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Abstract

Background: Mutation of a single amino acid residue can cause changes in a protein, which could then lead to a
loss of protein function. Predicting the protein stability changes can provide several possible candidates for the
novel protein designing. Although many prediction tools are available, the conflicting prediction results from
different tools could cause confusion to users.

Results: We proposed an integrated predictor, iStable, with grid computing architecture constructed by using
sequence information and prediction results from different element predictors. In the learning model, several
machine learning methods were evaluated and adopted the support vector machine as an integrator, while not
just choosing the majority answer given by element predictors. Furthermore, the role of the sequence information
played was analyzed in our model, and an 11-window size was determined. On the other hand, iStable is available
with two different input types: structural and sequential. After training and cross-validation, iStable has better
performance than all of the element predictors on several datasets. Under different classifications and conditions
for validation, this study has also shown better overall performance in different types of secondary structures,
relative solvent accessibility circumstances, protein memberships in different superfamilies, and experimental
conditions.

Conclusions: The trained and validated version of iStable provides an accurate approach for prediction of protein
stability changes. iStable is freely available online at: http://predictor.nchu.edu.tw/iStable.

Background
Protein structure is highly related to protein function. A
single mutation on the amino acid residue may cause a
severe change in the whole protein structure and thus,
lead to disruption of function. A well-known instance is
the sickle cell anemia, which is caused by a single muta-
tion from glutamate to valine at the sixth position of the
hemoglobin sequence, leading to abnormal polymerization
of hemoglobin and distorting the shape of red blood cells
[1]; single amino acid mutation could also change the
structural stability of a protein by making a smaller free
energy change (ΔG, or dG) after folding, while the differ-
ence in folding free energy change between wild type and

mutant protein (ΔΔG, or ddG) is often considered as an
impact factor of protein stability changes [2]. From the
viewpoint of protein design, it will be very helpful if
researchers could accurately predict changes in protein
stability resulting from amino acid mutations without
actually doing experiments [3]. If the mechanism by which
a single site mutation influences protein stability could be
revealed, protein designers might be able to design novel
proteins or modify existing enzymes into more efficient,
thermal-stable forms, which are ideal for biochemical
research and industrial applications in two ways: first, a
thermal-stable enzyme could function well in high tem-
perature environment and therefore, reveal higher effi-
ciency due to the relatively higher temperature; second, a
structurally stable protein could have longer a half life
than relatively unstable ones, meaning a longer usage
time, which could economize the use of enzymes.
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As the data regarding protein stability changes based on
residue mutations is collected, a comprehensive and inte-
grated database for protein thermodynamic parameters is
built and published. ProTherm is constructed and can be
queried by using a web-based interface http://gibk26.bio.
kyutech.ac.jp/jouhou/protherm/protherm.html. All the
data collected in ProTherm is all validated through actual
experiment and collect from published original articles. In
this database, researchers access information on the
mutant protein, experimental methods and conditions,
thermodynamic parameters, and literature information.
Due to the richness of data, ProTherm has been a valuable
resource for researchers trying to know more about the
protein folding mechanism and protein stability changes
[4]. In the past decades, many of the available prediction
methods designed for predicting protein stability changes.
Some of these researched the physical potential [5-7],
some were based on statistical potentials [6,8-13] and
some on empirical approaches that combined physical and
statistical potentials to confer how the protein stability
would change upon mutations [14-18]; still others were
based on machine learning theories, by converting the
energy and environment parameters into digital inputs for
different methods such as support vector machine, neural
network, decision tree and random forest [19-26]. Nowa-
days, there are many web-based prediction tools available,
and each of them has its own capabilities and advantages,
although none of them is perfect. As different predictors
give conflicting results, it may be difficult for the user to
decide which result is correct. An integrated predictor
could relieve the user from such dilemma [27].
In this study, we construct an integrated predictor,

iStable, which uses a support vector machine (SVM) to
predict protein stability changes upon single amino acid
residue mutations. Integration of predictors helps to com-
bine results from different predictors and use the power of
meta predictions to perform better than any single method
alone. Considering the effects of nonlocal interactions,
most prediction methods need three-dimensional informa-
tion on the protein in order to predict stability changes;
however, recent research has proven that sequence infor-
mation can also be used to effectively predict a mutation’s
effects [9,19-22,24-26,28,29]. We collected the prediction
results from different types of predictors used for con-
structing iStable by submitting a compiled dataset to
them, and applied the sequence information together as
inputs for SVM training. When the user submits a new
prediction task, iStable will determine whether the muta-
tion is a stabilizing or destabilizing mutant. As previous
works have mentioned, correctly predicting the direction
of the stability change is more relevant than knowing its
magnitude [19,22].
In the construction of iStable, five web-based prediction

tools were chosen as element predictors: I-Mutant2.0 [20],

MUPRO [22], AUTO-MUTE [30], PoPMuSiC2.0 [31], and
CUPSAT [10]. From these predictors, seven models were
chosen for in-model training, as described later. During
iStable training, we found that the element predictors
usually performed well when handling destabilizing muta-
tions, but when it came to stabilizing mutations, the ele-
ment predictors did not show very satisfying performance,
leading to a high specificity combined with a relatively low
sensitivity. After training, we designed two different pre-
diction strategies for users that provided two formats of
input data. Both showed better prediction performance
than all of the other element predictors, which was espe-
cially apparent when predicting the effects of stabilizing
mutations. Moreover, we undertook various analyses to
evaluate iStable in order to make it more precise for user
applications. The constructed iStable web-based tool,
which provides two strategies for prediction, is available at
http://predictor.nchu.edu.tw/iStable/.

