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Abstract

Background: Small peptides encoded as one- or two-exon genes in plants have recently been shown to affect
multiple aspects of plant development, reproduction and defense responses. However, popular similarity search tools
and gene prediction techniques generally fail to identify most members belonging to this class of genes. This is
largely due to the high sequence divergence among family members and the limited availability of experimentally
verified small peptides to use as training sets for homology search and ab initio prediction. Consequently, there is an
urgent need for both experimental and computational studies in order to further advance the accurate prediction of
small peptides.

Results: We present here a homology-based gene prediction program to accurately predict small peptides at the
genome level. Given a high-quality profile alignment, SPADA identifies and annotates nearly all family members in
tested genomes with better performance than all general-purpose gene prediction programs surveyed. We find
numerous mis-annotations in the current Arabidopsis thaliana andMedicago truncatula genome databases using
SPADA, most of which have RNA-Seq expression support. We also show that SPADA works well on other classes of
small secreted peptides in plants (e.g., self-incompatibility protein homologues) as well as non-secreted peptides
outside the plant kingdom (e.g., the alpha-amanitin toxin gene family in the mushroom, Amanita bisporigera).

Conclusions: SPADA is a free software tool that accurately identifies and predicts the gene structure for short
peptides with one or two exons. SPADA is able to incorporate information from profile alignments into the model
prediction process and makes use of it to score different candidate models. SPADA achieves high sensitivity and
specificity in predicting small plant peptides such as the cysteine-rich peptide families. A systematic application of
SPADA to other classes of small peptides by research communities will greatly improve the genome annotation of
different protein families in public genome databases.
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Background
A major challenge in translating new genome sequences
into useful community resources is the accurate annota-
tion of genes and other functionally-relevant features [1].
While there have been clear improvements in gene pre-
diction algorithms [2], accurate prediction of small one
and two-exon genes remains stubbornly problematic [3].
False-positive signals arising from the poor specificity
of promoter motifs and other commonly-used signals
employed by general purpose gene-finding algorithms are
widespread [4-7]. To address the flood of false-positive
signals for small genes, many annotators filter out small-
gene predictions lacking direct experimental expression
evidence, resulting in a major problem of false negatives
[3,4].
We propose here an alternative and complemen-

tary strategy for genome-wide annotation – a strategy
that has as its strength predicting the small one-
and two-exon genes that all-purpose gene-finding algo-
rithms often fail to predict accurately. Our approach
focuses on finding all related paralogous genes within
a target gene family and then using signals from the
corresponding multiple sequence alignment to aid in
refining the model predictions.We have implemented this
approach in an open-source and freely available appli-
cation called SPADA (Small Peptide Alignment Discov-
ery Application). SPADA can be used directly with a
user’s own protein family alignments or with a com-
prehensive set of protein family alignments from pub-
lic sources such as Pfam [8], InterPro [9] or PROSITE
[10], enabling the exhaustive discovery of essentially all
members of the input families within a given genome
sequence. Because these public resources continue to
expand and include new and novel protein families,
SPADA’s ability to comprehensively identify arbitrarily
large families of small peptides in genomes will steadily
grow.
Here we describe the conceptual basis of SPADA

and go onto test its performance with selected fam-
ilies of notoriously difficult genes to annotate prop-
erly - specifically, plant Cysteine-Rich Peptides (CRPs)
in two model plant species (Arabidopsis thaliana and
Medicago truncatula), the S-Protein homologue (SPH)
family in A. thaliana, and the alpha-amanitin toxin
gene family in the mushroom Amanita bisporigera. In
the case of CRPs, we examine the accuracy and recall
compared to published composite test/training sets for
these species based on previous semi-manual cura-
tion and subsequent experimental expression validation
[11-13]. We also compare SPADA’s performance against
a range of commonly-used generic gene-prediction algo-
rithms [14-17], providing evidence of SPADA’s advan-
tage in identifying these challenging classes of small
peptides.

Method
SPADA is a computational pipeline that, when provided
with a multiple sequence alignment for a gene/protein
family of interest, identifies all members of this fam-
ily in a target genome. Technically, SPADA’s pipeline is
a general homology-based gene finding program with
specifically enhanced power to detect and annotate small
peptides with one or two exons. Unlike general-purpose
gene prediction programs such as Fgenesh [18], SPADA
works on an entire gene family at one time - with
the goal of finding all family members in the genome.
Unlike other homology-based gene predictors such as
Genewise [19] and Exonerate [20] that map a single pro-
tein sequence to the target genome, SPADA performs
a similarity search using a profile alignment and iden-
tifies all homologs of the family. In addition, SPADA
provides automated access to both similarity search tools
(e.g., BLAST [21] and HMMER [22]) and ab initio gene
predictors (e.g., Augustus), significantly improving the
annotation efficiency of multi-member gene families. As
shown in Figure 1, SPADA consists of four consecutive
components:

• Pre-Processing
• Motif Mining
• Model Prediction
• Model Evaluation & Selection

In SPADA, HMMER [22] is first used to identify hits
in the target genome sequence (translated in six reading
frames) as well as in the target proteome (if available)
using a reasonably generous E-value (10). These hits are
then tiled with regard to their genomic coordinates and
merged into overlapping clusters. Finally, one best hit in
each cluster is picked to generate a list of candidate hits.
The pipeline then allows the user to run one or more

processes to predict gene structures for these potential
genes. By default, SPADA runs Augustus [17] using hit
locations as clues for “CDS regions” (coding sequence). In
parallel, SPADA runs a custom pipeline optimized for pre-
dicting the exon boundaries of genes containing one or
two exons using GeneWise [19], SplicePredictor [23] and
custom Perl scripts.
In the next step, all gene structure predictions are com-

bined to make a raw calling set, with each hit having one
or more gene structure predictions. SPADA uses multiple
statistics to assess the confidence of each candidate gene
model, including an alignment score (mean pairwise score
with known members in the original family-specific mul-
tiple sequence alignment), an HMMalignment score (sum
of posterior probability scores in the Hmmsearch output
file), the presence/absence of proper start/stop codons, as
well as the SignalP D-score [24] in the case of secreted
peptides.
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Figure 1 The SPADAworkflow.

