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Abstract
Background: An ion mobility (IM) spectrometer coupled with a multi-capillary column (MCC) measures volatile
organic compounds (VOCs) in the air or in exhaled breath. This technique is utilized in several biotechnological and
medical applications. Each peak in an MCC/IM measurement represents a certain compound, which may be known or
unknown. For clustering and classification of measurements, the raw data matrix must be reduced to a set of peaks.
Each peak is described by its coordinates (retention time in the MCC and reduced inverse ion mobility) and shape
(signal intensity, further shape parameters). This fundamental step is referred to as peak extraction. It is the basis for
identifying discriminating peaks, and hence putative biomarkers, between two classes of measurements, such as a
healthy control group and a group of patients with a confirmed disease. Current state-of-the-art peak extraction
methods require human interaction, such as hand-picking approximate peak locations, assisted by a visualization of
the data matrix. In a high-throughput context, however, it is preferable to have robust methods for fully automated
peak extraction.

Results: We introduce PEAX, a modular framework for automated peak extraction. The framework consists of several
steps in a pipeline architecture. Each step performs a specific sub-task and can be instantiated by different methods
implemented as modules. We provide open-source software for the framework and several modules for each step.
Additionally, an interface that allows easy extension by a new module is provided. Combining the modules in all
reasonable ways leads to a large number of peak extraction methods. We evaluate all combinations using intrinsic
error measures and by comparing the resulting peak sets with an expert-picked one.

Conclusions: Our software PEAX is able to automatically extract peaks from MCC/IM measurements within a few
seconds. The automatically obtained results keep up with the results provided by current state-of-the-art peak
extraction methods. This opens a high-throughput context for the MCC/IM application field. Our software is available
at http://www.rahmannlab.de/research/ims.
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Background
While ion mobility (IM) spectrometry (IMS) is an estab-
lished technology to detect volatile organic compounds
(VOCs) in the air or exhaled breath, the more recent
combination with multi-capillary columns (MCCs) has
opened new applications in biotechnology and medicine,
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consider Koczulla et al. [1] and Armenta et al. [2]. The
analytes, metabolites present within exhaled breath, are
pre-separated using the MCC, analogously to gas chro-
matography (GC) before mass spectrometry (MS).
VOCs from the human metabolism in exhaled breath

may hint at certain diseases. Applications to diagnosis
of lung cancer, chronic obstructive pulmonary disease
(COPD) or sarcoidosis have already been reported [3-7].

MCC/IMmeasurements and peaks
A single measurement with an IM spectrometer takes
about 100ms, using nitrogen or synthetic air as drift gas.
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For a sample pre-separated by anMCC, an IM spectrum is
captured periodically at several different retention times,
e.g. each 100ms for up to 10minutes. The retention time r
is the time a compound needs to pass the MCC.
The drift time t′ is the time a compound needs to drift

through the IM spectrometer and is influenced by param-
eters such as drift tube length, intensity of electric field
as well as temperature or ambient pressure. Figure 1 illus-
trates a schematic cross section of an IM spectrometer.
It is thus advantageous to consider a normalized quan-
tity: the reduced inverse mobility t in Vs/cm2. Each IM
spectrum (at a specific MCC retention time r) provides a
signal intensity (ion count, measured as voltage change on
a Faraday plate; for technical details see [8]) for each value
of t.
We obtain a two-dimensional IM spectrum-chroma-

togram (IMSC) S : R × T → Z with retention times
r ∈ R, inverse mobilities t ∈ T , and signal intensities
S(r, t) ∈ Z (measured as unsigned 12-bit values). In prac-
tice, we have equidistant points on both retention time
and inverse mobility axes; therefore we may assume that
R = {1, . . . ,m} and T = {1, . . . , n}, where these index
values correspond to actual times and reduced inverse
mobilities.
We call a single row or spectrum Sr at a retention time r

an IM spectrum. A single column S·,t at a certain t is
called IM chromatogram. The whole matrix S is the IMSC.
Regions of S with a high signal intensity are called peaks.
An IMSC can be visualized as a heat map (Figure 2). In
every IMSC, the reactant ion peak (RIP) produced by the
ionisation of the drift gas is visible as a high-intensity
chromatogram at a reduced inverse mobility of approx-
imately t = 0.48Vs/cm2. When additional analyte ions
occur, the RIP is reduced and may even disappear if the
analyte concentrations are extremely high. We describe
each peak with a set of (at least three) descriptors, which

are its coordinates (r, t) and signal intensity s (for exam-
ple s = Sr,t). Additional parameters may describe the
peak shape or alternative signal values. For typical anal-
ysis algorithms, a triple (r, t, s) suffices, where we use s
as shorthand for any signal at or around (r, t), how ever
computed.
The position and intensity of peaks indicates the pres-

ence and concentration of certain VOCs. Peaks behaving
differentially (presence vs. absence or quantitative differ-
ence) in two classes of measurements (i.e., patients vs.
controls) may represent potential biomarkers that can hint
at specific diseases.

