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Abstract

Background: Array based methylation profiling is a cost-effective solution to study the association between
genome methylation and human disease & development. Available tools to analyze the Illumina Infinium
HumanMethylation450 BeadChip focus on comparing methylation levels per locus. Other tools combine multiple
probes into a range, identifying differential methylated regions (DMRs). These tools all require groups of samples
to compare. However, comparison of unique, individual samples is essential in situations where larger sample sizes
are not possible.

Results: DMRforPairs was designed to compare regional methylation status between unique samples. It identifies
probe dense genomic regions and quantifies/tests their (difference in) methylation level between the samples. As
a proof of concept, DMRforPairs is applied to public data from four human cell lines: two lymphoblastoid cell lines
from healthy individuals and the cancer cell lines A431 and MCF7 (including 2 technical replicates each).
DMRforPairs identified an increasing number of DMRs related to the sample phenotype when biological similarity
of the samples decreased. DMRs identified by DMRforPairs were related to the biological origin of the cell lines.

Conclusion: To our knowledge, DMRforPairs is the first tool to identify and visualize relevant and significant
differentially methylated regions between unique samples.
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Background
Epigenetic (de)regulation, including DNA (CpG) methyla-
tion, is associated with development, differentiation
and many human diseases [1-3] including the initiation
and progression of various cancers [3-8]. While the
primary DNA sequence is mostly stable during the
lifetime of an individual, the epigenome is highly dynamic
and responsive. Because of this, it provides valuable
information about (past) (micro-)environmental con-
ditions in the context of human disease and develop-
ment [9,10].
DNA CpG methylation is routinely investigated on a gen-

ome wide scale [2,3]. The methylation profile can be
assessed using micro-arrays or sequencing by applying (1)
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methylation-sensitive restriction enzymes or immunopre-
cipitation (anti-5mC) or (2) bisulfite-based treatment,
which converts unmethylated cytosines into uracils [11].
The Illumina Infinium HumanMethylation450 BeadChip
(450 K) is a bisulfite-based, cost-effective, two-color array
querying over 480,000 independent genomic positions (99%
Refseq genes, 96% CpG islands) [12-14]. Various tools are
available to pre-process and analyze the 450 K data, but dif-
ferential methylation is primarily detected per locus or by
comparing differential patterns across regions using groups
of samples [15]. The latter is implemented in IMA and
bumphunter. Indeed, IMA offers region based analysis [16],
but it does not work when using unique samples. Bum-
phunter identifies regional changes in the regression coeffi-
cient between methylation status and phenotype.
Therefore, bumphunter (like IMA) requires groups of sam-
ples of sufficient size to estimate this coefficient for each
probe [17]. However, when analyzing small numbers of
samples with unique characteristics (e.g. normal and
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affected tissue of a clinically unique patient or a manipu-
lated cell model), large series of samples are not available
and current methods cannot be applied. Although larger
series of samples are preferred (biological replicates or
more patients), comparison of unique samples is desired in
such a situation. DMRforPairs was designed to address this
problem by comparing regional methylation status between
unique samples.

Implementation
The algorithm consists of a number of phases (Figure 1A)
with fully customizable parameters which will be discussed
below:

1) Recoding of the probe classes
2) Identification of regions with sufficient probe density
3) Quantification and testing of (difference in)

methylation status.
Figure 1 Flowchart and overview of DMRforPairs results of the Illumina da
regions, quantifying and testing methylation differences and exporting the
remained after quality control. Subsequently, probes not associated to any
145,537 probes (35%) were included in 29,404 potential regions of interest.
of regions identified in the various pairwise analyses. * = relevant indicates
0.05. “repl.” indicates technical replicates. (C,D) The density plots illustrate t
the number of probes in each region. Only the comparisons of the two ca
depicted as the technical replicates yielded no significant DMRs.
Data import and pre-processing
As input DMRforPairs requires the methylation percentage
of each CpG site in each sample. It was originally designed
for the 450 K array, but is applicable to any platform that
generates a methylation percentage per CpG site and has
sufficient coverage. For example, Additional file 1 illustrates
the algorithm’s applicability to data generated using Nim-
blegen microarrays and the McrBC protocol (CHARM).
DMRforPairs does not provide functions to import, filter
(cross-hybrization, SNPs in probe sequencing) or pre-
process 450 K data because of the existence of a number of
excellent, well maintained pre-processing R-pipelines
[11,15,16,18-22]. In the package documentation examples
are provided on how to extract 450 K data for
DMRforPairs using the lumi (http://www.bioconductor.
org/packages/release/bioc/html/lumi.html), IMA (http://
ima.r-forge.r-project.org/) and minfi (http://www.
bioconductor.org/packages/2.12/bioc/html/minfi.html)
ta. (A) The subsequent steps of recoding probe classes, identifying
results are described in detail in the main text. Briefly, 473,151 probes
of the 11 classes or not included in any of the regions are discarded.
Finally, these were assessed for methylation differences. (B) Number
regions with |ΔM| > 1.4, ** = significant indicates relevant + padjusted ≤
he distribution of all/the relevant/the significant regions with regard to
ncer cell lines (C) and the pair of lymphoblastoid cell lines (D) are
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pipelines. The output of these pipelines serves as
input for DMRforPairs.

