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Background: Binning 165 rRNA sequences into operational taxonomic units (OTUs) is an initial crucial step in
analyzing large sequence datasets generated to determine microbial community compositions in various
environments including that of the human gut. Various methods have been developed, but most suffer from either
inaccuracies or from being unable to handle millions of sequences generated in current studies. Furthermore,
existing binning methods usually require a priori decisions regarding binning parameters such as a distance level

Results: We present a novel modularity-based approach (M-pick) to address the aforementioned problems. The
new method utilizes ideas from community detection in graphs, where sequences are viewed as vertices on a
weighted graph, each pair of sequences is connected by an imaginary edge, and the similarity of a pair of
sequences represents the weight of the edge. M-pick first generates a graph based on pairwise sequence distances
and then applies a modularity-based community detection technique on the graph to generate OTUs to capture
the community structures in sequence data. To compare the performance of M-pick with that of existing methods,
specifically CROP and ESPRIT-Tree, sequence data from different hypervariable regions of 16S rRNA were used and

Conclusions: A new modularity-based clustering method for OTU picking of 16S rRNA sequences is developed in
this study. The algorithm does not require a predetermined cut-off level, and our simulation studies suggest that it
is superior to existing methods that require specified distance levels to define OTUs. The source code is available at

Background
Recent advances in high-throughput sequencing tech-
nologies have contributed to an explosion in sequence
data from studies of microbial composition in various
environments that harbor complex microbial communi-
ties. As one of the most commonly used approaches for
such studies, 16S rRNA sequences are analyzed to esti-
mate species composition and diversity.

An initial requirement for downstream analyses of 16S
rRNA sequences is the binning into operational taxonomic
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units (OTUs) that contain similar sequences. The existing
methods can be divided into two classes, taxonomy-
dependent methods and taxonomy-independent (TTI)
methods [1,2]. For taxonomy-dependent methods, query
sequences are compared with known sequences deposited
in annotated databases (e.g., RDP [3] and Greengenes [4])
[5]. Sequences that match with a reference sequence with
a simialrity less than a predetermined cut-off value are
grouped together. In contrast, TI methods apply clustering
algorithms to pairwise sequence distances to assign query
sequences into OTUs [6,7]. A major advantage of TI
methods is their independence from the coverage of exist-
ing databases, which allows the analysis of sequences from
unknown microorganisms, because novel sequences usu-
ally represent a large proportion of a sequence dataset [1].

In TI methods, pairwise sequence distances are com-
puted either by multiple sequence alignment (MSA) or
pairwise sequence alignment (PSA) and several clustering
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algorithms can then be applied to form OTUs. These clus-
tering algorithms include hierarchical clustering algo-
rithms such as DOTUR [8], MOTHUR [9], ESPRIT [7]
and ESPRIT-Tree [10], as well as heuristic algorithms such
as CD-HIT [6] and UCLUST [11]. In a recent benchmark
study, we demonstrated that ESPRIT-tree appeared to
have advantages in terms of both accuracy and computa-
tional efficiency [1].

One of the critical problems with existing TI methods is
the need to set an appropriate distance threshold to re-
trieve the optimal OTU binning at a distinct taxonomic
level such as species. Applying different thresholds leads
to inconsistent binning results. Furthermore, appropriate
distance levels appear to vary depending on the chosen
hypervariable region [1], which makes it impossible to cre-
ate one single distance-based threshold for defining a
taxonomic level [2].

Some efforts have been made recently to address this
issue. In [12], a semi-supervised clustering method was
developed to identify a cut within a hierarchical cluster-
ing tree that maximizes the fit with a labeled subset of
the sequences so that varied distance levels were applied
in the clustering process to improve clustering accuracy.
However, this approach shares a crucial disadvantage
with taxonomy-dependent methods: the need to pre-
select labels to perform OTU picking. In [13], a Bayesian
clustering method called CROP was developed, which
uses a Gaussian mixture model to describe the pairwise
sequence distance distribution in an OTU to avoid the
need to set a single distance level for all clusters.
Although this method does not use hard thresholds, it
actually utilizes a lower and upper bounds that can be
transformed to a threshold. Another Bayesian based
method BEBaC [14] utilizes a crude 3-mer count based
preclustering step, and then the partition space is
searched for the partition having maximum posterior
possibility for given sequence data. A minimum descrip-
tion length criterion is then applied in a fine clustering
step to determine the number of OTUs and generate the
final partitioning. Users only need to provide one para-
meter - the possible maximum number of OTUs as the
input. The major disadvantage of this approach is its
high computational cost.