Methods
Compilation of training datasets
The compilation of our training dataset can be divided
into six steps, which are summarized in Figure 1.
Step 1 Collection of training data
Two datasets, collected from ProTherm, were used for

our model training: the first is Capriotti’s training set
used for the construction of I-Mutant2.0 (available at
http://gpcr2.biocomp.unibo.it/~emidio/I-Mutant2.0/
dbMut3D.html, which includes data from 1948 mutation
sites of 58 proteins, and is referred to as dataset S1948
for convenience. The second source is the dataset
Dehouck used in training of PoPMuSiC2.0 (available at
http://bioinformatics.oxfordjournals.org/cgi/content/full/
btp445/DC1), which includes data from 2648 mutation
sites of 119 proteins; this dataset is named S2648 for
convenience.
Five types of information can be obtained from these

two datasets:

1) The ID of the protein corresponds to its protein
data bank (PDB) ID, which allows element predictors
to obtain 3D information for proteins by getting the
structure data (in PDB file format).
2) The site of mutation and the residue site of the
native and mutant proteins.
3) The temperature used in the experiment.
4) The pH used in the experiment.
5) The relative stability change of mutant proteins
(ddG or ΔΔG), an index of stability change that has
been used in previous studies.

Step 2 Deletion of redundant data
In dataset S1948, many of the mutations share the

same PDB IDs and have the same mutation site and ddG
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value, resulting in redundant data that may lead to biases
in training. In addition to these redundant sites, some
data still has the same PDB ID and mutation site, with
only the pH and temperature differing slightly. We
removed the redundant data and named the resulting
dataset M1311, as there remained data from 1,311 muta-
tions of 58 proteins.
The S2648 dataset shares the same PDB ID and muta-

tion site information as M1311 for 815 mutations; we had
to remove this data because we needed an unbiased train-
ing dataset. After having removed the redundant data, the
remaining dataset was named M1820 and contained data
from 1,820 mutations in 119 proteins.
Step 3 Definitions of positive and negative data
We defined the stabilizing data as positive (+) with a ddG

value > 0, and the destabilizing data as negative (-) with a
ddG value < 0; this convention for ddG is consistent with

I-Mutant2.0 and AUTO-MUTE. PoPMuSiC2.0 uses a dif-
ferent convention for ddG, so we inverted the sign of ddG
in M1820.
Step 4 Correction of sequence information
To make our predictor more adaptable so that it can

handle novel protein mutations, we also included
sequence data into training datasets M1311 and M1820.
The sequence information is presented as a segment of
protein sequence centered on the mutated site, with win-
dow sizes ranging from 7 to 19 tested separately.
Since the position of residues can be expressed as either

absolute or relative, directly applying FASTA text will lead
to inconsistencies with the training data, which could
cause problems when using I-Mutant2.0 and MUPRO. By
checking the consistency of the sequence at the mutation
site and the latest sequence text manually, we found sev-
eral differences between relative and absolute positions of

Figure 1 Data Processing of iStable. After collecting two datasets used for training I-Mutant2.0 and PoPMuSic2.0, we integrated them into a
non redundant dataset of protein stability change data, with the information of secondary structure and RSA value on the mutant site included.
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sequence first residue in proteins and corrected them to
make the attached sequence information consistent with
the training dataset; the final integrated dataset was called
M3131. The datasets comprise M1311, M1820, and
M3131 can be fetched in Additional file 1.
Step 5 Classification of secondary structure and rela-

tive solvent accessibility
Previous studies have mentioned the secondary struc-

ture and relative solvent accessibility (RSA) of the muta-
tion site as effective predictors of the accuracy of protein
stability-change prediction [22,24]. We analyzed the distri-
bution of data based on the secondary structure and RSA
of the mutation site. Secondary structures were classified
as helix (a helix), sheet (b sheet), or other (turn and coil).
Its range determined the RSA: values between 0% and 20%
were classified as “B” (buried), between 20%~50% as “P”
(partially buried) and between 50% and 100% as “E”
(exposed). This RSA classification is based upon those
used in previous studies [24,30].
Step 6 Categorization of proteins
The motivation for predicting protein stability changes

is to find a mechanism to modify existing enzymes into
more stable forms. We accessed the PDB to determine
which superfamilies the proteins in the training dataset
belonged to and found three major categories: enzymes,
nucleic acid binding proteins, and protein-protein inter-
action related (ubiquitin-related, for example). The data-
set can be fetched in Additional file 2.

Element predictors
Five element predictors were chosen:

1. I-Mutant2.0 adopts an SVM model to approximate
the ddG value of the protein and predicts the direction
of stability change. Both sequence (I-Mutant_SEQ)
and structure (I-Mutant_PDB) information is used in
iStable construction.
2. AUTO-MUTE computes the environmental distur-
bance caused by a single amino acid replacement.
From the four models of prediction available in
AUTO-MUTE, we chose the random forest (RF)
(AUTO-MUTE_RF) and support vector machine
(AUTO-MUTE_SVM) strategies for our model
construction.