Finally, the best candidate gene model is picked for each
hit and the resulting set is filtered using empirical cutoffs
(hmmsearch E-value of 0.001) to remove false positives.

Pre-processing
Building family-specific multiple sequence alignments
The original motivation for developing this pipeline was
accurately identifying and predicting Cysteine-Rich Pep-
tides (CRPs) in plant genomes. For this purpose, SPADA
comes with a complete set of manually-curated pro-
tein sequence alignments for plant Cysteine-Rich Pep-
tide (CRP) families [11]. In 2007, Silverstein et al. built
multiple sequence alignments for most plant CRP fam-
ilies through iteratively scanning EST sequences from
different plant species in TIGR’s Gene Indices [11].
These alignments were re-aligned here using ClustalO
[25] and trimmed using trimAl [26] to remove spu-
rious sequences and poorly aligned positions. Finally,
a profile Hidden Markov Model (HMM) was built for
each CRP family using “hmmbuild” in the HMMER
package [27].
As a general homology-based gene finding program,

SPADA has been designed to work with any set of pro-
tein families. Users can start with a list of amino acid
sequence alignments of their own interest, run the script
“build_profile.pl” to generate custom HMM profiles, and
initiate the pipeline using the new HMM(s). With this in
mind, we have tested SPADA’s performance on an addi-
tional protein family as a proof of concept (see Results

section) and assessed its applicability to secreted protein
families other than CRPs.

Processing genome sequence and annotation
In SPADA, genome FASTA sequences are translated in
all six reading frames to amino acid sequences and then
Open Reading Frames (ORFs) are extracted by breaking
up these long amino acid sequences using stop codons.
Here an ORF is defined as a segment of amino acid
sequence with at least 15 residues and uninterrupted by
stop codons. Extracting ORFs from the original trans-
lated genomic sequence reduces the target database size
for the subsequent motif mining step and improves sen-
sitivity. Using ORFs also ensures that no protein-coding
exon spans stop codons in the middle of a sequence and
that each exon will have a reasonable length. In theory,
all protein-coding exons should locate within these ORFs,
which will be discovered in the next motif-mining step.
However, the exact exon boundaries are still unclear at this
point of the search procedure.
If a gene annotation file in General Feature Format ver-

sion 3.0 (GFF3) is available, SPADA can also read and
process it, extracting the amino acid sequences of existing
annotations and passing them onto the next motif mining
step. In doing so, exon boundaries can be better refined,
further improving the accuracy in the model prediction
step.
Hard-masking of genome sequences is recommended

(replacing repetitive sequences with ‘N’s) before running
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the pipeline. Some plant species have very large genomes
with highly repetitive content (e.g., Maize [28]). By hard-
masking the genome sequence, the target database size in
the motif-mining step is effectively reduced, significantly
improving the search sensitivity of the entire pipeline.
However, if many family members locate in repeat-rich
genomic regions (such as the fungi effector families [29]),
the unmasked genome version should be used.

Motif mining
In SPADA, profile HMMs are used to search against trans-
lated genomic sequences (and known protein sequences,
if available) using “hmmsearch”, a component of the
HMMER package (v3.0) [27]. This program finds signif-
icant hits against a protein sequence database using one
or more profiles as inputs. The output of the scan is a
list of genomic intervals with significant sequence similar-
ity to query profiles and amino acid sequences translated
from these intervals. For single-exon genes, a contiguous
stretch of amino acid sequence in the target databases
will be discovered, roughly corresponding to the exon in
the original genomic sequence. For genes containing two
or more exons, partial amino acid sequence hits corre-
sponding to different exons will be separated by introns
(if they share a reading frame) or distributed in different
target sequences (if in different reading frames). SPADA
collects all these full and partial hits in translated protein
sequences, recovers their original genomic coordinates,
filters out low-significance hits (E-value lower than 0.1),
selects the most significant hit for each genomic inter-
val since multiple input profiles may hit the same region,
and merges nearby partial hits. During this merging step,
SPADA requires that each neighboring partial hit should
hit a different segment (either upstream or downstream)
in the input profile HMM. The merged genomic intervals
(called “extended hits”) roughly correspond to the mul-
tiple exons in the underlying gene model - although the
exact intron-exon boundaries and start/stop codon loca-
tions are yet to be refined at this stage of the procedure.
In parallel, SPADA searches against existing protein

sequences (generated using the GFF3 annotation file),
yielding a separate list of hits to the input profiles.
These hits are also treated as partial hits, i.e., mapped
to their original genomic coordinates and then used
to build “extended hits”. This “hmmsearch against pro-
teome” step is considered complementary to the above-
mentioned “hmmsearch against translated genome” step,
since it improves prediction sensitivity by capturing other-
wise non-significant partial hits in the translated genome
search.