In this study, a modularity-based clustering method
was developed for OTU picking. By viewing an OTU as
a collection of related sequences with similar densities in
a sequence space, we applied a community detection
method and treated OTU picking as a community struc-
ture detection problem.

Methods

Modularity-based clustering

We herein refer to community structure as the occur-
rence of groups of vertices in a graph that are more
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densely connected with each other than with the rest of
the graph. Modularity-based methods are popular in
community detection; they are derived from the intu-
ition that a graph has community structure, if the num-
ber of edges within groups is significantly more than
expected by chance [15,16]. Modularity Q of a partition-
ing result can be written as:

Q LZ (W,, - %’)5(@,@) (1)

T oms
ij

where m is the sum of weighted edges in the graph, is
the weight of the edge connecting vertices and , is the
degree of vertex i, i.e. the sum of weights on edges con-
nected to vertex , and is the cluster that vertex is
assigned to. The & function represents the partitioning
result information: if vertices i and j are grouped to the
same cluster 6(C;, Cj)=1, and otherwise &(C;, C;)=0. The

term % is used as the null model in Equation (1) to re-
flect the weight one can expect by chance [17].

Modularity itself is also a quality function that indi-
cates whether a partitioning of a graph can reveal the
community structure on the graph if such structure
exists. The maximum value of modularity is 1; a large
value implies good partitioning. The maximum Q value
corresponds to the optimal partitioning on the graph,
which best reflects its community structure. The com-
munity detection problem thus can be formulated as an
optimization problem to find the partitioning that maxi-
mizes Q.

Several algorithms have been developed to efficiently
optimize modularity. Among them, the algorithm in [18]
appears superior in terms of both accuracy and speed
[17,19], and it is chosen in our study to optimize modular-
ity and find a clustering result that reflects community
structure in our sequence data. The algorithm takes a
bottom-up approach: it initially assigns each vertex to be a
distinct cluster; it then moves a vertex into another cluster
if the resultant modularity is increased; afterwards it recur-
sively repeats the process by viewing each cluster as a ver-
tex until a maximum modularity is obtained.

In the context of OTU picking, a weighted graph is
formed by: i) viewing sequences as vertices, where each
pair of sequences is connected by an imaginary edge,
and ii) viewing the simlarity of a pair of sequences as the
weight on the edge connecting these two sequences.
Thus the modularity of a partition of sequences can be
computed using Equation (1); the best clustering result
is the one that maximizes the modularity. In such a re-
sult, each cluster represents an OTU with high homo-
geneity inside, that is, similarities between sequences
within OTUs are greater than those between them. Using
this approach, OTUs are defined by homogeneity of edge
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densities and not by distance between neighborhood clus-
ters, circumventing the need for choosing distance levels.

A toy example comparing the modularity-based method
and average linkage based hierarchical clustering is shown
in Figure 1. The ground truth was generated from three
Gaussian distributions with different means in x axis (-0.5,
1, and 3) and standard deviations (0.2, 0.4, and 0.6). The
Euclidean distance is used to quantify the dissimilarity
among vertices. There is no single distance level that ef-
fectively partitions these three clusters using hierarchical
clustering; a variety of distance levels (0.05 to 3.5 with the
increment of 0.05) have been applied in hierarchical clus-
tering; its best result at distance level 2.80 is shown on
Figure 1(c). In contrast, M-pick partitions the data prop-
erly when £>=0.6 (see below) due to the fact that although
clusters have different sizes, the vertex distances within a
cluster are sufficiently smaller than those between clusters,
and the density of weighted edges is higher within each
group than that between groups.