The need for automated peak extraction: our contributions
The fundamental step of peak extraction from a raw
IMSC is the basis for all subsequent data mining classifi-
cation steps [9]. Given a set of measurements, a domain
expert assisted by visualization software (such as Visual-
Now from B&S Analytik, Dortmund, Germany) is able to
interactively pinpoint peak locations within a fewminutes.
An experienced expert can often distinguish weak signals
from noise.
MCC/IMS technology has matured to a point where

it is applied to automated monitoring [10] and moves
towards a high-throughput domain. Here, interactive
expert-driven and computer-assisted peak extraction is
no longer possible. To a lesser extent, the same situ-
ation holds true in exploratory medical studies, where
the amount of available measurements increases beyond
human analysis capabilities. Therefore, automated peak
extraction methods are urgently required. As another
advantage, they offer better reproducibility and increased
speed. However, they may make certain assumptions
about the data and lack in adaptability.
We here provide a modular automated peak extrac-

tion framework. The task of peak extraction is divided

Figure 1 Schematic cross section of an IM spectrometer. Analyte compounds pre-separated by the MCC are ionized in the ionization chamber.
The ions are accelerated by an electric field and move through the drift tube. They cause a voltage change when colliding with the Faraday plate;
this is the measured signal.
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Figure 2 IMSC visualized before and after preprocessing. Top:
Heat map of a raw IMSC. X-axis: reduced inverse mobility t in Vs/cm2;
Y-axis: retention time r in seconds; signal: white (lowest) < blue <

purple < red < yellow (highest), reactant ion peak (RIP) at t=0.48
Vs/cm2. Bottom: IMSC after preprocessing using bc-dn-s (see text).

into four steps that are performed in sequence. Each step
allows us to use different specific methods, implemented
as separate modules. Each (reasonable) combination of
modules, together with individual module parameters,
specifies a concrete peak extraction pipeline and trans-
forms an IMSC into a list of peaks.
In Section ‘Methods’ we introduce the peak extraction

framework, enumerating briefly all pipeline steps. The
next three sections (Sections ‘Modules for preprocessing,
Modules for peak candidate detection, Modules for peak
picking, A module for peak modeling (pme)’) explain the
available modules for each step in detail. Information on
the software architecture and implementation is given in
Section ‘Architecture and implementation’. Results on a
complete dataset are provided in Section ‘Results’, where
we compare the different combinations with each other
and to manual peak extraction. Section ‘Discussion and
conclusion’ concludes.

Methods
Framework overview
We present a framework for automatic processing of an
MCC/IM measurement (ion mobility spectrum-chroma-
togram, IMSC) to discover and quantify all present peaks.

The peak extraction process is divided into four steps
(Figure 3). Each step can be implemented by differ-
ent modules represented by the yellow boxes containing
an abbreviation for each module name. Each resulting
pipeline requires a single IMSC as input and outputs a list
of peaks. Each peak is represented at least by the following
information: name of the measurement, an automatically
given peak ID, reduced inverse mobility, retention time,
signal value, reduced inverse mobility index and reten-
tion time index. Knowing the name of measurement for
each peak is convenient when comparing several peak lists
from different measurements. We now discuss the four
distinct steps.
Preprocessing transforms a (raw) IMSC into another

(processed) IMSC, i.e., no data reduction or peak extrac-
tion takes place. Raw IMSCs are noisy and include the
confounding RIP. To remove both noise and the RIP,
we describe three modules: Baseline Correction (bc),
De-Noising (dn) and Smoothing (s); every module’s input
and output is an IMSC. Baseline Correction (bc) han-
dles the RIP (and the baseline in general), removes it, and
uncovers underlying peaks. De-Noising (dn) estimates the
probability of a data point belonging to noise in order to
remove the noise. Smoothing (s) applies a smoothing filter.
The order of execution is commutable, but none of these
modules can be omitted. Figure 2 shows a measurement
before and after preprocessing.
Peak candidate detection finds a list of potential peaks

within the preprocessed IMSC. We implemented two
alternative modules called Local Maxima (lm) and Cross
Finding (cf ). The input of either module is a processed
IMSC, and the output is a list of candidate peaks, which is
further refined in the next step. Local Maxima finds local
maxima within the two-dimensional IMSC, while Cross
Finding searches for zeros in the first partial derivatives
with respect to both retention time and reduced inverse
mobility.
Peak picking examines the proposed candidates and

generates the final list of extracted peaks. We have so
far implemented three modules. All three methods cal-
culate a representative peak for a set of peaks whose
positions are too close to be considered distinct. Merging
by signal intensity (ms) is a basic method considering the
distance between two candidates; it picks highest signal
peak from a set of close peaks within a surrounding box of
given size. Cluster editing (ce) discovers peak clusters by
solving the cluster editing problem and returns the peak
with highest intensity of each cluster as representative.
EM Clustering (emc) works similarly, but discovers peak
clusters using the EM algorithm.
Peak modeling is an optional final step that can be

used to estimate additional peak parameters, describing
the shape and position more precisely. A module called
Peak model estimation (pme) has been implemented. In
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Figure 3 Steps andmodules of the peak extraction framework PEAX.

time-critical applications this step is generally omitted by
using the “empty module” ε.
The Peak Modeling step can be exchanged with the

Peak Picking step, meaning that each candidate peak is
modeled, and picking is done on the modeled candidate
peaks. In the following section we discuss all modules in
detail and introduce several parameters, remark that user
adjustable parameters are emphasized.

