribution is confined to a simplex of the form 0 ≤ pjk ≤
1,

∑
k pjk = 1. Uniform sampling from this simplex is

equivalent to drawing samples from a k-variate Dirichlet
distribution with all its parameters set to one.
We draw 50,000 samples this way and use this set as the

positive class. The feature vectors of normal cases are set
as the negative class. Using these data as a training data
set we optimize a binary support vector machine (SVM)
with a linear kernel and evaluate this classifier on test data
containing both normal and anomalous cases. The cost
parameter of SVM is tuned by a hold-out approach using
a subset of the training data set as a validation set.

Results and discussion
Benchmark techniques
In order to evaluate ASPIRE and compare it to
state-of-art approaches, four other techniques were
experimentally tested for the purpose of this study: con-
ventional DPGMM [22], flowPeaks [14], FLAME [9], and
HDPGMM recently published by Cron et al. [15].
Although both DPGMM and flowPeaks are more suit-

able for clustering single-sample data, they can be used
in a batch setting by clustering data pooled from all sam-
ples. Using this approach, global clusters can be readily
identified without the need for clustering individual sam-
ples, finding local clusters, and matching them with one
another. Local proportions of global clusters recovered
this way can then be used to characterize biological sam-
ples. Among many algorithms that can cluster FC data
in a pooled setting, DPGMM was our preferred bench-
mark choice because it originates from the same family
of non-parametric Bayesian models as does ASPIRE. The
flowPeaks algorithm is also a highly relevant method, as
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it has recently shown great promise not only in clustering
[14] but also in classification of FC samples in a supervised
setting [12].
DPGMM fits a Gaussian mixture model with a poten-

tially infinite number of components onto pooled data,
with the number of actual components determined dur-
ing model inference. As each component in the DPGMM
is Gaussian, non-Gaussian clusters in the pooled data are
unlikely to be captured as a single cluster by DPGMM.
ASPIRE is conceptually different from DPGMM– instead
of fitting a single Gaussian mixture on pooled data,
ASPIRE fits one Gaussian mixture for each individual
sample and treats these individual mixture models as
noisy realizations of a latent global mixture model.
The flowPeaks algorithm initially partitions data into a

large number of clusters using the k-means algorithm and
then merges the clusters by exhaustively searching local
peaks. Although this agglomerative process in flowPeaks
makes capturing non-Gaussian clusters possible, it has
significant limitations in the presence of random effects;
when the locations of local clusters in the feature space
deviate from one sample to another, it is unrealistic to
expect all local clusters within a meta-cluster to have a
single peak in the pooled data.
Unlike DPGMM and flowPeaks, which cannot perform

cluster matching, joint clustering and cluster matching is
possible with the FLAME and HDPGMMmodels.
FLAME fits onto the data from each sample a mixture

model with four possible choices of density functions
(Gaussian, skewed-Gaussian, t-distribution, skewed-t-
distribution) available for individual mixture components.
Local modes are pooled and then clustered to obtain a
global template of meta-clusters. Local clusters are then
assigned to these meta-clusters using graph-matching
techniques. FLAME is similar to ASPIRE in the sense
that both techniques model individual sample data by a
mixture model. However, there are significant differences
in model learning. FLAME divides model learning into
three tasks: clustering data in individual samples, finding
the optimal number of local clusters in each sample, and
matching local clusters across samples to recover global
clusters. These three tasks are performed by FLAME
independently and in a sequential manner.
Unlike FLAME,model learning by ASPIRE is performed

as a single unified process. Thus, ASPIRE can take advan-
tage of recurring patterns of similarities across samples.
For example, groups of isolated cells forming rare pop-
ulations that would be ignored as outliers by clustering
followed by cluster matching can be successfully identified
as rare populations when these two tasks are performed
simultaneously.Model learning aside, themajor limitation
of FLAME occurs when anomalous samples are present in
the data set. The FLAME algorithm clusters local modes
to generate a template of meta-clusters. This template is