Model prediction
At this point, SPADA has generated a list of “extended
hits” approximately corresponding to actual exon bound-

aries. For each extended hit the surrounding genomic
sequence is extracted. By default, 2500 bp upstream from
the hits are extracted, since the first exon (containing
the signal peptide) is usually separated from the sec-
ond exon (with the mature peptide) by an intron up to
1500 bp, as determined by manual curation and under-
standing of plant genomes. At the other end, 1500 bp
downstream from the hit boundaries are extracted, since
the correct stop codon can typically be found within
1000 bp downstream of the HMM hit [11]. SPADA next
runs one or more components (selected by the user) in
parallel to determine gene structure in this region. A
total of five prediction components are currently sup-
ported by the pipeline: Augustus [17], GeneWise [19],
GlimmerHMM [14], GeneMark [15] and GeneID [16].
By default SPADA only runs two of these components
(Augustus and GeneWise) since performance evaluation
on a group of common plant peptides suggests that run-
ning all five of them does not offer a significant extra
gain compare to running just two of them (see Results &
Discussion).
The first component, which we denote “Augustus_

evidence”, runs Augustus [17] in its “evidence mode”. The
genomic sequence is used as input along with a “hint
file” providing the program instructions for which part(s)
of the input sequence are known to be part(s) of the
coding sequence. In other words, location information
of extended hits is incorporated in the prediction pro-
cess. Augustus will then try to complete the gene model
by looking for start/stop codons and canonical donor-
acceptor splice sites around the hits while preserving
the open reading frame. The improvement in predic-
tion accuracy and specificity by running Augustus in the
“evidence mode” (as compared to the “Augustus de novo
mode”) is significant and will be discussed in Results &
Discussion.
In parallel, SPADA runs a custom pipeline specifically

designed to identify and predict genes with one or two
exon(s) and with a leading signal peptide. This compo-
nent, which we denote “Genewise+SplicePredictor”, first
runs GeneWise [19] to align the extended hit sequence
(translated to amino acid sequence) to genomic sequence
and identifies compatible splice sites that preserve the hit
ORFs. If GeneWise fails due to non-canonical splice sites,
SPADA then runs SplicePredictor [23] to find all possi-
ble donor/acceptor splice sites and extracts compatible
ones, extending the ORFs to the nearest start codon and
stop codon. In practice, this “Genewise+SplicePredictor”
approach works well as a complement to the “Augus-
tus_evidence” approach (see Results and Discussion).
At this stage in the pipeline, SPADA reports all compat-

ible gene models predicted by the two components. These
candidate models are then passed on to the next step for
evaluation in order to generate a best calling set.
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Model evaluation & selection
For each extended hit, SPADA then evaluates the under-
lying candidate models using a number of measures
and picks the most “confident” model for output. These
evaluation statistics include the presence of start/stop
codons at the beginning/end of the model, the presence
of inframe stop codons, the SignalP score [24] in the case
of a secreted gene family, and in particular, the Multiple
Sequence Alignment (MSA) score and the “Hmmsearch
Probability” (HmmProb) score, as described below.
In theory, the correct gene model should encode an

amino acid sequence that aligns to the original family-
specific protein alignments better than any other candi-
date models. To calculate the MSA score, SPADA aligns
the amino acid sequence of the candidate model to
the profile alignment using ClustalO “profile-to-profile”
mode [25]. SPADA then scores all pairwise alignments
using BLOSUM80 scoring matrix [30] and calculates a
mean alignment score. The BLOSUM80 matrix is used
instead of BLOSUM62 because the sequences that are
being aligned tend to be fairly similar to each other, and
a matrix with more conserved target frequencies such as
BLOSUM80 should be more reasonable. Ideally, the can-
didate model with the highest MSA score should be the
most probable model.
Nevertheless, the MSA score is not sufficient to pick

the best model, since candidate models are sometimes too
close to each other in sequence and the MSA scores may
not vary appreciably among model alternatives. Therefore
SPADA also calculates an “Hmmsearch Probability” Score
for each candidate model. In theory, if hmmsearch is run
using the original family HMM against all candidate mod-
els, the most significant hit in the output should then be
the best model. In practice, the probability score in the
hmmsearch output serves as a better predictor than the E-
value itself, especially when a model contains more than
one hit domain. The MSA score and the HmmProb score
are used to evaluate each candidate model. SPADA then
picks the best candidate model that meets the following
criteria: (1) it has a SignalP D-score of no less than 0.4
(determined according to the softwaremanual, this option
could be turned off to allow prediction of non-secreted
gene families); (2) it has proper start/stop codons and no
premature stop codon; and (3) it has the highest (MSA
score + HmmProb score).
SPADA uses a relatively relaxed E-value cutoff in the

motif mining step (e.g., 10 for running hmmsearch) in
order to increase specificity. This also results in numerous
false positive hits. These hits will generally not have valid
candidate gene models built for them in the model pre-
diction step, and thus would not make it into the ultimate
output. However, SPADA does employ a final filtering
step based on hmmsearch E-value to refine gene models
that are retained. We evaluated the performance of the

pipeline under different final E-value cutoffs (see Results
and Discussion) and set the default cutoff to 0.001, which
may be adjusted by the user to achieve customized search
purposes. For all gene models passing the filter, SPADA
outputs the sequences in FASTA format and gene coordi-
nate information in GFF format. SPADA also generates for
each gene family a multiple sequence alignment includ-
ing all predicted models and the family-specific consensus
sequence. If a gene annotation file has been passed to the
pipeline, SPADAwill also report the comparison results of
predicted models with existing annotation (e.g., the num-
ber of models with exactly the same exon boundaries,
models with partial overlap, models in different reading
frames, etc.).