Recoding of the probe classes
Illumina assigns the majority of probes to eleven specific
classes according to their association to one or more
functional regions (relation to gene: Body, 5'UTR, 3'UTR, 1st

exon, TSS1500, TSS200; relation to CpG island: Island,
Northern/Southern Shelf & Shore [12]). Highly detailed
classification may result in too low probe density per
class as DMRforPairs investigates probes in close proximity
to each other within each class individually. DMRforPairs
therefore allows custom grouping and/or selection of clas-
ses. Three commonly used schemes are hard-coded in the
software: (0) retain all 11 classes, (1) group on relation to
gene/transcription start site/CpG island or (2) put all probes
in one class. The last option ignores the assigned classes as
it might be desirable to just let DMRforPairs identify DMRs
without providing information about probes that belong to
the same functional class. This option can also be used in
case this functional classification is unknown.

Identification of regions with sufficient probe density
A region of interest meets the following criteria:

1) Neighboring probes lay within dmin bp of each other
(default = 200),

2) The number of probes per region ≥ nmin (default = 4),
and

3) All probes are annotated to the same functional
class (please see above).

Default settings of dmin are based on decreasing correl-
ation between methylation status of adjacent loci when
evaluated at inter-locus distances between 0 and 1 kb
(200 bp is reported to correlate well) [11,23]. The default
Figure 2 Tuning of the of dmin and nmin parameters. (A) Number of reg
using different settings of dmin and nmin. dmin denotes the maximal distanc
same region. nmin denotes the minimal number of probes in a region (per
annotated to at least one Illumina class grouped according to gene/transc
statistics can be generated using the tune_parameters function in the algor
value for nmin is based on the theoretical minimal num-
ber of 2×4 observations required for statistical testing
using Mann–Whitney U test. Probes annotated to more
than one class are included in multiple regions and fully
identical regions from different classes are merged into
one region with a combined class. Figure 2 illustrates
the number of regions identified for various settings of
dmin and nmin and the fraction of all probes included in
the regions. A function is available in DMRforPairs to
generate these benchmarking results for specific data
sets and tune the settings of nmin and dmin.

Quantification and testing of methylation status
As recommended, the methylation percentage β and the
M-values (logit2(β)) were used for visualization and statis-
tical computations respectively [24]. Descriptive statistics
are computed by DMRforPairs for all regions and samples
(optional parallelization). These consist of median methy-
lation levels (M and β values) and pairwise differences in
median methylation level between all samples. If the me-
dian difference in M value between any pair of samples is
sufficiently large in a specific region (> |ΔM|), the differ-
ence is formally tested using the Mann Whitney U or
Kruskal-Wallis test. Pairwise testing is performed if indi-
cated (n > 2 & pKruskal-Wallis ≤ 0.05). An α of 0.05 after ad-
justment for multiple testing (Bejamini & Hochberg
(FDR) [25]) is used to select significant regions (default
settings). α and the method to correct for multiple testing
can be specified by the user.
Several issues need to be kept in mind when choosing

the algorithm’s parameters and interpreting (test) results.
In general, setting the algorithm’s parameter more strin-
gently (|ΔM|↑,nmin↑,dmin↓)) reduces the amount of re-
gions to be tested, but also discards potential DMRs that
are less optimally covered by the probes on the array.
Concerning the |ΔM| threshold it is important to be
ions identified and (B) fraction of all probes included in these regions
e in bp allowed between two adjacent probes to be accepted in the
sample). All runs of the algorithm were done using the 415,712 probes
ription start site/CpG island (recode parameter = 1). These benchmark
ithm (optional parallelization).