Our modularity-based approach includes three steps.
(1) Pairwise sequence distances are computed using the
alignment module of ESPRIT [7]. (2) An e-neighborhood
graph is formed by only retaining the pairwise sequence
distances less than &, or equivalently pairwise sequence
similarity greater than 1-¢. This step is somehow similar
to single-linkage clustering. (3) Modularity-based clus-
tering is recursively performed on the graph generated
in the previous step.

In the first step, we generate a pairwise distance matrix,
viewable as a fully connected graph. However, the fully
connected graph cannot be directly used to perform
clustering because of i) prohibitive computational costs
and ii) the resolution limit problem which states that
modularity-based methods may fail to acquire clusters
smaller than a scale depending on the total size of the
graph [20]. This implies that if a complete graph of signifi-
cant size is used, small clusters in the graph will likely be
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ignored even if they show connectivity, albeit weak, to the
rest of the graph and thus should be recognized as distinct
OTUs. Therefore, we use a parameter ¢ in step 2 to miti-
gate these problems. Ideally, £ should be chosen to be
greater than the maximum pairwise neighborhood se-
quence distance within a taxon, but not too large so that it
includes all the sequences in multiple taxa into one con-
nected graph. A graph formed in this way can guarantee
that the sequences within a taxon are connected and the
edge density within a taxon is greater than the density
between taxa, making the community structure in the ori-
ginal fully connected graph more prominent.

Due to the resolution limit problem, which often gene-
rates big clusters, it is not desirable to perform the cluster-
ing only once. Thus, we recursively evaluate each formed
cluster to determine the need for further partitioning. The
maximum modularity detected on a graph can indicate the
presence of community structure in the graph. While a sin-
gle cluster partitioning has modularity 0, partitions on a
highly homogeneous graph (i.e, a graph with limited com-
munity structure) have modularity values close to 0. On
the other hand, if multiple communities exist on a graph,
some partitions will have large modularity values. Thus,
the maximum modularity obtained on a graph can be used
as a homogeneity criterion, suggesting the existence of
multiple communities. Here we recursively apply clustering
to sub-graphs exhibiting large modularity values, with the
final sub-graphs or clusters having a maximum value less
than a threshold . This recursive procedure - conducting
modularity optimization on each single module is similar
to that previously suggested by Fortunato et al. [20]. Our
method is illustrated in Figure 2.

Clustering results validation

Different clustering results are frequently obtained for the
same sequence data set by applying different clustering
methods and/or different parameter settings. The lack of a
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Figure 1 M-pick outperforms hierarchical clustering when clusters have different sizes. Clusters are represented in different colors.
(@) Ground truth generated from three Gaussian distributions. (b) Clustering results of M-pick. (c) Clustering results of average linkage based
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Figure 2 Flowchart of M-pick. (a) The overall process. (b) The recursive clustering process.
.
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ground truth complicates an objective comparison of clus-
tering methods. Generally, there are two types of clustering
validation methods [21], either using external or internal
criteria. Using external criteria the clustering results are
compared to correct class labels from the 'ground truth',
while only quantities inherent to the data are used for in-
ternal validation.

Normalized mutual information (NMI) is a well-known
external criterion previously used for validating OTU pick-
ing; it measures the difference of a clustering result from a
perceived ground truth [1]. NMI views the sequence distri-
butions in the clustering result and ground truth as two
discrete random variable distributions, and computes the
NMI of the two random variables as the measure for quan-
tifying agreement. The maximum NMI score is 1 which
means the clustering result completely match with the par-
tition in ground truth; the higher the NMI score, the more
match. NMI is equivalent to variation of information used
in White et al. [12].

Another popular external criterion is the F-score, which
jointly considers precision and recall [22]. A common
problem with F-score is that it does not satisfy the cluster
completeness constrain that each cluster w; in ground
truth is only judged by the best-matched cluster in the
clustering result. Thus, other small clusters that match
with w; can not affect the F-score, overestimating corre-
lation when many small clusters are present [21,23].