3. MUPRO adopts an SVM model to predict stability
changes due to single-site mutations, primarily from
sequential information, along with the use of optionally
provided structural information. The result predicts
only whether the change will lead to destabilization or
not, without providing an actual ddG value. During the
construction of iStable, we found that the regression
task and the neural network approaches were broken.
We used the SVM model (MUPRO_SVM) as an ele-
ment predictor.
4. PoPMuSiC2.0 applies an energy-based function
and uses the volume change of a protein upon single
amino acid mutation to predict the stability change.
5. CUPSAT predicts protein stability changes using
structural environment-specific atom potentials and
torsion angle potentials. The user can submit predic-
tions by typing in the PDB ID or uploading a custom
PDB file.

Summaries of the element predictors are given in
Table 1.
Obtaining prediction results from element

predictors
When using I-Mutant2.0, in addition to the PDB ID, the

sequential strategy (I-Mutant_SEQ) was also applied, by
choosing the direction-deciding prediction strategy; in the
output form, we extracted the stability-change direction.
When submitting to AUTO-MUTE, we entered the PDB
ID, mutation, temperature, pH value, and chain code (if
available). The prediction results using RF and SVM were
collected separately; we extracted the direction of stability
change (decreased/increased) in the output form. Since
MUPRO uses protein sequence as its input information,
we obtained the sequence from a FASTA file downloaded
beforehand and then pasted the sequence into the input
form and designated the site of mutation and the mutated
amino acid code. The output form gives the user three
types of prediction results, and we took all of them into
consideration. For some reason, the regression and neural
network models in the website did not work when
constructing iStable; the regression model always gave a
result of “INCREASE”, and the neural network predictor
always gave “DECREASE” as a result. Presently, only the
SVM strategy is applied in the construction of iStable.

Table 1 Summaries of element predictors

Predictors References URLs

I-Mutant2.0 [20] http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi

AUTO-MUTE [30] http://proteins.gmu.edu/automute/

MUPRO [22] http://www.ics.uci.edu/~baldig/mutation.html

PoPMuSiC2.0 [31] http://babylone.ulb.ac.be/popmusic/

CUPSAT [10] http://cupsat.tu-bs.de/

List of chosen predictors used in the construction of iStable with the corresponding references and URLs.

Chen et al. BMC Bioinformatics 2013, 14(Suppl 2):S5
http://www.biomedcentral.com/1471-2105/14/S2/S5

Page 4 of 14

http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi
http://proteins.gmu.edu/automute/
http://www.ics.uci.edu/~baldig/mutation.html
http://babylone.ulb.ac.be/popmusic/
http://cupsat.tu-bs.de/


PoPMuSiC2.0 accepts PDB ID, chain code (if available),
and site information as input data; the predicted ddG is
then extracted. CUPSAT accepts either the PDB ID or the
PDB file format in order to predict changes in stability,
and we chose to use the uploaded PDB file. We obtained
the secondary structure, the relative solvent accessibility of
the mutated site, and the predicted ddG value. All the
work described was completed with Java program.

Encoding schemes of support vector machine
After compared witch various algorithms, SVM was
selected as the learning model for iStable, protein stability
changes upon mutation can be predicted by using struc-
tural and sequential information, as in previous studies. In
our research, we used the prediction results from the ele-
ment predictors as input data with local sequence infor-
mation included. The SVM converted the data into a
multi-dimension vector. After distributing the data into
multi-dimension space, the SVM determined a hyperplane
used to split the data into different groups. The trained
integrated predictor iStable uses SVM to predict the direc-
tion of stability change of the protein input data, that is, to
determine whether the target is a stabilizing or a destabi-
lizing mutant. In this work, we used LIBSVM (Library for
support vector machines) 2.89 [32] to achieve the SVMs
implemented in this study, and the kernel adopted the
radial basis function (RBF). While training, two crucial
parameters were tuned to optimize the performance of
prediction, the kernel parameter g and the penalty para-
meter C. The value of g and C were tuned to 0.03125 and
2, separately.
When encoding our training data into the form used by

the SVM, the input data was constructed using two
schemes: sequence scheme and website results scheme. In
the sequence scheme, we converted sequences into several
sets of 21-symbol coded input, namely, the 20 amino acid
codes and an extra input representing the end-flanking
fragment (ex: “-"DCAMYW); one set of the 21 inputs was
used to represent the mutant residue after the mutation;
the sequence scheme had (21 × ("window size"+1)) inputs
altogether. The website result scheme had seven sets of
input (I-Mutant_PDB, I-Mutant_SEQ, AUTO-MUTE_RF,
AUTO-MUTE_SVM, MU-PRO_SVM, PoPMuSiC2.0 and
CUPSAT) representing the prediction results of element
predictors, each shown as a set of three inputs, with desta-
bilizing results represented as “1-0-0” and stabilizing
results represented as “0-0-1”. As some prediction queries
were not accessible to a specific site, we recorded this type
of result as a null prediction, represented as “0-1-0”.
The trained predictor was evaluated with 5-fold cross-
validation as the training dataset was split into five
groups, with four groups used as training sets and one
as the testing set by turns.

After iStable was constructed using all of the schemes,
we designed another model of predictor integration,
named iStable_SEQ, primarily for users handling protein
sequences where no PDB ID is available. The iStable_
SEQ model was constructed using a sequence sch-
eme and using only the results of I-Mutant_SEQ and
MUPRO_SVM of the website scheme, both of which use
protein sequences as their inputs for prediction queries.
The iStable_SEQ was also trained and validated with
5-fold cross-validation.