Figure 3 DMRforPairs output. (A) One row of the HTML table describing one DMR. Thumbnail, genomic annotation and descriptive statistics
regarding (the difference between) the samples are presented as well as links to figures/tables illustrating the methylation patterns in the samples
in detail. Direct links to the genomic region in two genome browsers are also provided (Ensembl & UCSC). Region IDs are generated on the fly
by the regionfinder function and are specific to a dataset and to a set of DMRforPairs parameters. They are therefore not interchangeable
between datasets/experiments and serve mainly as identifiers during exploration of the dataset. (B) Methylation level per probe (M and β values)
plotted against its genomic position. These plots are generated for all relevant and significant regions. (C) Annotated visualization of DMRs
(β values) ±10 kb. Black box indicates the DMR. Transcripts overlapping/near the region are retrieved from Ensembl. These plots are optionally
generated for all relevant and significant regions. (D) Additional statistics (STATS link in table) as provided for each region.
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aware that the default setting (1.4) lies at the upper
bound of the range (0.4-1.4) recommended by Du et al. A
less stringent setting might result in a higher detection
rate but reduces the true positive rate and increases the
amount of multiple testing performed by DMRforPairs
[24]. Also, correlation of methylation levels of CpG sites
located closely together on the genome should be kept in
mind. The potential presence of correlation warrants care-
ful evaluation of statistical test results related to the inde-
pendency assumption even though methylation levels at
specific sites are technically (different probes) and bio-
logically (different genomic positions) independent. Fi-
nally, comparisons with a higher number of probes per
region have a higher power and are more likely to survive
multiple testing. Therefore, the list of significant DMRs is
theoretically biased towards regions with more probes (i.
e. larger sample size). This bias was limited in a com-
parison of samples which are derived from a strongly
biologically different origin (Figure 1B,C). When com-
paring the more similar samples there was some over-
representation of regions with a high number of probes
(28 DMRs, Figure 1B,D).

Visualization, export and exploration
HTML tables listing all, only relevant (median differ-
ence ≥ ΔM) and only significant regions are generated
with links to genome browsers (Figure 3A, application
of the R2HTML package [26]). Links are also provided
to images depicting the observed methylation profiles and
a text file with additional descriptive statistics (Figure 3).
Pairwise plots are generated in case of more than two
biological samples. For relevant and significant DMRs
an extended output can be generated including thumb-
nails in the HTML tables and visualizations that also
depict transcripts annotated (close) to the region (Figure 3C,
application of the Gviz & GenomicRanges packages
[27,28]). In addition, DMRforPairs includes a number of
functions to further inquire the data. Methylation status
of genes of interest, regions identified by DMRforPairs
and custom genomic intervals can be visualized, anno-
tated and quantified/tested.

Results and discussion
Dataset
As a proof of concept, DMRforPairs is applied to a public
dataset including two commercially available EBV trans-
fected lymphoblastoid cell lines from healthy individuals
(NA17105 (African American male) and NA17018 (Chinese
female), Coriell Institute for Medical Research (NJ, USA)
(http://ccr.coriell.org/)). The dataset also includes the breast
cancer cell line MCF7 [29] and HPV negative squamous-
cell vulva carcinoma cell line A431 [30,31]. Data is available
at Illumina’s website (http://support.illumina.com/down-
loads/genomestudio_software_20111.ilmn ) [12,13] and was
processed in GenomeStudio V2011.1 and R 3.0.1 (Windows
7 × 64) and 2.15.2 (Redhat Linux × 64) using Illumina’s
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annotation manifest (v. 1.1, http://support.illumina.com/
downloads/humanmethylation450_15017482_v12.ilmn).
Import and pre-processing was carried out using the
LUMI package (http://www.bioconductor.org/packages/
release/bioc/html/lumi.html) [19] following the optimized
“lumi: QN + BMIQ” pipeline [11]. This includes exclusion
of poorly performing probes (p < 0.01, n = 713), color ad-
justment, quantile normalization and correction for probe
type bias (Infinium I vs II) using the BMIQ algorithm [20].
Differentially methylated regions were identified by apply-
ing the DMRforPairs algorithm using the default settings
(Figure 1, dmin = 200, nmin = 4, ΔM = 1.4, recode = 1, α =
0.05, correction for multiple testing = Benjamini Hoch-
berg (FDR)). The networks/enrichment analyses were per-
formed in IPA (Ingenuity® Systems, www.ingenuity.com,
Core analysis; default settings).