unlikely to capture global clusters unique to cell types in
anomalous samples, as many of the local modes will be
isolated and will likely be clustered with local modes from
one of the more dominant cell types.
The HDPGMM by Cron et al. is similar to ASPIRE

in certain ways. Both HDPGMM and ASPIRE model
individual sample data by a DPGMM and link different
DPGMM models through a hierarchical prior. Thanks to
the non-parametric nature of these models, the number
of local and global clusters can arbitrarily grow in both to
accommodate data as needed. Despite these similarities,
however, there are important conceptual and algorithmic
differences.
The model by Cron et al. does not recognize the pres-

ence of random effects and assumes that local clusters
are exact realizations of global clusters. In the presence
of random effects this assumption is not realistic and
leads to the creation of several extraneous global clus-
ters. Cron et al. tackle this problem by post-processing
the results to combine global clusters sharing a common
mode [15]. This step is very similar to the mode-clustering
technique described above for FLAME and relies on two
important assumptions: (1) local clusters of a given global
cluster share the same mode, and (2) each global cluster
has several local realizations. The first assumption is not
realistic when random effects are present. The second is
not realistic when the data set contains anomalous sam-
ples characterized by isolated, phenotypically abnormal
cell types.
Unlike HDPGMM, ASPIRE assumes that local clusters

are noisy realizations of global clusters, and probabilis-
tically models the deviations of the local cluster means
from the corresponding global cluster means. As random
effects are already taken into account during model learn-
ing, no post-processing is required with ASPIRE. Apart
from these conceptual differences there are also algorith-
mic differences between ASPIRE and HDPGMM. The
state space of HDPGMM contains cluster parameters.
This slows down convergence of the sampling process.
ASPIRE uses a conjugate data model that makes possi-
ble the implementation of a collapsed Gibbs sampler As a
result, the state space of the ASPIRE model does not con-
tain cluster parameters. Eliminating cluster parameters
from sampling speeds up convergence.
For testing FLAME performance we used the version

implemented in GenePattern [32]. When running the
FLAME algorithm for the simulated data, we fit each
sample by a Gaussian mixture model since the cluster
data were generated by Gaussian distributions. For the
real FC data, we fit each sample by a skewed-t mixture
model as suggested in the original FLAME report [9]. For
HDPGMM testing we used the software provided by the
authors [15]. The flowPeaks algorithm was tested using
the R version available through Bioconductor [33]. The
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DPGMMmethod was tested utilizing our own implemen-
tation of the algorithm by Cron et al. The performance
of the models tested is evaluated by the area under the
receiver operating characteristics (ROC) curve, in short
the AUC value.

Experiment 1: synthetic data containing three types of
anomalies
The purpose of this in silico experiment is to illustrate the
ability of ASPIRE to recover global clusters and identify
anomalous samples. We generated twenty-five samples,
each with one thousand data points in a two-dimensional
feature space. Ten of the samples were considered nor-
mal, and global clusters associated with samples in this
group were treated as normal clusters. Fifteen anoma-
lous samples were generated in three groups, each group
simulating a different anomalous effect.
The samples in the first group were associated with the

same set of global clusters found in the normal samples.
An anomaly effect was produced by creating samples with
different relative proportions of points belonging to these
clusters.
The generative model associated with samples in the

second group involved six global clusters, three of which
were normal clusters and another three of which con-
tained different rare populations. Each rare population
consisted of only five data points. The relative proportions
of points in the normal clusters were the same as those in
normal samples.
The samples in the third group were generated to sim-

ulate measurement artifacts. To achieve this effect, three
global clusters were derived from normal clusters by shift-
ing their mean vectors and reducing standard deviations
in each dimension by half. To introduce random effects
into the generative process the points in each sample were
generated from the local clusters using κ1 = 0.05. Distri-
bution of global and local clusters and the data points cor-
responding to events for all twenty-five samples are shown
in Figure 1. Ellipses in the figures correspond to data dis-
tributions that are at most four standard deviations from
the mean.
We applied all five techniques (ASPIRE, DPGMM,