Framework of integrated predictor construction
Figure 2 is a brief introduction to iStable’s grid comput-
ing architecture. The predictor can be divided into three
different layers - predictor layer, coordinator layer, and
data visualization layer.
Predictor layer
It is the source of data needed for data integration,
which, in this article, refers to the element predictors
used: I-Mutant_PDB, I-Mutant_SEQ, AUTO-MUTE_RF,
AUTO-MUTE_SVM, MUPRO_SVM, PoPMuSiC2.0 and
CUPSAT.

A. Adapter: The interface uses the Java HttpUnit
suite to convert information between the in-put data
and the predictors’ input formats.
B. Website: I-Mutant_PDB, I-Mutant_SEQ, AUTO-
MUTE_RF, AUTO-MUTE_SVM, MU-PRO_SVM,
PoPMuSiC2.0 and CUPSAT.

Data visualization layer
It is the layer to present a graphical user interface (GUI)
and output the prediction result, which can be divided
into two modules:

A. GUI: Through the use of a JSP website and Java-
Script, it provides users with an interface for inputs
and results in webpage form.
B. Result visualization: A Java program, responsible
for integrating the prediction result and adding web-
page tags for result output.

Coordinator layer
It is the coordinator between the predictor and data visua-
lization layers. As users input parameters through the
visualization layer GUI, the coordinator layer can receive
the parameters and send them to the predictor layer at the
same time. It can then receive results from the predictor
layer to complete the prediction of stability change. The
coordinator layer can be divided into three modules:

A. Prediction: executes prediction mechanism using
the SVM method described before.
B. Repository: deposits the prediction results from
the element predictors.
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C. I/O Dispatcher: responsible for sequential actions
after receiving parameters from users; collects results
from element predictors, deposits data, and coordi-
nates the prediction work.

Prediction progress of iStable
Figure 3 is a visualized presentation of iStable prediction
work. When a user inputs a query with protein mutant
information, the program first accesses the PDB and gets

the structure data and the amino acid sequence. After
structural and sequential information is gathered, the pro-
gram get an 11-amino acid residue sequence window cen-
tered on the mutated site, converts it into 11 sets of
sequential code with 21 inputs, and the mutant residue is
converted into an extra set of sequential code. Meanwhile,
the structural (PDB code and PDB file) and sequential
(FASTA sequence) information is used to submit the pre-
diction query to get prediction results from seven element

Figure 2 Grid computing architecture of iStable. When a user input the mutant protein’s information through graphical user interface, the
input/output dispatcher will pass the relative information to element predictors. After the results from predictors are collected into repository
module, prediction layer will active the prediction program and the output result will be send to data visualization layer through input/output
dispatcher, finally the integrated result will be presented to the user.
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predictors, which are then converted into seven sets of
3-input website result schemes. After both parts of SVM
input are converted, the support vector machine processes
and gives out a prediction result as an output of iStable.

Performance assessment
Correct predictions of positive and negative data have dif-
ferent meanings because the effects of mutation are not
always detrimental to protein function. One of the pur-
poses of predicting protein stability change is to identify
mechanisms of structural stability change upon single
amino acid mutation; another goal is to apply this knowl-
edge to protein design in order to modify protein into
more stable and thermal-tolerant forms. Since it is equally
important to understand the mechanisms underlying sta-
bilizing and destabilizing mutations, we expect an inte-
grated predictor to make correct predictions in both cases.
Since the minority result could be the right answer, we
want to prove that iStable, with SVM training, would
know right from wrong and not just pick the majority
answer. In addition, Accuracy (Acc), sensitivity (Sn), speci-
ficity (Sp), and the Matthews correlation coefficient
(MCC) were used to evaluate the predictive ability of each
system. Four measures were defined:

Acc =
TP + TN

TP + FP + TN + FN
,

Sn =
TP

TP + FN
,

Sp =
TN

TN + FP

and

MCC =
(TP × TN) − (FN × FP)√

(TP + FN) (TN + FP) (TP + FP) (TN + FN)

where TP, FP, FN and TN are true positives, false posi-
tives, false negatives, and true negatives, respectively.
Sn and Sp represent the rate of true positives and true
negatives respectively. Acc is the overall accuracy of pre-
diction. Additionally, MCC is a measure of the quality of
the classifications, and the value may range between -1 (an
inverse prediction) and +1 (a perfect prediction), with
0 denoting a random prediction.

Results and discussion
Performance on the M1311, M1820 and M3131 datasets
After construction of the integrated predictor iStable, we
first compared the performances of iStable and the

Figure 3 Workflow of iStable. Illustration of how iStable prediction proceeds after the user has input the data of interested target protein.
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element predictors using two different datasets. The
results are presented separately in Tables 2 and 3. In both
datasets, iStable showed obvious improvement in sensitiv-
ity, accuracy and MCC. The performance using dataset
M1820 is worth mentioning. While other predictors have
shown sensitivity values that average lower than 0.370 and
MCC values lower than 0.352, iStable reached a sensitivity
score of 0.456 and a MCC score of 0.402. During our
observations, we found that the element predictors made
many more “negative” predictions than “positive” ones,
leading to high specificity, but universally low sensitivity
for the element predictors.
Based on the objective, we wanted to construct a predic-