Internal validation indices such as Silhoutette width [24]
and Dunn index [25] have been used to evaluate clustering
performance without the need for a ground truth. Quan-
tities such as compactness, connectedness, and separation
in the cluster distribution are used to evaluate clustering
performance. While independence from questionable
ground truths is a clear advantage, internal validation is
only possible if the studied dataset has well-defined com-
munity structure, a condition that frequently is not met.
For the above-mentioned reasons, we herein only use the
external criteria based NMI score for clustering validation.

Results
16S rRNA sequences of different hypervariable regions were
used to compare M-pick with ESPRIT-Tree and CROP.

We first constructed a reference database from the
RDP-II database [3], which was fully annotated using
TaxCollector [26]. We then used various published 16S
rRNA datasets of different hypervariable regions in our
analysis. For each dataset, we ran a blast search against
the reference database, and used a filter with the strin-
gent criteria (>97% identity over an aligned region and
>97% of the total length of the sequences) to retain the
sequences that can be reliably annotated for use as the
ground truth (Figure 3). 10 sub-datasets were then ran-
domly picked from the retained sequences. The cluste-
ring algorithms were applied on these sub-datasets to
compare their performances. A similar validation process
has previously been described in detail [1,10].

Case study 1 - V2 variable region

We used published sequences previously generated to
study the association between obesity and the compos-
ition of human gut microbiota [27]. The dataset contains
~1.1M sequences covering the V2 region with an average
length of 231 nucleotides. We blasted the sequences
against the annotated RDP-II database, filtered the
sequences using the criteria described in the previous
section, and picked the species labels of the retained
sequences as ground truth. We then randomly extracted
10 test subsets from these retained sequences, each con-
taining 1000 sequences from the 50 most abundant spe-
cies (total 50,000 sequences).

ESPRIT-Tree was applied to each test subset using dis-
tance levels between 0.01-0.1 (incremented by 0.01) and
the peak NMI score was chosen. Similarly, CROP was
applied to each test dataset using different cut-off set-
tings (1%, 2%, 3%, 5%, and 8%) as described in [13] and
its peak NMI score was selected. M-pick was applied
using a setting £ =0.04 to generate a graph for each test
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dataset. 0.04 was chosen because for most cases it is
greater than the distance between two sequences in a
species in our ground truth. Thus, once we form the
e-neighborhood graph, sequences in a species are more
likely to connect to each other than connect to sequences
in other species and the edge densities of sequences within
a species are generally greater than the edge densities of
sequences from different species, which makes it appropri-
ate to apply a modularity-based method. The stopping cri-
terion for recursive clustering was chosen as § =0.1. The
NMIs of the M-pick were compared with the peak NMIs
from CROP and ESPRIT-Tree (Figure 4a). For illustrative
purposes, the NMI scores of CROP and ESPRIT-Tree at
different distance levels are shown in (Figure 4b).

While ESPRIT-Tree and CROP can achieve NMI scores
greater than 0.9 at their optimum distance level, results
are sensitive to the chosen distance level (which is not
known a priori). M-pick generated the most accurate
results for all of the test datasets.

In addition to the NMI scores, we also checked if the
three methods could accurately estimate the number of
species in the test datasets (Table 1). The estimations from

CROP and ESPRIT-Tree were based on clustering results
using their best distance levels. ESPRIT-Tree performed
slightly better than the other two methods. As for standard
deviations, M-pick generated the most robust estimations;
its results were more consistent in all the test cases. It
should be emphasized that the OTU number estimates
from CROP and ESPRIT-Tree are all based on their opti-
mal distance levels, which in real applications are un-
known. M-pick can accurately estimate the number of
species in test datasets without a need to specify a distance
level for defining OTUs.

In order to evaluate the impact of parameter selection
(6 and &) on M-pick clustering results, we performed a
simulation study (Figure 5). Parameters values within
the area marked in white yielded more accurate results
than the best result obtained using ESPRIT-Tree. Our
simulation shows that M-pick performed very well over
a wide range of parameters. However, if § was too small
(e.g., <0.03), it led to many small spurious OTUs. On the
other hand, a large § (e.g., >0.37) resulted in underesti-
mation of the number of species by generating large
OTUs. In both instances the NMI scores can be worse
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Figure 4 Performance validation for Case study . (a) Peak NMI scores of CROP and ESPRIT-Tree compared with NMI scores of M-pick.
(b) Boxplots of NMI scores of CROP (boxes, at cut-offs of 0.01, 0.02, 0.03, 0.05, and 0.08), ESPRIT-Tree (filled boxes, at cut-offs ranging from 0.01 to
0.1 incremented by 0.01).
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Table 1 Number of OTUs and the best distance levels of
clustering algorithms (Case study 1)