HDPGMM, flowPeaks, and FLAME) to this data set
and plotted recovered distributions of global clusters for
each case in Figure 2 along with the pooled data from
all twenty-five samples. The results demonstrate that all
techniques but ASPIRE failed to recover accurately the
distributions of global clusters owing to large inter-sample
variance affecting local clusters.
ASPIRE not only correctly predicted the true number

of global clusters but also recovered their correspond-
ing distributions with fairly good precision. Between the
two techniques operating with pooled data (DPGMM
and flowPeaks) flowPeaks seemed to handle random

effects better as it accurately recovered distributions for
two of the nine global clusters. Of the two techniques,
other than ASPIRE, operating with individual sample
data (HDPGMM and FLAME), HDPGMM suffers sig-
nificantly from random effects. Although it accurately
recovered distributions of local clusters, it failed to con-
sistently match local clusters across samples, and as a
result substantially overestimated the actual number of
global clusters. Compared to HDPGMM, FLAME per-
formed relatively well and accurately recovered distribu-
tions of four of the nine global clusters. However, FLAME
failed to process all five samples containing rare clusters.
The errors generated during the mixture-modeling stage
suggest that the FLAME process cannot properly initial-
ize cluster centers when there are isolated clusters with
very few data points. Additional experimental results with
ASPIRE investigating the effect of isolated rare classes and
limited random effects on simulated data are provided in
Additional file 2.

Experiment 2: purdue healthy subjects (PHS) data set
The PHS data set contains FC results of a 5-parameter
blood analysis performed using samples collected from
five healthy donors. In each sample five fluorescent
labels – PC5, FITC, PE, PC7, and ECD – are used to iden-
tify cells expressing CD45, CD4, CD8, CD3, and CD19
markers, respectively.
The sample collection and data acquisition were per-

formed over a number of days. In accordance with
standard FC data-analysis procedures, samples were pre-
processed by performing linear spectral unmixing (com-
pensation) [34,35]. In order for the compensation to
return approximate abundances of the labels used, one
must employ the correct spillover matrix obtained from
single-stained controls run under identical experimental
conditions. However, in post-processing, it was discov-
ered that a small subset of samples had been compensated
using the wrong controls. These samples are readily iden-
tifiable by trained cytometrists (Figure 3).We consider the
improperly unmixed samples to be anomalous. The task
for the algorithmwas to find the anomalous samples auto-
matically. This task mimics a typical data-quality check
step performed on a large collection of flow cytometry
data.
We used a total of 81 samples, five of whichwere anoma-

lous. The data set obtained by subsampling ten percent
of the cell data from each sample contained 144,000 data
points. Data corresponding to each marker were trans-
formed logarithmically and standardized to have unit
variance.With this data set FLAME failed to properly pro-
cess nine of the normal cases, which were excluded from
subsequent analysis of FLAME performance. The other
four techniques were evaluated on the entire data set. An
anomalous sample along with a typical normal sample
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Figure 1 Global and local clusters for twenty-five simulated samples. Plots in the top two rows correspond to normal samples. Rows three
through five show plots of anomalous samples produced by introducing rare populations or by distorting distributions of normal clusters. Solid and
dashed ellipses indicate distribution of global and local clusters, respectively. Individual instances are shown by black points. Distributions sharing
the same global cluster (meta-cluster) across different samples are identified by the same color.