Performance evaluation
Compilation of the test set
Wehave compiled a test set of plant cysteine-rich peptides
(CRPs) in two genomes: themodel dicotyledon,Arabidop-
sis thaliana, and the model legume, Medicago truncat-
ula. In previous work, Silverstein et al. have exhaustively
searched and curated all 516 CRP families (CRP0000 -
CRP6250) in Arabidopsis [11]. A large number of CRPs
have also been identified and curated in an early release
of theMedicago genome sequence [11]. Recently, as a col-
laborative effort with J. Craig Venter Institute (JCVI), we
expanded this list of CRPs inM. truncatula. We manually
inspected and curated 136 CRP families (CRP0000 -
CRP1530, focusing specifically on the Defensin-Like pro-
teins or DEFLs) in M. truncatula [31]. Finally, we now
have a complete list of CRP members for Arabidopsis
andMedicago (742 for Arabidopsis and 725 forMedicago,
Additional file 1: File S1).
We collected evidence from multiple sources to validate

the expression of the models in the compiled test set. On
the one hand, extensive RNA-Seq data were downloaded
from NCBI Sequence Read Archive [32] for both Ara-
bidopsis andMedicago; on the other hand, we downloaded
the AtMtDEFL microarray dateset [12,13] to find addi-
tional support for expression of these gene families. The
AtMtDEFL array include probe sets for 317 Arabidop-
sis DEFLs, 15 Arabidopsis DEFL-related Genes (MEGs),
and 684 Medicago DEFLs, plus additional marker genes.
In total, 583 (78.6%) out of the 742 CRPs in the Ara-
bidopsis test set and 657 (90.6%) out of the 725 Medicago
CRPs receive support from either RNA-Seq (FPKM >1) or
microarray data (Additional file 2: Table S3 and Additional
file 3: Table S4). These carefully curated, high-quality CRP
calls were then taken as our test set in evaluating the per-
formance of different model prediction components in
SPADA under different hmmsearch E-value cutoffs. All
experimental procedures complied with the guidelines of
the Institutional Biosafety Committee (IBC) at University
of Minnesota (IBC code: 1301-30313H).
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Evaluation procedure
We tested a number of popular gene prediction pro-
grams as SPADA model prediction components. In
addition to the previously mentioned components, we
also tested GeneID (v1.4.4) [16], GlimmerHMM (v3.0.1)
[14], GeneMark (v3.9d) [15], and Augustus (v2.6.1, de
novo mode). The “Augustus_evidence” differs from the
“Augustus_de_novo” component simply by the inclusion
of a “hint file” (with hit location information) fed to
the program. We evaluated the pipeline performance
running these components (individually or in combina-
tion) based on our curated test dataset (see Results and
Discussion), and decided to use the “Augustus_evidence”
and “Genewise+SplicePredictor” approaches as default
components in the SPADA model prediction step.
Prediction performance was measured at two different

levels: coding nucleotide sequence and exonic structure.
At each level, we measured the sensitivity and specificity
for each component.We first define the true positives (TP,
number of coding nucleotides that are correctly predicted
as coding), true negatives (TN, number of noncoding
nucleotides that are correctly predicted as noncoding),
false negatives (FN, number of coding nucleotides pre-
dicted as noncoding) and false negatives (FN, number of
noncoding sequences predicted coding). At the nucleotide
level, Sensitivity (Sn) is then defined as the proportion
of coding nucleotides that have been correctly predicted
as coding (Sn= TP

TP+FN ), while Specificity (Sp) is the pro-
portion of predicted coding nucleotides that are actually
coding (Sp= TP

TP+FP ) [33]. At the exon level, Sn is the pro-
portion of actual exons in the input sequence that are cor-
rectly predicted, while Sp is the proportion of all predicted
exons that are correctly predicted [33]. Other measures
such as Correlation Coefficient (CC) and Average Con-
ditional Probability (ACP) were not evaluated since they
require the calculation of TN nucleotides/exons, which
are noncoding regions that are predicted as noncoding.
Unlike a general gene-finding program that tries to predict
all coding genes in a given sequence, SPADA focuses only
on coding genes that are significantly similar to a given
profile, while ignoring all other genes. Consequently “TN”
statistics is not straightforward to evaluate in this context.
Performance evaluation was done in both A. thaliana

and M. truncatula. The extracted genomic sequences
were used as input sequences. We evaluated the pipeline
performance using each of the “GeneID”, “Augustus_
de_novo”, “GlimmerHMM”, “GeneMark”, “GeneWise+
SplicePredictor”, “Augustus_evidence” component (indi-
vidually), as well as “SPADA” (combination of “Gene-
Wise+SplicePredictor” and “Augustus_evidence”) and
“All” (combination of all 6 individual components). All
programs were installed and run locally on a GNU/Linux
workstation. The appropriate parameter files, model files
and training directories, if available, were used to run

these programs in each species, otherwise the default
parameter files (which are for Arabidopsis) were used.
The output of these runs were parsed to derive a unique
prediction for each test sequence.