Mixture models and expectation maximization
Several of ourmodules usemixturemodeling, i.e., the data
is viewed as a realization of a mixture distribution

f (x | θ) =
C∑
c=1

ωc fc(x | θc),

where c indexes the C different components, θc denotes
all parameters of distribution fc, and θ = (θ1, . . . , θc) is
the collection of all parameters. We allow that the dis-
tributions fc are of different types, e.g., a uniform and a
Gaussian one. The mixture coefficients ωc satisfy ωc ≥ 0
for all c, and

∑
c ωc = 1.

The goal of mixture model analysis is to estimate
the mixture coefficients ω = (ωc) and the individual
model parameters θc (whose number and interpretation
depends on the parametric distribution fc). Since this
maximum likelihood problem is non-convex, iterative
locally optimizing methods such as the Expectation Max-
imization (EM) algorithm [11] are frequently used. The
EM algorithm consists of two repeated steps: The E-step
(expectation) estimates the expected membership of each
data point x in each component and then ω, given the
current model parameters θ . The M-step (maximization)
estimates maximum likelihood parameters θc for each
parametric component fc individually, using the expected
memberships as hidden variables that decouple the
model. As the EM algorithm converges towards a local
optimum of the likelihood function, it is crucial to choose
reasonable starting parameters for θ . For details, we refer

to our previous work on peak modeling (contained herein
as the module Peak Model Estimation (pme)), where we
describe how to apply the EM algorithm to a mixture
of Inverse Gaussian distributions to infer peak shape
parameters [12].

Modules for preprocessing
Baseline correction (bc)
Intuitively and informally, a baseline spectrum B =
(Bt)t∈T is defined such that Bt is a typical or insignificantly
high value at reduced inverse mobility t when consider-
ing the whole measurement. Formally, for each reduced
inverse mobility t, we consider a histogram Ht with bin
size 1 of the chromatogram S·,t , i.e., Ht,i is the number of
data points with intensity i in the chromatogram. Bader
[13] presented a method that assumes a log-normal model
as baseline and estimate its parameters before subtracting
from spectrum.We developed a newmethod since Baders
method does not erase the whole RIP. In a typical chro-
matogram (mostly noise, one or a few peak(s), no RIP),
most intensities are at noise level, so the most prominent
peak in the histogram indicates that level. In a RIP chro-
matogram, the most prominent peak corresponds to the
RIP level (Figure 4). In both cases and in the intermedi-
ate ones as well, we model the most prominent peak of the
histogram by a Gaussian distribution and the remainder
by the uniform distribution between lowest and highest
observed intensity.
Thus, we describe the histogram Ht by a heterogeneous

two-component mixture model (Gaussian plus uniform)
and estimate its parameters (μ, σ 2 for the Gaussian, ωG
for the Gaussian mixture coefficient) by the EM algo-
rithm, as outlined above. To start the EM iteration, we set
μ to the location of the maximum of Ht and σ 2 := 1,
while ωG is immediately estimated in the E-step. After
convergence, having estimated μ and σ , we say that all
intensities up to μ + 2σ belong to the baseline and adjust
the chromatogram as follows: S′

r,t := max{Sr,t − (μ +
2σ), 0} for all r ∈ R. After repeating this step for every t
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Figure 4 Histograms (y-axis: frequency) of signal intensities
(x-axis) of two chromatograms, a typical one (top) and a RIP
chromatogram (bottom). The prominent intensity peak is modeled
by a Gaussian distribution.

with individually estimated μ(t), σ(t), the baseline Bt =
μ(t) + 2σ(t) has been removed.

De-noising (dn)
The goal of de-noising is to subtract a substantial amount
of noise from the IMSC S(r, t) by estimating whether
the intensity S(r, t) at coordinates (r, t) belongs to a
peak region or can be explained by background noise. In
previous work on de-noising Bader [13] uses a wavelet
transform but applies it only spectrum wise. Our novel
approach is similar to the Baseline Correction (bc) module
in the sense that the EM algorithm is used, but the model
is more complex and the subtraction works differently.
Themethod is not applied to S directly, but to the locally

averaged

Ar,t := 1
(2ρ + 1)2

·
r+ρ∑

r′=r−ρ

t+ρ∑
t′=t−ρ

Sr′,t′ ,

where ρ is the smoothing_radius parameter. The
spectra in our measurements consist of 2500 data

points with a maximum reduced inverse mobility of
t = 1.45Vs/cm2. With respect to tolerance �t :=
0.003Vs/cm2 (value explained in Section ‘Modules
for peak picking’) we obtain a tolerance of (2500 ·
0.003)/1.45 ≈ 5 index units. We chose ρ = 4 to avoid
taking noise into consideration for smoothing.
Considering a histogram of all A-values also with bin