A B C 

D E F 

Figure 2 Distributions recovered by competing techniques. Solid- and dashed-color ellipses indicate global and local clusters, respectively.
Solid-black ellipses show recovered distributions of global clusters. A. Pooled data. B. ASPIRE. C. DPGMM. D. FLAME. E. FlowPeaks. F. HDPGMM.
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Figure 3 Examples of a normal and an anomalous sample in the Purdue data set. 2D scatter plots of cells expressing CD45, CD4, CD8, CD3,
and CD19 markers. A. Anomalous sample. B. Normal sample.

is shown in Figure 3. The experimental settings used in
experiments for all five techniques are summarized in
Additional file 3. The trace plot obtained by ASPIRE is
shown in Additional file 4.
The numbers of global clusters identified for the PHS

set by each of the five algorithms are shown in Table 1. We
characterize the samples with feature vectors of global-
cluster proportions produced by the five algorithms. Since
the feature vectors describe composition of the samples
(they sum to one), we visualize the results with 2-D
scatter plots representing compositional principal com-
ponent analysis rather than standard PCA (See Figure 4)
[36]. After processing with the ASPIRE algorithm, the
anomalous samples are clearly isolated and can be easily

identified in Figure 4. For the other four algorithms the
distinction between normal and anomalous cases is not
obvious.
Next, we used samples from three subjects for train-

ing (51 samples) and samples from the remaining two
subjects along with five anomalous samples (30 samples)
for testing. We trained a one-class Dirichlet-SVM classi-
fier described previously under the Methods section and
evaluated it on the test set. We repeated this process
ten times, each time with a different set of positive sam-
ples drawn from the Dirichlet distribution. AUC values
obtained by all five techniques are included in the first
column of Table 2. ASPIRE achieved the perfect AUC
value. The flowPeaks algorithm and FLAME produced
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Table 1 Number of global clusters identified by each algorithm after excluding small clusters containing less than 0.5%
of the total number of cells across all samples

Purdue AML tubes

2 3 4 5 6 7 All

ASPIRE 12 9 18 21 10 8 17 83

DPGMM 50 49 47 42 56 47 52 283

FLAME 4 - - - - - - -

flowPeaks 4 6 6 10 5 4 7 38

HDPGMM 16 58 68 68 60 80 54 388

Reported values are modes of ten repetitions. FLAME results for the AML data set are not included as FLAME produced errors on many of the samples in this data set.

comparable AUC values of 0.94 and 0.93, respectively.
DPGMM achieved an AUC value of 0.80. With an
AUC of 0.51 HDPGMM cannot compete with the other
techniques.

Experiment 3: DREAM6/FlowCap-II acute myeloid leukemia
(AML) data set
This data set, which was originally made available for the
DREAM6/FlowCAP-II Molecular Classification of AML
Challenge, contains samples from 43 AML-diagnosed
patients and 316 healthy patients [12]. Each subject sam-
ple was subdivided into 8 tubes and analyzed for the
presence of different marker combinations (5 markers
per tube). In addition to the five markers, the forward
scatter (FS) and side scatter (SS) of each sample were
also measured for each tube. We exclude the two control
tubes (tubes 1 and 8) and report results on the remain-
ing six. The data for side scatter (SS) and for all the
fluiorescent markers were transformed logarithmically,
whereas the data for forward scatter (FS) remained linear.
Data for each channel are also standardized to have unit
variance.
Although the DREAM6/FlowCAP-II contest was

designed for traditional supervised classification of AML
and healthy cases, we are using this data set in a consider-
ably more challenging setting. Unlike the contest, where
participants had access to AML cases during both train-
ing and testing, we did not include any AML cases in the

training. Instead, we tried to find whether the proposed
ASPIRE model can identify anomalies even when they are
not defined or demonstrated a priori. Our training data
set contained samples from 150 normal subjects, whereas
the testing data set contained samples from 166 normal
subjects and 43 AML-positive patients. The data set for
each tube was subsampled to contain 1,000 cells from
each sample for a total 359,000 × 6 cell data points across
359 samples.
We first report our results separately for each tube and

then report results for the combined data by concatenat-
ing feature vectors of global-cluster proportions for the
six tubes. The number of global clusters and the AUC val-
ues achieved by each technique for individual tubes and
for their combinations are included in Tables 1 and 2,
respectively. Since the FLAME algorithm produced errors
during processing of many samples in the AML data set,
no results are reported for FLAME performance on this
data set. The experimental settings used in experiments
for all five techniques are summarized in Additional file 3.
Trace plots obtained by ASPIRE are shown in Additional
file 4.
Among the four remaining algorithms tested, ASPIRE

achieved the highest AUC values for all individual tubes
as well as for the combined data. The AUC values given by
ASPIRE exceeded 0.90 for all tubes, with an AUC of 0.99
achieved for three of the six tubes. The average number of
global clusters recovered per tube by ASPIRE was 13.8.