RNA-Seq andmicroarray processing, data visualization
We mapped the RNA-Seq short reads (downloaded form
NCBI SRA) to the reference using TopHat and summa-
rized the results using Cufflinks [34]. Cufflinks is able to
estimate the expression value at the level of transcripts.
We used a cutoff of FPKM (Fragments Per Kilobase of
exon model per Million mapped fragments) > 1 to deter-
mine if a model (either in the test set or in the SPADA
prediction set) is expressed.
For the AtMtDEFL array, PMA (Present, Marginal and

Absent) calls and normalized expression values of each
probe set were obtained from the supplemental tables
of two recent papers [12,13]. We mapped the probe
sequences to the transcript models in the test set as well
as SPADA prediction. In many cases the annotated gene
boundaries are not complete and lack portions of the 3’-
UTR that is prioritized in Affymetrix designs, and the
probes designed in these regions would not be mapped.
As a result, we require at least six probes in a probe
set matching the target gene (with 23 or more identical
nucleotides for each 25-mer oligo probe). Finally, the PMA
calls of a probe set should be ‘Present’ in at least one
tissue/treatment condition to indicate expression support
for the transcript model it is mapped to.
In order to visualize some of the novel SPADA predic-

tions as compared to the original genome annotation, as
well as the underlying RNA-Seq read mapping support,
we loaded the data (genome sequence file, annotation
GFF file, SPADA prediction GFF file, RNA-Seq mapping
BAM file) into IGV (Integrative Genomics Viewer [35]),
adjusted the width of each track, and made screenshots.

Results
Performance evaluation of SPADA on plant Cysteine Rich
Peptide (CRP) families
SPADA performance under different search E-value
thresholds
Using our manually-curated high-quality CRP test set
from Arabidopsis and Medicago, we first evaluated the
performance of SPADA under different search E-value
thresholds. Generally speaking, with a loose E-value
threshold (e.g., 0.1), SPADA is able to predict almost all
true models (i.e., achieving high sensitivity) while making
many false predictions (i.e., specificity is low) (Additional
file 4: Figure S1). By setting the search threshold to a more
stringent value, SPADA avoids making most of the false
predictions, but also loses a small number of true mod-
els. In an effort to optimize search sensitivity (the ability
to detect all true gene models) and specificity (prevent
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detection of spurious false models; refer to the “Method /
Performance evaluation / Evaluation procedure” section
for a formal definition of Sensitivity and Specificity), we
set the default search E-value threshold to 0.001. Users can
also change the default E-value threshold to build custom
searches (e.g., a very sensitive search using E-value cutoff
of 1 to identify all potential hits).

Performance comparison of different gene prediction
components
We then compared the performance of SPADA run-
ning different model prediction components: GeneID,
Augustus (“de novo” mode as well as “evidence” mode),
GlimerHMM, GeneMark, GeneWise+SplicePredictor as
well as “SPADA” (combination of “Augustus_evidence”
and “GeneWise+SplicePredictor”) and “All” (combination
of all 6 individual components) (Figure 2, Additional
file 4: Figure S1). The high specificities observed in all
components are likely due to the model evaluation and
selection step, where most false models are filtered. Pre-
diction sensitivities, on the other hand, show substantial
differences among components. In both genomes tested,
“Augustus_evidence” and “GeneWise+SplicePredictor”
gave the highest sensitivities among the six individual
components. The default SPADA pipeline (denoted as
“SPADA” in the figure) runs these two components and
achieved even higher sensitivity. On the other hand,
running all six individual components (denoted as “All”
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Figure 2 Performance comparison of different gene prediction
components. Search E-value threshold is set to 0.001 by default.

in the figure) gives the highest sensitivity, suggesting
that search accuracy can still be improved by includ-
ing more heterogeneous prediction programs in the
pipeline. However, the gain in sensitivity offered by
running all six components is marginal compared to
running just two of them (“Augustus_evidence” and
“GeneWise+SplicePredictor”), suggesting that a plateau
in search accuracy could soon be reached and adding
more prediction programs in the pipeline may not help
much.
These results are expected as SPADA does not work

as a general gene finding program but instead focuses
on particular classes of genes with known profiles. Small
genes are typically difficult to predict and often missed by
genome annotation pipeline due to the intrinsic properties
of many automatic gene finding algorithms [36]. In our
test with GeneID, Augustus and GlimmerHMM against
the Medicago genome, the Arabidopsis training matrix
was used since aMedicago specific one is not yet available.
This explains to a large extent the extremely low sensi-
tivity performance for these three programs in Medicago.
Search specificities were generally quite high and did not
vary much among different programs or genomes tested,
indicating the relatively stringent search E-value (0.001) in
effect allows few false positives.

Cysteine-rich peptides predicted by SPADA in Arabidopsis
andMedicago
Using the default search E-value threshold andmodel pre-
diction components, SPADA predicts 745 CRPs in Ara-
bidopsis and 1170 (747 for CRP0000-CRP1530) in Med-
icago (Table 1, Additional file 5: Table S1, Additional file 6:
Table S2, Additional file 7: Figure S2, Additional file 8:
Figure S3 and Additional file 9: File S2). These numbers
are generally consistent with our manually curated CRP
test sets (742 for Arabidopsis) and 725 for Medicago [11],
with a sensitivity of 91%–93% and specificity of 85%–95%
at the nucleotide level (Additional file 4: Figure S1). Mem-
bers within a sub-class typically show a conserved signal
peptide and cysteine configuration (Additional file 10:
Figure S4 for example). We also checked the expression of
these predictions using publicly available RNA-Seq data
from NCBI: 570 (76.5%) out of the 745 Arabidopsis CRPs
and 947 (80.9%) out of the 1170 Medicago CRPs receive
either RNA-Seq or AtMtDEFL array expression support
(Additional file 11: Table S5 and Additional file 12: Table
S6). It should be noted that SPADA makes no attempt
to predict pseudogenes as it filters out hits with in-frame
stop codons. However, some pseudogenes with premature
stop codons might still be predicted by SPADA as valid
genemodels if the in-frame part shows significant (though
incomplete) similarity to the search HMM. This in part
explains the higher number of SPADA predictions (747 for
CRP0000-CRP1530) in Medicago than our test set (725)
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Table 1 Cysteine-Rich Peptides (CRPs) predicted in A. thaliana andM. truncatula