tor that could perform well using both positive and nega-
tive data. The MCC values show that iStable has the best
overall performance on M1311; the results obtained from
M1820 show that the performances of the element predic-
tors are lower than those in M1311, especially in the case
of I-Mutant2.0, AUTO-MUTE and MUPRO. This may be
related to the training datasets used in their construction;
the training data for MUPRO was extracted from Capriot-
ti’s training set S1615 for neural networks, and AUTO-
MUTE’s training data was extracted and edited from
S1948, originally the same as that of I-Mutant2.0. As the
M1311 dataset is similar to their training dataset, the three
element predictors showed performances consistent with
those from their training. The performances using the
dataset M1820 indicate that these three element predictors
might have relatively lower performances when using new
data not employed during previous training. Consistent
with the fact that the M1820 dataset was extracted from
PoPMuSiC2.0’s training data M2648, we observed the per-
formance of PoPMuSiC2.0, when using M1820, to be
much better than with M1311. We tried different dataset
sources, and iStable showed better prediction performance
than every other element predictor. When using the same

training data, iStable still showed obvious improvements
in performance, especially with stabilizing mutants.
After comparing the performances of iStable and the

element predictors on two datasets, we wanted to prove
that training iStable with large amounts of data would give
the integrated predictor a stronger capacity to deal with
new data. We checked the performances of all the predic-
tors with the mixed dataset M3131, which is shown in
Table 4. We see that the specificity of iStable is sometimes
lower than several of the element predictors; however, the
overall performance is still better than the element predic-
tors. Through Table 4, we can see that the integrated pre-
dictor iStable showed obviously improved performance
with positive data, with the highest sensitivity among all of
the predictors.
To validate iStable and compare it with other combina-

tion methods, i.e., radial basis function network (RBFN),
random forest (RF), neural networks (NN), Bayesian net-
work (BN), and majority voting (MV)[33] with respect to
predicting protein stability changes in dataset M3131
(Table 5). The MCC of iStable, RF, and NN are all over
0.6; the MCC of BN and MV are both between 0.5 and
0.6; however, the MCC of RBFN is below 0.5. Sn and Sp in
our study are both not the highest score to other combina-
tion methods; even so, iStable showed the best perfor-
mance of overall evaluation to integrate off-the-shelf
predictors for protein stability changes.

Table 2 Comparison of prediction result with M1311

Predictors Sn Sp Acc MCC

iStable 0.944 0.981 0.969 0.930

I-Mutant_PDB 0.555 0.922 0.800 0.530

I-Mutant_SEQ 0.702 0.973 0.883 0.734

AUTO-MUTE_RF 0.893 0.991 0.958 0.906

AUTO-MUTE_SVM 0.772 0.975 0.907 0.789

MUPRO_SVM 0.775 0.956 0.896 0.761

PoPMuSiC2.0 0.313 0.941 0.724 0.341

CUPSAT 0.579 0.823 0.742 0.411

Majority Voting 0.737 0.984 0.902 0.779

I-Mutant_PDB: I-Mutant2.0 prediction strategy using PDB ID.

I-Mutant_SEQ: I-Mutant2.0 prediction strategy using protein sequence.

AUTO-MUTE_RF: AUTO-MUTE Random Forest prediction model.

AUTO-MUTE_SVM: AUTO-MUTE SVM prediction model.

MUPRO_ SVM: MUPRO SVM prediction model.

Table 3 Comparison of prediction result with M1820

Predictors Sn Sp Acc MCC

iStable 0.456 0.900 0.752 0.409

I-Mutant_PDB 0.198 0.906 0.670 0.148

I-Mutant_SEQ 0.212 0.899 0.670 0.155

AUTO-MUTE_RF 0.129 0.985 0.700 0.234

AUTO-MUTE_SVM 0.067 0.965 0.666 0.072

MUPRO_SVM 0.276 0.885 0.682 0.206

PoPMuSiC2.0 0.303 0.952 0.736 0.352

CUPSAT 0.370 0.757 0.628 0.133

Majority Voting 0.113 0.984 0.693 0.212

Table 4 Comparison of prediction result with M3131

Predictors Sn Sp Acc MCC

iStable 0.688 0.941 0.857 0.669

I-Mutant_PDB 0.377 0.916 0.736 0.357

I-Mutant_SEQ 0.457 0.934 0.775 0.464

AUTO-MUTE_RF 0.511 0.989 0.829 0.615

AUTO-MUTE_SVM 0.420 0.969 0.786 0.499

MUPRO_SVM 0.526 0.908 0.780 0.480

PoPMuSiC2.0 0.308 0.945 0.733 0.348

CUPSAT 0.474 0.780 0.678 0.261

Majority Voting 0.425 0.980 0.795 0.527

Chen et al. BMC Bioinformatics 2013, 14(Suppl 2):S5
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iStable was also trained and validated, using support vec-
tor regression, to predict the value of free energy stability
change by integrating the ddG value fetched from
I-Mutant_PDB, AUTO-MUTE, PoPMuSiC, and CUPSAT.
The correlation between the predicted and the observed
ddG is 0.86, with a standard error of 1.5 kcal/mol, when
the method is structure based (Figure 4). On the other
hand, only I-Mutant_SEQ provides the predicted ddG
value in sequence based; therefore, iStable_SEQ just shows
the ddG value generated by I-Mutant_SEQ.