size 1 (see Additional file 1: Supplement E), we iden-
tify three components: the noise component (the one of
interest and to be removed) is modeled as a Gaussian dis-
tribution, the signal component (to be kept) is modeled as
an Inverse Gaussian distribution and a background com-
ponent (that explains every intensity not well explained
by the other components) is modeled as a uniform distri-
bution over all measured intensities. This yields a three-
component heterogeneous mixture model (Gaussian plus
Inverse Gaussian plus uniform), whose parameters are
again estimated by the EM algorithm.
After convergence and a final E-step, we obtain the

expected membership values Wr,t (which are a weighted
normalized values of every probability computed by the
probability models) of each data point (r, t) in the noise
component. We adjust the original IMSC such that only
the non-noise fraction remains, i.e., S′

r,t := Sr,t · (1−Wr,t)
for all r ∈ R, t ∈ T .

Smoothing (s)
The smoothing module consists of two consecutive meth-
ods. The first method is a lowpass filter. The IMSC is
transformed from the time/signal domain into the fre-
quency/signal domain by a two-dimensional fast Fourier
transform (2DFFT). All frequencies above a given fre-
quency threshold (parameter fftcutoff) are removed,
i.e., set to zero intensity. The inverse transformation of the
filtered matrix is done using the inverse two-dimensional
fast Fourier transform (I2DFFT).
The result is smoothed by a Savitzky-Golay filter (SGF)

[14] on local windows using smoothing_radius ρ = 4
(i.e., 9 × 9 data points) around each data point. To handle
the boundaries of the measurement, we expand the data
matrix with a margin containing only zero values. Since
the data at the boundary of the measurement does not
contain important data, this procedure is uncritical. The
SGF computes a weighted average across the window.

Modules for peak candidate detection
We discuss two modules to find peak candidates. Both
use parameter I (intensity_threshold) as signal
intensity threshold.

Local maxima (lm)
This module reports a peak candidate for every local
intensity maximum with intensity at least I in a
surrounding area. To report a point (r, t), we require (1.)
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that (r, t) is a local maximum in the sense the each of its
eight direct neighbors has a lower or equal signal inten-
sity than Sr,t but of at least I, and (2.) that the contiguous
area around (r, t) with signal intensity at least I is of suf-
ficient size. In other words, we discard points where the
surrounding high-intensity area size consists of too few
points. The required number of points is controlled by
a parameter A ≥ 9 (area_size). (By the first condi-
tion, (r, t) and its eight neighbors always account for nine
points; the parameter A can be used to impose stricter
conditions.)

Cross finding (cf)
The basic idea of Cross Finding is to findmaxima based on
the ideas by Fong et al. [15]. To avoid overlooking peaks at
the borders, the matrix’s borders are temporarily padded
by zeros.
We construct two auxiliary matrices DR and DT, both

with the same dimensions |R|×|T |. InDT, discrete deriva-
tives of spectra are stored (partial derivatives with respect
to reduced inverse mobility), DT

r,t := Sr,t+1 − Sr,t ; analo-
gously derivatives of chromatograms are stored in DR. We
describe how DT is analysed.
In each derived spectrum (for fixed retention time r), we

mark downward zero crossings; these are indices t with
DT
r,t−1 ≥ 0 and DT

r,t < 0. The resulting indices t are called
active positions for retention time r.
While we scan through the spectra, we maintain two

data structures. The first one is an active set containing
lists of active positions connected across several spectra.
The second one is a finalized set, where lists from the
active sets are moved when they have been processed.
Initially both sets are empty.
We want to connect active positions between consecu-

tive retention times, i.e., we want to find active positions
for spectrum r + 1 corresponding to active positions in
spectrum r (see Figure 5(left)). To find the correspon-
dences, we use a variant of global alignment between the
two sorted integer lists A and A+ containing the active
positions. The score of aligning A[i] to A+[j] depends on
the distance between A[i] and A+[j]. We use the follow-
ing score function: score(i, j) := (1+|A[i]−A+[j] |)−1 ∈
[0, 1]. To prevent that two positions with a high distance
are aligned, we introduce a gap score γ = 0.1. As we will
thus never align positions A[i] and A+[j] with distance
larger than 9 index units, we can solve the alignment
problem very efficiently by only considering (i, j) with
|A[i]−A+[j] | ≤ 9.
Three scenarios are possible between the aligned

position pairs:

(1) If A+[j] is not aligned to any A[i], it is a “new” active
position, and a new list, containing only A+[j] is
inserted into the active set.
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Figure 5 Cross finding: Active positions (marking potential peak
maxima) are initially unaligned (top) and then connected by
alignment across spectra (bottom; shown as red + and blue x).
The same procedure is repeated over all chromatograms giving
horizontal bands instead of vertical bands. Intersecting the results
from both dimensions results in peak candidates.

(2) If A+[j] is aligned to some A[i], the corresponding
list containing A[i] is already in the active set and
extended by A+[j].

(3) Each A[i] that is not aligned to any A+[j] finalizes its
corresponding active list, and the list is moved into
the finalized set.