CROP ESPRIT-Tree M-pick
# OTU (mean, std) 555 (19.5) 453 (10.8) 56.6 (3.1)
Best distance level 2%-3% 4%-5% N/A

than the peak NMI scores of ESPRIT-Tree. As for &, it
should be greater than 0.038 (£=0.038 is horizontally
tangential to bottom of the white area). &€ was selected as
0.04 in this case study partly due to the fact that in this
case d can be chosen in a broad region (0.09-0.37) in the
white area so that it is more robust against d.

Case study 2- V9 variable region
To confirm the observation described above and to be
able to generalize our findings, we performed additional
studies using different datasets covering various 16S
rRNA hypervariable regions. Results from another case
study are presented below; The second study was per-
formed on a dataset retrieved from a soil microbial di-
versity study [28] where 139,000 bacterial 16S rRNA
sequences (hypervariable V9 region) were obtained from
samples collected in Brazil, Florida, Illinois, and Canada.
Similar to the first case study, we initially performed a
blast search of the sequences against the annotated RDP-
IT database and filtered the sequences using the previously
described criteria. We then randomly extracted 10 test
subsets each containing 1000 sequences from the 100
most abundant species in the ground truth. The proposed
M-pick algorithm was applied by setting £ = 0.04 to create
a graph, and the stopping criterion was chosen as § = 0.15,
which is within the appropriate range depicted in Figure 5.
CROP and ESPRIT-Tree were again applied to the test
datasets and their peak NMI score compared with M-pick

(Figure 6). Similar to the first case study, M-pick
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Figure 5 NMI scores of M-pick using different € and § values in
Case study 1.
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Figure 6 Peak NMI scores of CROP and ESPRIT-Tree compared
with NMI scores of M-pick.

significantly outperformed ESPRIT-Tree and CROP in
both accuracy and robustness. We also found that M-pick
was superior to the other two algorithms when using a
wide range of parameter settings, shown as the white area
in Figure 7.

Case study 3- V3 variable region

For the ease of presentation, we only used the top 50 or
100 species in the previous case studies, which may not
give a complete picture of how M-pick works on a
whole real data.

In this case study, we used a dataset from our sepsis
study designed to investigate the association of sepsis
and intestinal microbiota in infants with very low birth
weight. The dataset contains 110,000 sequences from V3
region. ESPRIT-Tree and M-pick were applied to obtain
clustering results for the whole dataset. ¢=0.04 and
6=0.1 were used in M-pick. Afterwards, we blasted the
dataset against the RDP-II reference database and applied
the stringent filter to retrain a subset of 101,000 sequences
that have species annotation. We then extracted the clus-
tering result of the annotated sequences from the whole
clustering results, and compared it with the species labels
to validate the clustering performance. Again, we used the
NMI score to compare M-pick and ESPRIT-Tree evalu-
ated at different distance levels. The estimated numbers of
OTUs and NMI scores were listed in Table 2. It can be
seen that M-pick generated fewer number of OTUs but at
the same time a higher NMI score, which implies that
sequences belong to a species are more likely to be
grouped together into the same OTU by using M-pick.
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Case study 4- simulated dataset

In the above case studies, the ground truth was generated
by keeping the sequences that highly matched with the
RDP-II database through the stringent criteria. However,
the way to genererate ground truth could be quenstion-
able. To adress this concern, we included another simu-
lated dataset from [14], which contains 22,000 sequences
from 11 taxa generated from a Gaussian distribution model
with varied deviations. We applied M-pick on the data,
and it correctly grouped sequences into 11 taxa with a per-
fect NMI score of 1, which is better than those from
BEBaC, UCLUST, ESPRIT-Tree, and CROP shown in [14].
We also investigated how the problem of resolution limit
affected the clustering results by keeping only 20 sequences
from Taxon 8. M-pick still retrieved the correct clustering
result, which confirms that M-pick worked well for this
rare taxon case without the problem of resolution limit.