Evaluation of sequence scheme
After comparing the performances of iStable and the ele-
ment predictors with the integrated data-set M3131 in
order to validate the actual effects of using the sequence
scheme, we assessed the performance of the integrated
predictor using different combinations: 1) sequence and
website results (same as above); 2) SVM using only the
results from element predictors; 3) SVM using sequence
and website results, without using AUTO-MUTE_RF, the
predictor with the best performance among element pre-
dictors, but also the slowest to finish the prediction task;
and 4) SVM using website results only, without AUTO-
MUTE_RF. The purpose of checking the third and fourth
strategies was to determine the power of the sequence
scheme. Since AUTO-MUTE_RF is the only element pre-
dictor with an MCC value over 50%, we wanted to see if
the integrated predictor would continue having an MCC
value over 60% or would it drop significantly without the
use of sequential information by dropping AUTO-
MUTE_RF. The result is shown in Table 6. Combination
1, the same as shown before, performed better than com-
bination 2, which uses only website results as SVM inputs,

Table 5 comparison of algorithms

WS+SEQ SEQ

Methods Sn Sp Acc MCC Sn Sp Acc MCC

iStable 0.688 0.941 0.857 0.669 0.625 0.906 0.812 0.564

RBFN 0.752 0.764 0.760 0.495 0.583 0.759 0.700 0.337

RF 0.694 0.910 0.838 0.627 0.630 0.894 0.806 0.550

NN 0.584 0.965 0.838 0.627 0.741 0.605 0.651 0.327

BN 0.685 0.888 0.820 0.588 0.649 0.868 0.795 0.529

MV 0.425 0.980 0.795 0.527 N/A N/A N/A N/A

SEQ: Sequence scheme; WS: Website result scheme

Figure 4 Evaluation of predicted ddG. Correlation plot of the experimental observed and the predicted values of ddG based on iStable.

Chen et al. BMC Bioinformatics 2013, 14(Suppl 2):S5
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indicating that the addition of sequential information
could provide increased power when the element predic-
tors are not accurate enough to produce accurate results.
On the other hand, combination 3 performed much better
than combination 4 without using AUTO-MUTE_RF; this
reveals the power of the sequence scheme: while the six
element predictors could only achieve an MCC value of
less than 0.5, with the use of the sequence scheme, the
integrated predictor could achieve an MCC value of 0.622,
an obvious improvement.

Performance of the iStable_SEQ strategy with M3131
For users with novel proteins that lack available structural
information, iStable provides a prediction strategy that
takes amino acid sequences as inputs. The prediction
result is presented in Table 7. By integrating the results of
the sequential prediction models of I-Mutant2.0 and
MUPRO with an extra sequential scheme, the iStable_SEQ
model showed a performance noticeably higher than the
two models we used.

Structural analysis of predictors’ performances
As mentioned, the secondary structure and RSA of the
mutated site could influence the predictor’s performance.
Therefore, we analyzed the performance of iStable with
mutations within different secondary structures and RSA
ranges, and compared the results with the element pre-
dictors used. The results obtained from different kinds of
mutants are presented in Tables 8 and 9. With respect to
secondary structure, iStable showed the best prediction
performance among all the predictors; for some reason,
the performance of iStable in the case of mutants with
secondary structures “other” than helixes and sheets was
relatively lower than in the presence of these two struc-
tures; this may be due to the irregular structures of loops
and turns. Performance with b sheets showed a higher
MCC than with helix and coil/turn structures, which is

consistent with previous research [24]. This may be
caused by the presence of residues in b-strand segments
that are close in space, but far away in sequence [34].
When analyzing the performance of iStable for different
RSA ranges, we found that iStable performs best in bur-
ied (63.4%), partially buried (68.4%) and exposed (71.2%)
regions. Among the three ranges of RSA, iStable showed
the high performance in partially buried region (68.4%),
which is consistent with Dr. Gromiha’s previous research
[35]; the sequence and structure information of partially
buried mutations were very important for predicting sta-
bility changes, but did not very high correlation for bur-
ied mutations. On the other hand, Dr. Gromiha indicated
buried mutation within b-strand segments correlated bet-
ter than did those in a-helical segments; iStable, there-
fore, brought higher sensitivity than other element
predictors at buried mutations.

The influence of window size on predictor performance
In previous research on constructing novel predictors,
investigators have tried different lengths of protein