ILR−PC1
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R

−P
C

2
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Figure 4 2D scatter plots obtained by the robust compositional PCA algorithm using cell-type proportions predicted by each of the five
algorithms on the Purdue healthy subjects data set with anomalies. Properly compensated samples are shown by blue circles and those with
compensation artifacts by red circles. A. ASPIRE. B. DPGMM. C. FLAME. D. FlowPeaks. E. HDPGMM.
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Table 2 AUC values achieved by each algorithm on the Purdue and AML data sets

Purdue AML tubes

2 3 4 5 6 7 All

ASPIRE 1.000 0.940 0.974 0.991 0.999 0.992 0.971 0.997

(0.000) (0.025) (0.003) (0.003) (0.001) (0.010) (0.005) (0.002)

DPGMM 0.995 0.782 0.612 0.933 0.935 0.954 0.514 0.773

(0.010) (0.068) (0.070) (0.027) (0.019) (0.015) (0.120) (0.088)

FLAME 0.930 - - - - - - -

(0.000)

flowPeaks 0.944 0.369 0.430 0.982 0.806 0.906 0.670 0.857

(0.000) (0.003) (0.001) (0.001) (0.004) (0.002) (0.015) (0.038)

HDPGMM 0.576 0.452 0.493 0.530 0.600 0.571 0.509 0.532

(0.005) (0.011) (0.015) (0.011) (0.015) (0.027) (0.011) (0.009)

Numbers in parentheses are standard deviations across ten repetitions of the corresponding one-class classifiers. FLAME results for the AML data set are not included
as FLAME produced errors on many of the samples in this data set.

DPGMM and flowPeaks produced AUCs above 0.9 for
two of the six tubes. The average number of global clusters
recovered per tube for these two algorithms was 47.1 and
6.3, respectively. Results obtained by HDPGMMwere not
promising. The AUC values achieved by HDPGMM sug-
gest that the model did not perform better than random
chance for most of the tubes. HDPGMM also produced a
large number of extraneous global clusters.
The AUC values obtained by combining data from

all the tubes were lower than the maximal AUC values
achieved for the individual tubes for all four techniques.
This was expected, as feature noise present in the fea-
ture vectors describing individual tubes accumulates with
concatenation [37]. Among the four techniques ASPIRE
suffered the least from this noise effect and showed the
least degradation in the maximum AUC value after all the
tubes were combined.
Although the main objective of this experiment was to

demonstrate that global clusters discovered by ASPIRE
are useful for identifying anomalous samples in a one-
class classification setting, ASPIRE can also be used in
a fully supervised classification setting with both nor-
mal and anomalous classes represented in the training
data set. To show that ASPIRE is also competitive in a
traditional supervised classification setting we followed
the procedure adopted in the DREAM6/FlowCAP-II chal-
lenge to train and test a supervised classifier. The results
in Table 3 suggest that in a supervised mode ASPIRE
can match the best-performing techniques listed in the
FlowCAP-II report [12].

Discussion
The unrealistically large number of meta-clusters and
poor AUC values generated by HDPGMM suggest that
the cluster-matching aspect of this algorithm suffers

significant problems with sample heterogeneity. Tech-
niques that operate with pooled data (DPGMM and
flowPeaks) performed better compared to HDPGMM in
terms of meta-cluster numbers and classification results.
Results from all three experiments suggest that flow-
Peaks tends to underestimate whereas DPGMM typically
overestimates the number of global clusters. FLAME posi-
tions itself in the middle, seemingly handling the more
abundant cell populations well but failing to identify
rare cell types. The presence of multiple spurious meta-
clusters generated by FLAME in Experiments 1 and 2
indicate that the mode-clustering algorithm employed by
FLAME is not very effective in the presence of random
effects.
Compared with the benchmark techniques, ASPIRE is