A. thaliana M. truncatula

Defensin related CRP0000-CRP0260,etc. 56 43

LCR/BET1 related CRP0280-CRP0810,etc. 162 110

SCR related CRP0830-CRP0880 32 6

Metallocarboxypeptidase inhibitor CRP1004-CRP1030 0 1

CCP related CRP1040-CRP1120 19 4

Nodule Cysteine-Rich peptide CRP1130-CRP1530 3 583

Ripening related protein CRP1600-CRP1605 0 21

Novel family CRP1620,CRP2800,etc. 14 15

Miscellaneous CRP1640-CRP1660,etc. 16 48

Rapid Alkalinization Factor CRP1700-CRP2120 38 36

Thionin related CRP2200-CRP2610 66 23

Root cap/late embryogenesis CRP2820-CRP2850 5 7

Antimicrobial peptide MBP-1 CRP2900-CRP3000 1 2

Bowman Birk inhibitor CRP3100-CRP3190 0 16

Pollen Ole e I CRP3300-CRP3510 34 44

ECA1 gametogenesis related CRP3600-CRP3740 124 17

Lipid transfer protein CRP3800-CRP4962 127 127

2S Albumin CRP4970-CRP5080 5 3

Glutenin/Giadin/Prolamin CRP5090-CRP5270 0 0

Maternally-expressed gene/Ae1 CRP5300-CRP5520 20 2

Proteinase inhibitor II CRP5545-CRP5600 6 2

Chitinase/Hevein CRP5610-CRP5820 10 15

Kunitz type inhibitor CRP6010-CRP6180 7 45

Total 745 1170

since pseudogenes were manually removed to obtain the
test set.
The default E-value threshold of 0.001 is a compromise

between sensitivity and specificity that generally works
well for both organisms. For the purpose of identifying
all potential small coding genes, a search with high sensi-
tivity should be performed since it allows the user to see
all potential hits and then determine for him/herself the
boundary between false predictions and true predictions
based on search scores. The users can then set the cut-
off threshold empirically and select genes for experimental
verification on their own. Thus, we also report here two
CRP prediction sets by running SPADA using E-value
threshold of 1 (Additional file 13: Table S7 and Addi-
tional file 14: Table S8). In practice, users are encouraged
to change the default E-value threshold to build custom
searches.
According to the latest versions of genome annota-

tion for Arabidopsis and Medicago, about 5% to 15%
of SPADA predictions fall completely into intergenic
regions (i.e., are un-annotated, Table 2). Through man-
ual inspection of these models, we found that some of the

unannotated models turn out to be ORFs with premature
stop codons (i.e., pseudogenes), while others had quite
significant hmmsearch E-value and complete ORFs. In
addition, some predicted models receive expression sup-
port from either existing EST sequence or RNA-Seq data.
An example is shown in Figure 3 where the predicted CRP
model is supported by RNA-Seq mapping, fits well in the
family-specific alignment, but was missed by the genome
annotation (Medicago genome annotation version 3.5) as
well as by our test set. While such cases are infrequent

Table 2 Novel CRPmodels identified by SPADA
determined bymanual inspection

A. thaliana M. truncatula

Total predictions 745 1170

Number of unannotated predictionsa 5 125

Number of novel modelsb 3 (60%) 77 (62%)

aAn unannotated prediction is a gene model predicted by SPADA but missed by
current genome annotation.
bNovel models are unannotated predictions that are manually inspected to be
true members of the family with evidence from family-specific alignment and/or
RNA-Seq evidence.
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Figure 3 A novel gene model predicted by SPADA is missed by the currentMedicago annotation. AMedicago NCR (h1001.01) shown in IGV
(above figure) and subgroup alignment of CRP1180 (below figure, h1001.01 shaded).

(e.g., only 10 in Arabidopsis), we speculate the specificity
of SPADA is likely to be underestimated.
We then performed manual inspection on these unan-

notated CRP models and tried to determine whether the
calls are truly bad predictions (e.g., pseudogenes with
pre-mature stop codons) or valid members of the fam-
ily missed by current genome annotation (criteria being
that the predicted model fits well in the family-specific
alignment and has either RNA-Seq or Affymetrix expres-
sion support). The number of “novel” CRPs discovered
in this fashion, is given in Table 2 (Additional file 15:
File S3). SPADA was able to identify 77 novel CRPs in
Medicago that were missed by current genome annotation
pipeline. The actual number of new CRPs in Medicago
will be even higher since we only evaluated a subset of all
CRP groups (CRP0000-CRP1530). This result is not unex-
pected given that theMedicago genome was released only
recently and resources and efforts put into the genome
annotation pipeline have been limited. On the other hand,
only 3 novel CRPs were found in Arabidopsis, suggesting
a relatively higher quality of gene calls in this extensively
studied model organism.
Through examination of the novel CRPs, we also noted

that while some of the novel hits have a very significant
hmmsearch E-value (e.g., 10−12), most have moderate E-
values (e.g., 10−4 − 10−7), suggesting that their sequence
similarity to the input HMM profile is limited. While the
input profile alignments were manually built and may not

be exhaustive in capturing all groups of CRPs, we specu-
late that some of these novel CRPs might form new clades
that define novel profile alignments, separate from the
original alignment. Consequently, a new round of genome
scans using these novel profiles has the potential for cap-
turing even more members that have been missed in the
previous search.