Table 6 Evaluation of different combinations for
prediction performance

Strategies Sn Sp Acc MCC

SEQ+WS 0.688 0.941 0.857 0.669

WS only 0.627 0.960 0.849 0.652

SEQ+WS, without AUTO-MUTE_RF 0.658 0.925 0.836 0.622

WS only, without AUTO-MUTE_RF 0.701 0.745 0.731 0.484

SEQ: Sequence scheme; WS: Website result scheme

Table 7 Performance comparison of iStable_SEQ and
sequential models

Predictors Sn Sp Acc MCC

iStable_SEQ 0.625 0.906 0.812 0.564

I-Mutant_SEQ 0.457 0.934 0.775 0.464

MUPRO_SVM 0.526 0.908 0.780 0.480

Table 8 Comparison of performance based on secondary
structure

Secondary Structure Predictors Sn Sp Acc MCC

Helix

iStable 0.702 0.933 0.850 0.666

I-Mutant_PDB 0.415 0.901 0.728 0.371

I-Mutant_SEQ 0.520 0.929 0.784 0.509

AUTO-MUTE_RF 0.563 0.987 0.834 0.647

AUTO-MUTE_SVM 0.495 0.957 0.792 0.536

MUPRO_SVM 0.639 0.915 0.818 0.591

PoPMuSiC2.0 0.250 0.957 0.708 0.311

CUPSAT 0.541 0.778 0.693 0.323

Sheet

iStable 0.691 0.946 0.876 0.676

I-Mutant_PDB 0.348 0.944 0.782 0.385

I-Mutant_SEQ 0.495 0.948 0.825 0.520

AUTO-MUTE_RF 0.455 0.984 0.838 0.567

AUTO-MUTE_SVM 0.297 0.996 0.805 0.426

MUPRO_SVM 0.417 0.904 0.770 0.370

PoPMuSiC2.0 0.310 0.956 0.776 0.363

CUPSAT 0.417 0.796 0.697 0.213

Other

iStable 0.680 0.943 0.847 0.666

I-Mutant_PDB 0.365 0.893 0.699 0.311

I-Mutant_SEQ 0.358 0.924 0.716 0.354

AUTO-MUTE_RF 0.479 0.995 0.805 0.595

AUTO-MUTE_SVM 0.386 0.954 0.745 0.434

MUPRO_SVM 0.485 0.900 0.748 0.433

PoPMuSiC2.0 0.330 0.889 0.688 0.270

CUPSAT 0.474 0.766 0.662 0.249

Helix: a helix; Sheet: b sheet; Other: turns and coil.
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sequence centered on the mutated site. MUPRO chose 7
as the best window size, while I-Mutant2.0 chose 19. We
compared the performances of iStable with different win-
dow sizes using the sequence scheme. The result of the
comparison is shown in Figure 5. As shown, a window
size of 11 amino acids centered on the mutated site per-
formed best in terms of both accuracy (85.7%) and MCC
(66.9%). Based on this comparison, a window size 11 was
selected for use in the sequence scheme of iStable.

Performance with different protein superfamilies and
experimental conditions
Protein structure is closely related to function, and
alteration of protein structure as the result of mutation
may lead to disruption of biological function. We classi-
fied the proteins in our training dataset into their corre-
sponding superfamilies, as previously mentioned. We
chose three major categories (enzymes, DNA/RNA bind-
ing proteins, and protein-protein interaction-related pro-
teins) of protein superfamilies to determine how iStable
would perform in terms of prediction ability when the
training dataset is limited. We used the three categories
as independent training sets for iStable training. Each set
was split into five subsets and used in 5-fold cross-valida-
tion for iStable. The performance results with the three
categories of proteins are shown in Table 10. As shown,
iStable performs better than any of the element predic-
tors for the three different categories of proteins. In the
enzyme and protein-protein interaction categories, with

Table 9 Comparison of performance based on RSA range

RSA range Predictors Sn Sp Acc MCC

Buried

iStable 0.640 0.946 0.869 0.634

I-Mutant_PDB 0.197 0.942 0.757 0.208

I-Mutant_SEQ 0.394 0.947 0.809 0.428

AUTO-MUTE_RF 0.387 0.988 0.839 0.528

AUTO-MUTE_SVM 0.254 0.989 0.806 0.403

MUPRO_SVM 0.445 0.922 0.803 0.423

PoPMuSiC2.0 0.201 0.969 0.778 0.285

CUPSAT 0.381 0.822 0.714 0.209

Partially buried

iStable 0.684 0.954 0.854 0.684

I-Mutant_PDB 0.458 0.911 0.746 0.427

I-Mutant_SEQ 0.537 0.940 0.792 0.542

AUTO-MUTE_RF 0.604 0.981 0.843 0.665

AUTO-MUTE_SVM 0.510 0.967 0.799 0.566

MUPRO_SVM 0.508 0.905 0.759 0.460

PoPMuSiC2.0 0.146 0.963 0.667 0.189

CUPSAT 0.536 0.781 0.692 0.323

Exposed

iStable 0.782 0.920 0.853 0.712

I-Mutant_PDB 0.527 0.818 0.683 0.363

I-Mutant_SEQ 0.502 0.927 0.728 0.480

AUTO-MUTE_RF 0.598 0.993 0.807 0.653

AUTO-MUTE_SVM 0.565 0.933 0.760 0.543

MUPRO_SVM 0.665 0.902 0.788 0.587

PoPMuSiC2.0 0.439 0.857 0.658 0.329

CUPSAT 0.513 0.661 0.592 0.177

Figure 5 Individual performance of different window size. By comparing accuracy and MCC, a window size of 11 showed the best
performance for the both parameters.
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limited data availability, iStable did not perform as well as
with the M3131-trained model, but in the nucleic acid
binding protein category, iStable showed an obvious per-
formance improvement that was clearly superior to the
element predictors. In this case, although the perfor-
mance of iStable is limited by the prediction power of
the element predictors, we still demonstrated that the
combination of sequence and website result schemes

could provide noticeable improvements in prediction
performance.
We observed the performance of each predictor under a

variety of pH and temperature ranges. Table 11 was
shown that iStable and AUTO-MUTE_RF have better per-
formance than other element predictors when pH < = 6 or
pH > 8. These two predictors have similar performance,
however, iStable have more excellent accuracy than

Table 10 Evaluation of iStable prediction results with data from different protein superfamilies