After processing all spectra and finalizing each remain-
ing list, we obtain several position lists pointing out
consecutive maxima throughout each spectrum; see
Figure 5(right).
The same procedure is analogously performed with

matrix DR. We report the intersection of positions found
from both matrices (which can be visualised as crosses;
hence the name “Cross Finding”). If more than one posi-
tion overlap is found between two lists, the position with
the highest signal is reported. Each reported point whose
signal exceeds I is a candidate for a peak location.

Modules for peak picking
The previous step, peak candidate detection, consid-
ers each potential peak location separately. Two peak
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candidates may be called close to each other, e.g., by
detecting two local maxima of the same underlying peak
that arise because of noise in the data.
Thus, not every peak candidate corresponds to a VOC

from the breath sample, and the purpose of peak picking
is to thin out the candidate list.
Bödeker [16] introduced a minimum distance in reten-

tion time and in reduced inverse mobility such that
two peaks exceeding those distances belong to distinct
compounds. We write �t for the necessary distance in
reduced inverse mobility and �r for that in retention
time. We use a constant �t := 0.003Vs/cm2 (tol_rim)
for the reduced inverse mobility. In retention time we
use an affine-linear �r := p · r + c for a peak at posi-
tion (r, t), where c := 3 s (tol_rt) and p := 0.1
(tol_percent_rt), as suggested by Hauschild et al. [9].
We now describe three modules for peak picking.

Merging by signal intensity (ms)
We sort the n peak candidates by descending signal inten-
sity into a list [(ri, ti, si)]i=1,...,n with s1 ≥ s2 ≥ · · · ≥ sn,
resolving ties arbitrarily. First we mark each candidate
as unmerged. Iterating the list, we skip merged candi-
dates and report each unmerged candidate we encounter.
When this happens for candidate (ri, ti, si), we find which
peaks fall into the box (ri ± �r) × (ti ± �t) and mark
them as merged, and continue iterating through the list.
In this way, we greedily pick peaks with highest signal as
representative for all peaks in the surrounding box. This
method [16] was used by Hauschild et al. [9].

Cluster editing (ce)
We find clusters of peaks, from which we pick a repre-
sentative (peak with highest signal), by solving an instance
of the weighted cluster editing problem [17,18]: Let G =
(V ,E) be a weighted, undirected graph without loops with
a symmetric similarity weight function w :

(V
2
) → R, such

that E = {{u, v} : w(u, v) ≥ 0}. The graph can be modi-
fied by adding a non-existing or removing an existing edge
{u, v}, which incurs a cost of |w(u, v)|. The costs for several
modifications are added to yield the total cost. The objec-
tive is to find a set of edge modifications with minimum
cost such that the resulting graph consists of disjoints
cliques (i.e., is transitive).
Every candidate peak is a vertex u = (ru, tu). The

similarity w(u, v) between two vertices u, v depends on
their distances on the r- and t-axis. We use the distance
measure

d2(u, v) := 1
2

[(
tu − tv

�t

)2
+

(
ru − rv

�r

)2]

and the similarity weight function (with a constant scaling
factor b)

w(u, v) :=
{
2b(1−d2(u,v)) − 1 if d2(u, v) ≤ 1,
1 − d2(u, v) otherwise.

The range for w(u, v) is therefore [−∞, 2b − 1]. If the
distance between the two candidates u and v is zero, then
the edge (u, v) has the maximum weight 2b − 1. If the
t- and r-distances of u and v are equal to �t and �r,
respectively, then d2(u, v) = 1 and w(u, v) = 0. For larger
distances, the weights are negative. Parameter b called
ce_weight_exponent can be set by the user.
The weighted cluster editing problem is solved with the

yoshiko 2.0 software (http://www.cwi.nl/research/planet-
lisa).

EM clustering (emc)
This module uses the EM algorithm once again. Initially,
each peak candidate represents a component. During the
course of the algorithm, components can be merged. The
remaining components will represent the picked peaks.
Each component is a two-dimensional Gaussian distri-

bution with independent dimensions, i.e., diagonal covari-
ance matrix. Initially, the mean of every component is the
(r, t) location of the corresponding peak candidate. The
standard deviation on the r- and t-axis is set to �r/3 and
�t/3, respectively, since 6σ covers most of a Gaussian bell
curve. In the E-step, the hidden membership coefficients
of each peak to each component are estimated. When a
peak candidate is close to another one, the probability that
the first model also (partially) describes the second candi-
date is comparatively high. In the maximization phase, the
parameters of each component are re-estimated based on
candidate membership using maximum likelihood esti-
mators. In the case of two close candidates, the mean of
both components moves towards their middle. When the
distance between the means of two components drops
below a given threshold, the components are merged: The
component of the candidate with lower signal is removed,
and its weight is added to the remaining model. The E-
and M-steps are repeated until convergence.
When updating the variance by maximum likelihood

estimation, we must be aware that the variance of a com-
ponent described by only one peak tends to zero, which
leads to a singularity in the Gaussian density function.
Therefore, we restrict the estimated standard deviation to
values above the threshold τ := 10−5 Vs/cm2.