Case study: the S-Protein Homologue (SPH) family in
Arabidopsis
In addition to plant CRPs, SPADA is readily general-
izable to other classes of putative secreted peptides by
substituting an appropriate sets of HMMs in place of
CRP HMMs. Here, we used the SPH peptides (S-Protein
Homologue) [37] as an example. A seed alignment includ-
ing 45 plant self-incompatibility protein S1 sequences
(PF05938) was obtained from the Pfam database. An
HMM profile was built from this alignment and then used
as input to scan the Arabidopsis genome (TAIR10 [38])
by running SPADA. SPADA predicted 92 SPH peptides in
total (Additional file 16: Table S9 and Additional file 17:
File S4). Forty-five (45) of these predictions are identical
with TAIR10 annotation. Seventeen have minor discrep-
ancies with TAIR10 gene models (coding regions all in
the same reading frame but have a boundary conflict of
less than 15 amino acids, probably resulting from differ-
ent start codons or alternative splice sites). Nine are in
major conflict with existing gene models (coding regions
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in different reading frames or having serious boundary
conflict). We also discovered 21 new SPHs not present
in TAIR10. Through manual inspection of gene models
and sequence alignments with other family members, we
found 3 out of the 15 major conflicts reflect an error
in TAIR10 (Figure 4A gives an example), while 19 out
of the 21 models absent from TAIR10 are true mem-
bers of the SPH family, missed by the current genome
annotation (Figure 4B shows an example). Thus, we
demonstrate that SPADA accurately detects other classes
of secreted peptides given a well-constructed profile
alignment.

Case study: a fungal cyclic peptide family in Amanita
bisporigera
In order to assess whether SPADA could be useful in
searches for families of small non-secreted peptides out-
side the plant kingdom, we also examined the fungal
cyclic peptides of Amanita mushrooms [39]. This fam-
ily includes the amatoxins and phallotoxins, such as
α-amanitin and phalloidin, respectively, which are synthe-
sized as proproteins of 34-35 amino acids. We began by
creating a multiple sequence alignment via ClustalO of
reported proproteins [39] and executed SPADA as usual
with the signal peptide filter turned off, using Arabidop-
sis as the training model for Augustus in searching the
low-coverage genome contigs of Amanita bisporigera. As
a negative control, we scanned the genome of Amanita

thiersii, which is non-toxic and not known to produce this
class of toxins.
SPADA identified five new peptides in the incompleteA.

bisporigera genome with strong homology (2.4 × 10−17 <
E < 5.8 × 10−8) that fit well with the alignment of known
proproteins (Figure 5). One additional hit ran off the
end of the contig, producing the incomplete propeptide
“MSDTNVMRLPFTTP”. No additional predictions were
made by SPADA with E < 0.01 beyond sequences that
were already included in the original alignment. Fur-
ther, SPADA did not identify any hits when scanning the
genome of A. thiersii, as would be expected from that
organism’s non-toxic nature.

Discussion
Homology-based gene prediction
Unlike general-purpose gene predicting programs,
SPADA works as a family-based gene finder. The major
difference between SPADA and general gene predicting
programs is that it incorporates prior information from
the family profile in the prediction process. SPADA takes
advantage of generic gene prediction programs, but goes
a step further by suggesting where to look for family
members. Through scanning the target genome using
pre-built family-specific alignments, SPADA identifies
and builds “extented hits” that serve as the backbone of
the underlying exonic structure. This location informa-
tion greatly improves prediction accuracy, as shown by

A

B

Figure 4 SPADA detects mis-annotated and novel SPH peptides in TAIR10. (A) SPADA detects an SPH peptide (h0018.02) that is
mis-annotated in TAIR10; (B) SPADA detects a novel SPH peptide (h0013.02) not present in TAIR10. Multiple sequence alignment of selected SPH
peptides are shown below with h0018.02 and h0013.02 shaded.
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Figure 5Multiple sequence alignment of Amanita toxin proproteins. Sequences identified by SPADA are labeled as “hm****”. All remaining
sequences were obtained from Hallen et al. [39], and were included in the initial alignment used as input for SPADA.

the different performances of “Augustus_de_novo” and
“Augustus_evidence” components in Figure 2. Among the
six individual predicting components, the four that do not
require additional information and make de novo predic-
tions all yield low sensitivities. The other two approaches,
“Augustus_evidence” and “GeneWise+SplicePredictor”,
make use of the location information and are able to
predict most of the true positives.
Family-based gene prediction was first introduced in the

AUGUSTUS package as the AUGUSTUS-PPX (Protein
Profile eXtension) module [17]. Although AUGUSTUS-
PPX was shown to be more sensitive and accurate in
predicting long, multi-exon gene family members than the
standard AUGUSTUS algorithm, its approach is not suit-
able for small, divergent peptide families such as CRPs,
SPHs or Amanita toxin-like peptides examined here.
Rather than using the entire protein family alignment pro-
file as input, AUGUSTUS-PPX makes use of conserved,
ungapped blocks from the alignment to make a profile.
This enables the algorithm to identify core match regions
in the genome sequence which together act as a scaffold
in the gene prediction. A modification of the standard
AUGUSTUS gene-centric HMM is then used to fill in the
pieces between scaffold elements with splice elements and
other signals, ultimately emitting the most probable full
gene structure. While this approach works well for fami-
lies of typical genes with large numbers of conserved ele-
ments, it completely breaks down when applied to small,
divergent peptide families like the CRPs, as these fami-
lies tend to contain no conserved, ungapped regions of
appreciable size to seed the initial scaffold. Indeed, when

we applied AUGUSTUS-PPX to the CRPs we observed no
improvement over “Augustus_de_novo”.