Protein categories Predictors Sn Sp Acc MCC

Nucleic acid binding

iStable 0.550 0.943 0.795 0.567

I-Mutant_PDB 0.550 0.852 0.742 0.439

I-Mutant_SEQ 0.300 0.943 0.704 0.343

AUTO-MUTE_RF 0.250 0.971 0.704 0.359

AUTO-MUTE_SVM 0.250 0.943 0.684 0.262

MUPRO_SVM 0.450 0.857 0.704 0.395

PoPMuSiC2.0 0.400 0.910 0.724 0.355

CUPSAT 0.350 0.552 0.476 -0.073

Enzyme

iStable 0.451 0.797 0.720 0.334

I-Mutant_PDB 0.253 0.869 0.756 0.135

I-Mutant_SEQ 0.242 0.878 0.762 0.131

AUTO-MUTE_RF 0.138 0.978 0.825 0.217

AUTO-MUTE_SVM 0.057 0.965 0.800 0.049

MUPRO_SVM 0.281 0.859 0.753 0.144

PoPMuSiC2.0 0.344 0.931 0.824 0.328

CUPSAT 0.390 0.740 0.676 0.112

Protein-protein interaction related

iStable 0.357 0.943 0.831 0.379

I-Mutant_PDB 0.207 0.858 0.733 0.088

I-Mutant_SEQ 0.361 0.798 0.714 0.161

AUTO-MUTE_RF 0.129 0.965 0.805 0.145

AUTO-MUTE_SVM 0.079 0.970 0.799 0.100

MUPRO_SVM 0.204 0.864 0.737 0.076

PoPMuSiC2.0 0.100 0.964 0.798 0.091

CUPSAT 0.461 0.778 0.717 0.216

Table 11 Evaluation of iStable prediction results with data from pH-temperature ranges by accuracy

pH < = 6 6~8 > 8

Temperature < = 37 37~65 > 65 < = 37 37~65 > 65 < = 37 37~65 > 65

I-Mutant_PDB 0.38 0.68 0.55 0.22 0.42 0.73 0.18 0.69 0.08

I-Mutant_SEQ 0.46 0.79 0.77 0.25 0.62 0.73 0.18 0.46 0.42

AUTO-MUTE_SVM 0.38 0.81 0.97 0.20 0.43 0.79 0.09 0.69 0.33

AUTO-MUTE_RF 0.48 0.97 1.00 0.28 0.47 0.85 0.09 0.77 0.83

MUPRO 0.46 0.69 0.90 0.40 0.49 0.88 0.27 0.85 0.58

PoPMuSiC 0.13 0.17 0.35 0.29 0.36 0.60 0.09 0.38 0.17

CUPSAT 0.57 0.59 0.55 0.38 0.59 0.54 0.27 0.54 0.50

iStable 0.61 0.94 1.00 0.55 0.77 0.88 0.27 0.77 0.75
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AUTO-MUTE_RF in the condition of temperature < = 37.
Finally, it is worth mentioning that iStable is the best
choice predictor for predicting protein stability changes
when pH between 6 and 8.

Conclusions
The power of the integrated predictor
Compared with various machine learning methods and
element predictors, iStable successfully integrated
sequence and website result scheme to promote the pre-
dictive performance of protein stability changes. When
synergistic method was taken, we should consider some
issues; 1) the input and output format are not all the
same from different element predictors; 2) the evalua-
tion of the prediction results of each element predictor;
and 3) the improvement of the overall performance of
synergistic systems. Majority voting model is one kind
of popular synergistic method, which is the frequently
strategy adopted by biologists when they must to obtain
the answer from a lot of prediction tools. However, the
prediction performance of the element predictor of
AUTO-MUTE_RF and iStable are much better than
majority voting with the above 50% MCC in our study,
which because majority voting does not take into
account confidence measure in the prediction results
from different element predictor. Besides, iStable is a
prediction system based on the synergistic method and
constructed according to the grid computing architec-
ture; therefore, iStable has the properties of software
reusability and computing resources reduction.
On the other hand, the sequence scheme provides the

information of local interaction; however, website result
scheme also includes the non-local interaction information
by the element predictors of PopMuSiC2.0 with the fold-
ing free energy changes and CUPSAT with atom poten-
tials. Only considered sequence as input that caused
iStable_SEQ does not include non-local information;
furthermore, just two element predictors can be adopted,
therefore, the prediction performance of iStable_SEQ is
less than the that of iStable at least 10% of MCC.

Prediction tool available on website
The trained predictor iStable is available at http://predictor.
nchu.edu.tw/iStable/. Users can access two models of pre-
diction: iStable and iStable_SEQ. For predicting mutations
in proteins with available 3-D structure information in the
PDB, users can input the PDB ID to apply the iStable
model. If the user has proteins they interested in that have
an available sequence, but are not available in PDB for
their structure information, the iStable_SEQ model would
be the ideal choice for them.

Availability and requirements
• Project name: iStable

• Project home page: http://predictor.nchu.edu.tw/
iStable
• Operating system(s): Platform independent (web
server)
• Programming language: Java (server interface),
PHP (web site)
• Other requirements: LIBSVM
• License: none
• Any restrictions to use by non-academics: none

Additional material

Additional file 1: M3131_Decreased and M3131_Increased show the
integrated training data M3131 separated into positive (increasing
stability) dataset and negative (decreasing stability) dataset.
iStable_Comparison_results presents the different results of training
conditions and comparisons of different predictors.

Additional file 2: Superfamily_M1311 and Superfamily_M1820
record the superfamilies refer to the PDB IDs in M1311and
M1820datasets. SF_DNA BINDING, SF_Enzyme, and SF_Protein-protein-
interaction list the PDB IDs belong to three major categories.
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