Amodule for peakmodeling (pme)
Peak modeling is an optional step that estimates a para-
metric model of a peak shape. We have so far imple-
mented onemodule (simply called PeakModel Estimation
(pme)) using shifted Inverse Gaussian distributions, con-
sider [12]. If it is not desired tomodel the peaks, the empty
ε module (e) can be used instead. It outputs the peak list
without any modification.

http://www.cwi.nl/research/planet-lisa
http://www.cwi.nl/research/planet-lisa
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A whole IMSC is interpreted as a sample from a mix-
ture model of different shifted Inverse Gaussians plus
a uniform background noise model. Each component
(peak) can then be described by seven parameters (three
for both shifted Inverse Gaussians in both r- and t-
dimension, plus one mixture coefficient). The challenge
is to estimate the parameters correctly, especially when
peaks overlap. Again, the EM algorithm is utilized for this
purpose.
For efficiency, each component model is evaluated

only in a surrounding box enclosing the peak. Starting
from the picked peak location, the box borders are
expanded in all four main directions until the signal
intensity drops to zero in each direction. The parame-
ter expansion_size determines how much the box
around the peak is expanded additionally.
When two boxes intersect, both boxes are merged into

their convex hull. After that process we have a set of
boxes containing at least one peak. Now we can apply
EM to each box independently, with the advantage of
processing smaller boxes in contrast to the whole signal
matrix. Starting parameters for each component are esti-
mated from the locations of picked peaks and additional
assumptions: The parameters are chosen such that their
modes correspond to the known (r, t) values, the mean
is set slightly higher (μ = mode + 10−3 index units),
and the standard deviation is set to 1 index unit in both
dimensions. As the model parameters have a rather tech-
nical interpretation, they are translated back into mode,
mean and standard deviation of the distribution, which
are conveniently compared and interpreted.

Architecture and implementation
The framework consists of a number of classes represent-
ing input, output and parameters and, importantly, four
function interfaces, one for each major step of a pipeline.
The steps have unified interfaces to guarantee the mod-
ularity of the framework and the exchangeability of the
modules with future ones.

Input
The standardized .csv format for MCC/IMS measure-
ments is described by Vautz et al. [19,20]. A more efficient
binary format (.ims) has also been developed inter-
nally. An abstract class IMSFile provides the interface
for loading and storing those formats, and the classes
IMSFileCSV and IMSFileIMS instantiate the interface
for the respective format.
The class IMSMeasurement stores a sequence of

retention time points R, a sequence of drift time points
and (proportionally) reduced inverse mobilities T. Addi-
tionally, a measurement_parameters map stores all
meta information e.g. date, time, name or various sam-
ple information of a measurement. It also stores an

IMSMatrix that represents an IMSC (Sr,t), i.e., it
contains the raw intensity values as a matrix.

Output
The class IMSPeak describes a single peak. It stores
the name of the originating measurement, its peak name
(ID), retention time and reduced inverse mobility of the
peaks mode, the signal intensity and the volume (if not
calculated, equal to the intensity). The indices of both
retention time and reduced inverse mobility are also
stored. A map peak_parameters may store additional
parameters, e.g., parameters estimated for inverse Gaussian
distributions, as described in Section ‘A module for peak
modeling (pme)’.
The class IMSPeakList stores the resulting list of such

peaks found by the candidate detection, picking and mod-
eling steps. Every IMSPeakList contains a list named
parameter_names, which stores the names of addi-
tional parameters for every peak. These are the keys for
the above mentioned peak_parametersmap.
The output format is a .csv file with one line per peak

containing the peak’s measurement name, peak name,
retention time, reduced inverse mobility, signal, volume,
retention time index, reduced inverse mobility index and
additional parameters.

Module parameters
Amap called parameter_map stores all peak extraction
parameters (Table 1).

Function interfaces
Using unified function interfaces for each step ensures
the modularity of the pipeline. A preprocessing function
takes an IMSMeasurement and a parameter_map
manipulating the provided matrix.
A candidate detection method requires an IMS-

Measurement and a parameter_map and returns an
IMSPeakList. The picking functions take those results
as input and return an IMSPeakList that contain

Table 1 Parameters used for evaluation

Modules Parameter name Value

s fftcutoff 500

s, dn smoothing_radius 4

lm area_size 9

lm, cf intensity_threshold {5, 10, 15}
ce ce_weight_exponent 26

All picking tol_rt 3

All picking tol_rt_percent 0.1

All picking tol_rim 0.003

pme expansion_size 10

All computations were repeated for three different values of intensity_threshold.



D’Addario et al. BMC Bioinformatics 2014, 15:25 Page 9 of 12
http://www.biomedcentral.com/1471-2105/15/25

Figure 6 Comparing the results of all pipelines with the
manually picked peaks according to sensitivity and PPV. The
green crosses indicate the Pareto front. Top, middle and bottom
figure correspond to signal intensity thresholds I = 5, 10, 15,
respectively. The dashed lines separate two clusters of pipelines.

a subset of the input list. Finally the modeling step
requires again the IMSMeasurement in addition to
an IMSPeakList and the parameter_map. This step
returns an IMSPeakList of the same size as the input
one. To augment a particular step with a new module,
these interfaces must be used.