more effective in capturing the phenotypic patterns linked
with anomalies in biological characteristics. In fact, in
experiments with synthetic data (set 1), ASPIRE not only
correctly inferred the number of meta-clusters but also
identified all the anomalous samples with perfect accu-
racy. In experiments with real-world FC data ASPIRE pro-
duced reasonable numbers of global clusters and achieved
almost perfect AUC values (See Table 2).
In terms of computation time (assesed using a

single-core computer), flowPeaks – a k-means–based

Table 3 Supervised-classification accuracies for ASPIRE on
the AML data set

AML tubes

2 3 4 5 6 7 All

ASPIRE 96.9 97.7 98.5 99.2 100.0 98.2 98.9

(0.8) (1.2) (0.6) (0.9) (0.0) (1.1) (0.3)

Numbers in parentheses are standard deviations across ten repetitions.
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technique – was by far the fastest algorithm. It takes less
than a minute to run flowPeaks on the subset of the AML
data set containing 359,000 data points across 359 sam-
ples (one tube per sample). In contrast, the processing
time for a single tube from the AML data set takes about
12 hours for HDPGMM, 3-4 hours for DPGMM, and less
than 2 hours for ASPIRE. The processing time for FLAME
(including the failed cases) was also close to 12 hours.
The processing time required by HDPGMM and

ASPIRE can be significantly reduced by running the algo-
rithms in a multi-core mode. Although we were not able
to test the multi-core version of HDPGMM by Cron
et al. owing to operating system restrictions, about four-
fold improvement in run time was observed for ASPIRE
executed on an eight-core machine.

Conclusions
We introduced ASPIRE as a new method for sample char-
acterization in FC that performs joint cell clustering and
cluster matching in the presence of random effects. The
algorithm operates in a batch setting, discovering global
clusters in collections of FC data. By utilizing a non-
parametric clustering approach paired with a hierarchical
model, ASPIRE addresses the issue of anomaly detection
in a way both unique and original. In contrast to estab-
lished FC processing techniques, ASPIRE provides higher
robustness and the ability to incorporate experimentally
acquired notions of biological and technical (instrumen-
tal) variability.
The reported experimental results obtained from ana-

lyzing synthetic and real data favor ASPIRE over other
benchmark techniques considered for anomaly detection.
Results also indicate that by modeling potential random
effects ASPIRE is able to produce a realistic number of
meta-clusters that are interpretable in the biological con-
text. This contrasts with the unexpectedly large number of
meta-clusters generated by DPGMM and HDPGMM, the
other Dirichlet process–based methods. The impressive
AUC values demonstrate the unique capability of ASPIRE
to detect and identify anomalous samples in the complete
absence of information regarding the characteristics of
anomalies. In other words, ASPIRE is able to form a rea-
sonable generalization on the basis of normal cases, and –
like experienced cytometrists – use this generalization to
locate suspicious and abnormal cases.
In the proposed approach anomalies are detected by a

two-stage process involving the discovery of meta-clusters
followed by one-class classification of feature vectors of
cluster proportions characterizing samples. These two
stages can be combined into one by a nested Dirichlet-
process model [38] that can cluster not only events and
populations but samples as well. Another avenue for
future research involves incorporation of partial knowl-
edge about anomaly characteristics. The reported model

assumes that anomalies are completely unknown; how-
ever, one can envision a setting in which a reasonable
approximation of anomaly characteristics can be hypoth-
esized. Our model can account for such a framework by
employing a restricted version of the Gibbs sampler.
ASPIRE is implemented in C++ and is available as

stand-alone executable software. Matlab® (Natick, MA)
scripts are also provided for using ASPIRE within the
Matlab platform. The software is freely available from
http://cs.iupui.edu/~dundar/aspire.htm.
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