Additional case studies

Additional case studies were provided in the Additional
file 1. The results were consistent with the findings pre-
sented in the previous sections.

Discussion

We herein developed a novel modularity-based cluster-
ing method, M-pick, for binning 16S rRNA sequences
into OTUs. M-pick is based on graph partitioning, and
does not require a predetermined distance level to

Table 2 Number of OTUs and NMI generated by ESPRIT-
Tree at varied distance levels and M-pick (Case study 3)

ESPRIT-Tree M-
0.01 0.02 0.03 0.04 pick

#OTUs 8823 2338 1356 944 921
NMI 0846 0870 0859 0831 0879
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generate OTUs, which is a challenging requirement for
many other OTU picking methods.

M-pick is based on a concept from graph partitioning. It
initially creates a similarity based graph composed of all
the sequences in a dataset. The algorithm first computes
the pairwise sequence distances, and then implicitly
creates an e-neighborhood graph from the fully connected
graph by only keeping sequence connections with pairwise
distances less than ¢. This strategy is used to save compu-
tational cost and to make community structure in the
original graph more prominent. Modularity is used not
only as the quality function to perform clustering but also
as the criterion for terminating the recursive clustering
process. We stop partitioning a graph (cluster) when all of
its partitions have a modularity value smaller than . Both
settings of € and § help to alleviate the resolution limit
problem. Although we cannot claim that the proposed
method has solved the problem, we found in our empirical
studies that the resolution limit does not seem to be a
serious issue.

We used multiple sequence datasets from different
hypervariable regions of 16S rRNA to compare the per-
formance of M-pick with two other commonly used
algorithms, CROP and ESPRIT-Tree. Both are thought
to generate accurate clustering results if the optimal dis-
tance level is known. However, the optimal distance
level, which is not known a priori, varies for different
hypervariable regions and even for different datasets
from the same region. M-pick outperformed the other
two algorithms in most cases even when the optimal dis-
tance level was used in the two competing algorithms.

Two parameters are required by M-pick. ¢ is used in
the process of creating a graph and ¢ is used to decide
when to stop the recursive clustering. The constraint on
an OTU introduced by ¢and 9§ is different from that of
preset distance level used in ESPRIT-Tree and CROP. It
can create arbitrarily shaped OTUs, which alleviates the
problem of similar sequences being split into separate
OTUs. We found that ¢ should be chosen to be larger
than the maximum pairwise neighborhood sequence dis-
tance within a species. In all datasets that we analyzed, ¢
and J were set to be 0.04 and 0.1, respectively, and the
results were superior to those achieved by the other two
algorithms. Thus, we suggest users to use this parameter
setting for picking OTUs at species level. A systematic
study to determine the two parameters for other phylo-
genetic levels needs to be carried out in the future. For
the stopping criterion ¢, similar considerations should
be taken as in [29] in order to determine this parameter
based on the statistical significance of the maximum
modularity values of sub-clusters generated in the recur-
sive clustering process.

The computational cost is composed of two parts. (1) O
(n%) is consumed in computing pairwise sequence, where
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n is the number of sequences. (2) The cost of performing
modularity-based clustering is approximately linear with
respect to m, the number of edges in an e-neighborhood
graph. The running time is mainly consumed in the com-
putation of pairwise sequence distances. Therefore, it is
highly desirable to develop a more efficient pairwise se-
quence alignment method. At present, large datasets are
handled by adding a preprocessing step. Sequences are
pre-clustered at 1% distance level using a high-speed
method such as UCLUST, and a representative sequence
from each cluster is used to form a reduced dataset, on
which the pairwise sequence distances are computed.

Conclusions

We developed M-pick, a new modularity-based clustering
method, for OTU picking of 16S rRNA sequences. The
algorithm does not require a predetermined cut-off value,
and our simulation studies suggest that it is superior to
the methods that require specified distance levels to define
OTUs. M-pick appears to offer a viable alternative for
binning similar sequences into OTUs.
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