Results
Dataset
We tested the framework on a dataset of 69 measure-
ments, of which 39 are from different patients suffering
from the same disease and 30 from a control group not
showing corresponding symptoms. The disease is known
but irrelevant with respect to this article and cannot be
disclosed due to confidentiality agreements within the
clinical study approved by the state ethics committee. Our
dataset has been anonymized and serves as an illustration
of the framework. For every of the 69 measurements, a
manually annotated peak list was provided by an expert
annotator.

Evaluation of pipelines
By combining the implemented modules, we obtain 108
individual pipelines. We name the pipelines by concate-
nating the shortcuts of the used modules in order. For
example, the pipeline using (in that order) the mod-
ules Smoothing, De-Noising, Baseline Correction, Local
Maxima, EM Clustering and No Modeling is named
s-dn-bc-lm-emc-e. There are not 144 pipelines
because of redundancy between pipelines using the empty
module as fourth step and those using it as third one
(consider the example before and s-dn-bc-lm-e-emc,
which is the same computational pipeline). We used the
parameters shown in Table 1.
To evaluate each pipeline, we compare the final obtained

peak list with one that was manually annotated by an
expert MCC/IMS development engineer. For the com-
parison, we considered only peaks with a retention
time above 5 s and an inverse reduced mobility above
0.48Vs/cm2, as is standard practice.
Agreement of an automatically obtained peak list with

that obtained by a domain expert is generally considered
favourable. However, one should be aware that manu-
ally annotated list may also be incomplete or contain
extraneous peaks. Nevertheless considering the manually
annotated peaks ground truth, we compute the follow-
ing quantities. Peaks detected by both methods, manual
and automatic, within one measurement are true posi-
tives (TP). (Below, we address the question when peaks
with slightly different location parameters should be con-
sidered the same.) Accordingly, manually annotated peaks
that are not detected by the pipeline are false negatives
(FN) and automatically detected peaks not found in the
manual annotation are false positives (FP). We compute
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the sensitivity SENS := TP/(TP + FN) and the positive
predictive value PPV := TP/(TP + FP). Their geomet-
ric mean G := √

SENS · PPV summarizes both measures,
which is referred to as Fowlkes-Mallows index [21]. Fur-
ther, the Jaccard index between two peak lists is J := TP /
(FN + TP + FP) ∈[0, 1]. From this, we derive a distance
measure d := 1/J − 1 ∈[0,∞]. The distance and geomet-
ric mean are calculated separately for each combination of
pipeline and measurement. To determine these quantities
for a particular pipeline, we average over all measure-
ments of the dataset. It remains to define what it means
that “the same” peak has been detected by both methods,
since the location parameters (r, t) may differ slightly. All
peak picking modules can be used for this decision, and
we chose “Merging by Signal Intensity” (ms). Imagine a
box around every manually annotated peak (r, t) of widths
2�r and 2�t, respectively. Then we successively count
each box containing at least one automatically found peak
and delete it. In case of two or more peaks within the box
we count the closest one.

Ranking the pipelines
Figure 6 shows a plot of SENS against PPV for each
pipeline for different parameter values of the signal inten-
sity threshold I. The Pareto front is visualized in each
plot. Considering only pipelines that are Pareto-optimal,
we rank the ten best ones by their geometric mean and
distance separately. The results of the rankings are pre-
sented in Tables 2, 3 and 4 for signal intensity thresholds
I ∈ {5, 10, 15}, respectively. Note that each of these tables
reports two rankings, the first two columns for the geo-
metric mean G and the both remaining columns for the
distance d.
We find that, for the candidate detection step, almost

all Pareto-optimal pipelines use Cross Finding (cf ). The
picking step is best done by Cluster Editing (ce). For every
signal intensity threshold I, the pipelines split into two

Table 2 Pipelines of the Pareto front for signal threshold
I = 5
Pipeline G d Pipeline

bc-s -dn-cf-ce 0.729 0.850 bc-s -dn-cf-ce

bc-s -dn-lm-ce 0.726 0.853 bc-s -dn-lm-ce

dn-bc-s -cf-ce 0.725 0.855 bc-dn-s -cf-ce

dn-bc-s -lm-ce 0.725 0.861 dn-bc-s -lm-ce

bc-s -dn-cf-emc 0.697 0.862 bc-dn-s -lm-ce

bc-dn-s -cf-emc 0.697 0.868 dn-bc-s -cf-ce

dn-bc-s -cf-emc 0.693 1.012 bc-s -dn-cf-emc

dn-bc-s -cf-mi 0.671 1.016 bc-s -dn-lm-emc

s -dn-bc-lm-ce 0.658 1.018 bc-dn-s -cf-emc

dn-s -bc-lm-ce 0.658 1.021 bc-dn-s -lm-emc

Table 3 Pipelines of the Pareto front for signal threshold
I = 10
Pipeline G d Pipeline