Results
In the Illumina manifest, 12% of the probes were not
assigned to any of the 11 categories (discarded in this ana-
lysis with recode parameter set to 1). 35% of the remaining
probes was included in one or more regions, leading to
29,404 potential regions of interest. Samples were com-
pared pairwise in descending order of biological similarity:
technical duplicates, lymphoblastoid cell lines and cancer
cell lines (average of duplicates) (Figure 1, Additional file 2).
As expected, no DMRs were identified when comparing

the pairs of technical replicates (Figure 1B). In the two
lymphoblastoid cell lines, 28 DMRs were identified
(Figure 1B,D). Fitting with the Chinese and African
American origin of the cell lines, top DMRs were associ-
ated with regions encoding human leucocyte antigens in-
volved in immune response and known to be differently
methylated between populations [32] (e.g. HLA-DRB1
(rank 2), HCG27 (rank 4), HLA-K / HCG4B (rank 7)).
Enrichment/network analysis in IPA showed significant
overrepresentation of genes associated with immuno-
logical diseases. This concerned various auto-immune
diseases and lymphoma (9 genes, p = 0.000271-0.0293
depending on the subcategory; ACTA1, CHST8, GABR1,
HCG27, HLA-DRB1, IGF2-AS, POU5F1, ZNF165,
VTRNA2-1).
Between A431 and MCF7 2,626 DMRs were identified

(Figure 1B,C). On top of the list was FAM195A a gene
with known low expression [33] and complete methyla-
tion in MCF7. In A431, the region showed complete de-
methylation, but no public expression data was available
for this cell line. The rest of the top-5 consisted of homeo-
box genes which are frequently methylated in breast can-
cer and active in squamous cell carcinoma [34,35]. Cancer
was by far the strongest overrepresented disease category
in the enrichment/network analysis (989 genes, p = 1.31E-
19 - 2.71E-4). Enriched subcategories included breast can-
cer (n = 234, p = 2.06E-10), head and neck (squamous cell)
carcinoma (n = 131, p = 1.30E-7) and genital tumor
(n = 192, p = 1.94E-7).

Conclusions
DMRforPairs defines genomic regions using local probe
density and optionally functional homogeneity. It quanti-
fies, tests, annotates and visualizes (differential) methyla-
tion patterns between unique samples including pairwise
comparison of samples if n > 2. Here, it is shown that in
two lymphoblastoid cell lines from healthy individuals
and cancer cell lines A431 and MCF7 (including 2 tech-
nical replicates each), DMRforPairs was able to identify
an increasing number of DMRs related to the sample
phenotype when biological similarity of the samples de-
creased. DMRs identified by DMRforPairs were related
to the biological origin of the cell lines. In addition,
DMRforPairs has been applied successfully in the ana-
lysis of integrated genome-wide epigenetic and expres-
sion profiles of germ cell cancer cell lines [36].

Availability & requirements
Project name: DMRforPairs
Project home page: http://bioconductor.org/packages/
release/bioc/html/DMRforPairs.html
http://www.martinrijlaarsdam.nl/DMRforPairs/
Operating system(s): Platform independent
Programming language: R
Other requirements: R 2.15.2 or higher. Bioconductor
packages: Gviz (> = 1.2.1) [27], R2HTML (> = 2.2.1)
[26], GenomicRanges (> = 1.10.7) [28] and parallel. The
lumi [19] package is suitable to import and pre-process
450 K data for use with DMRforPairs.
License: GPLv3
Restrictions to use by non-academics: none

Additional files

Additional file 1: R script illustrating the use of DMRforPairs with
CHARM instead of 450 K data.

Additional file 2: DMRforPairs output for the comparison of
A431-MCF7 and NA17018-NA17105. Please start from the HTML files
in each folder. Available via the BMC Bioinformatics website.
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DMR: Differentially methylated region. In this context a DMR is defined as a
region with sufficiently large median difference in methylation between two
or more samples which proved to be significant after correction for multiple
testing.
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