dn-s -bc-cf-ce 0.741 0.776 dn-s -bc-cf-ce

dn-bc-s -cf-ce 0.736 0.783 s -dn-bc-cf-ce

bc-dn-s -cf-ce 0.733 0.785 s -bc-dn-cf-ce

dn-bc-s -cf-emc 0.732 0.811 dn-bc-s -cf-ce

bc-dn-s -cf-emc 0.729 0.822 bc-dn-s -cf-ce

s -bc-dn-cf-emc 0.728 0.825 dn-bc-s -cf-emc

s -dn-bc-cf-emc 0.727 0.827 bc-s -dn-cf-ce

dn-bc-s -lm-ce 0.720 0.836 bc-dn-s -cf-emc

dn-bc-s -cf-mi 0.717 0.838 s -bc-dn-cf-emc

s -dn-bc-cf-mi 0.709 0.839 s -dn-bc-cf-emc

groups. The first group has both relatively low sensitivity
and low positive predictive value, while the second one has
high values for both measures. We note that the pipelines
of the first group are characterized by the utilization of
the pme module (see Additional file 1: Supplements A, B
and C). By modeling, the peak coordinate moves slightly,
yielding larger average differences to the manual anno-
tation based on grid coordinates. So module pme seems
to be unnecessary. However, the volume of a peak may
contain important information (not evaluated here), and
we cannot infer it only from the position and intensity at
those coordinates alone. Concerning the threshold I, the
choice of 10 yields the best results. For both I = 10 and
15, the best pipeline is dn-s-bc-cf-ce. The top values
in Table 3 range around 0.70 for the geometric mean.
We note that individual measurement properties (high
or low noise, characteristic VOCs, etc.) were not taken
into consideration for choosing the module parameters.
An additional step of parameter estimation from global
measurement properties would likely improve the results.

Table 4 Pipelines of the Pareto front for signal threshold
I = 15
Pipeline G d Pipeline

dn-s -bc-cf-ce 0.718 0.916 dn-s -bc-cf-ce

s -dn-bc-cf-ce 0.718 0.916 s -dn-bc-cf-emc

s -dn-bc-cf-emc 0.718 0.916 s -bc-dn-cf-emc

dn-s -bc-cf-emc 0.716 0.921 dn-s -bc-cf-emc

s -dn-bc-cf-mi 0.707 0.923 s -dn-bc-cf-ce

dn-s -bc-cf-mi 0.706 0.923 s -bc-dn-cf-ce

dn-bc-s -cf-emc 0.697 0.959 s -dn-bc-cf-mi

dn-bc-s -cf-ce 0.696 0.959 s -bc-dn-cf-mi

bc-dn-s -cf-emc 0.695 0.962 dn-s -bc-cf-mi

bc-dn-s -cf-ce 0.693 1.045 dn-bc-s -cf-emc
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Discussion and conclusion
We presented the first framework for fully automatic pro-
cessing of MCC/IMmeasurements, consisting of different
modules for four distinct computational steps. The pre-
sented framework processes a single IM measurement
and outputs a peak list within a few seconds. A domain
expert, who before had the time consuming task of peak
annotation, may now quickly verify the resulting auto-
matically generated peak list and manually reject a few
potential false positives. In practice, higher sensitivity of
the automated pipeline (at the cost of more false positive
predictions) may be desirable, as this type of error can be
better compensated by statistical learningmethods during
classification than a false negative rate.
The best pipeline achieves a geometric mean of sensitiv-

ity and positive predictive value of 0.741 when compared
to a manual expert manual annotation, without tuning
the parameters for the single modules. Since the manu-
ally extracted peaks are annotated by one single expert,
one cannot be certain whether that solution is fully cor-
rect; some of the peaks evaluated as false positives in our
pipelines might in fact be false negatives of the expert, but
this is difficult to quantify, except on a case-by-case basis.
Hauschild et al. [9] discovered that the hand picking

method by domain experts yields the best results for clas-
sification compared to automatic peak picking methods
(e.g. IPHEx [22] or Visual Now [23]). Thus it is reasonable
to compete with a domain expert.
The state of the art today is that every expert has his own

“manual procedure” for peak extraction, based on certain
human-observable features of the visualized data matrix.
We observed two experts and attempted to infer their
“internal algorithm” and express this knowledge as our
parameters. The most significant parameter values were
determined by domain experts’ experiences, i.e. the tol-
erances used for the picking step. The intensity threshold
from the candidate detection step was tested empirically.
We reported on three different values (Section ‘Results’).
For the other parameters we used values selected by our
own experience. These last parameters do not influence
the results as much as the previously mentioned ones.

Future work
Our future work will consist in the effort to estimate
as many of the algorithms’ parameters as possible from
the given data matrix. The tolerance parameters of the
picking step were so far determined by domain experts’
experiences, and it will be difficult to learn them purely
from the data. For some other parameters it may be pos-
sible, e.g. for the signal intensity by determining the noise
level of the background noise. Also, for the area size of the
peak candidate detection step and the expansion size for
the peak modeling we see a possibility to automatically
determine the values.

The framework with the modules described in this arti-
cle are available at http://www.rahmannlab.de/research/
ims, as well as the anonymized datasets and Additional
file 1: Supplement.
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