Improving prediction accuracy by model evaluation
The default SPADA pipeline (running the “Augustus_
evidence” and “GeneWise+SplicePredictor” components)
achieves even higher sensitivity than the two individual
components. This owes to the model evaluation & selec-
tion step. For eachHMMhit, SPADA collects all candidate
gene models built by its model predicting components,
and in the model evaluation step, picks a best candidate
model based on multiple evaluation statistics. True fam-
ily members will probably get a high-scoring gene model,
while most false positive hits will have no qualifying or
only low-scoring gene models built. High-scoring gene
models that passed the filter are more likely to be true
models since they are the ones that best fit the family-
specific alignment.

Pseudogenes and genemodels without expression
evidence may still have significant value
SPADA identifies paralogous gene family members
throughout the genome. Many of these predictions cur-
rently lack expression evidence and some of the gene
predictions have premature stop codons suggesting they
may be psuedogenes. Nonetheless, it is important to iden-
tify all gene family members, regardless of their expres-
sion and pseudogene status, especially in evolutionarily
dynamic gene families,. The semi-automated approach
that inspired SPADA’s development identified hundreds
of defensin-like genes in Arabidopsis which, at the time,



Zhou et al. BMC Bioinformatics 2013, 14:335 Page 12 of 16
http://www.biomedcentral.com/1471-2105/14/335

had no expression evidence [40]. Later, these genes turned
out to be highly specifically expressed in reproductive tis-
sues not previously examined with earlier genome-wide
expression approaches [41]. Moreover, one must also be
careful not to discard pseudogene predictions that are
highly similar to other family members. A gene that
appears as a pseudogene in the reference sequenced acces-
sion of a species may indeed be fully intact in other
accessions, as observed among the defensin-like pollen-
tube attractant, AtLUREs [42]. In their study, Takeuchi
and Higashiyama observed half a dozen AtLUREs with
disabling mutations in non-reference accessions, as well
as putative functional and intact forms of AtLUREs 1.5
and 1.6, which are pseudogenes in the reference Col-0
genotype [42].

Improving SSP annotation in current plant SSP databases
Previous work has sought to exhaustively identify small
secreted peptides (SSP) in Arabidopsis [4], rice [7] and
Populus deltoides [6]. These earlier studies only scanned
short ORFs (25-250 amino acids) in translated genome
sequence, though Pan et al. [7] did include multiple-exon
gene predictions from ab initio gene predition programs
such as Fgenesh and Augustus. However, with a primary
focus on detecting all small secreted peptides, these stud-
ies did not utilize protein family information in the model
building process since secreted peptides are so diverse.
The Arabidopsis Unannotated Secreted Peptide Database
(AUSPD) only contains one-exon ORF predictions, and
thus mis-annonates most (if not all) two-exon secreted
peptides (Additional file 18: Figure S5 for example).
The OrysPSSP database (comparative Platform for Small
Secreted Proteins from rice from rice and other plants)
does contain multi-exon models predicted by Fgenesh
(0.72%) and Augustus (1.16%) in addition to single-exon
ORFs [7]. However, since no prior information is incorpo-
rated into predictions by these ab initio gene predicting
programs, multi-exon models in OrysPSSP are frequently
in conflict with the true rice CRPs (Additional file 19:
Figure S6 for example). As a result, while most single-exon
peptides in Arabidopsis and rice are captured in AUSPD
and OrysPSSP respectively, a large portion of the two-
exon and multi-exon genes (such as CRP0000-CRP1530)
are clearly under-represented in these two databases.
SPADA, on the other hand, used additional gene struc-
ture information obtained in the motif mining step and
was able to correctly predict most of the CRP models
(Additional file 20: Table S10).

Complementarity of SPADA to generic gene prediction
programs
SPADA is not designed to identify all genes in a genome.
However, its applicability to new annotation projects

steadily will increase due to the marked growth of pro-
tein sequence family signatures and alignments. Inter-
Pro release 43.0 contains 16,652 protein family signatures.
In the last 3 years, the number of families characterized
by InterPro has increased by 24%, compared with a 38%
increase in the 3 years prior to that [9]. (Release 29.0
from October 2010 had 13,382 family entries; Release
16.1 from October 2007 had 9,729 entries.) It should be
noted that SPADA is unlikely to perform well with genes
that have large numbers of exons due to the combinatoric
explosion of potential splice donor and acceptor pair com-
binations to evaluate. For longer multi-exon gene families,
AUGUSTUS-PPX should be used. Still, SPADA has been
shown here to be extremely effective in predicting fami-
lies of one- and two- exon genes often missed or excluded
by standard gene prediction algorithms [3,4]. Hence, it
is anticipated that gene annotation pipelines would be
improved by routinely running SPADA to pick up small
genes in addition to the standard generic gene prediction
algorithms (e.g., Augustus) for larger genes.

Impact of better gene prediction algorithms on plant
genomics
As sequencing costs have come down, there has been a
commensurate expansion in the sequencing of multiple
plant genomes within each species. Moreover, Genome
Wide Association Studies (GWAS) are now routinely car-
ried out in these populations. Gene annotation cannot be
simply transferred across members of a species due to
the myriad of SNPs and indels that alter gene structures.
Gan et al. estimated that gene structural changes occurred
in more than 30% of genes among the 18 Arabidopsis
accessions they resequenced and assembled [43]. Further,
GWAS studies have repeatedly implicated unannotated
intergenic regions as having the most significant associ-
ation with important agronomic traits [44,45]. While it
is likely that many of these GWAS peaks identify non-
coding RNAs or regions in strong linkage disequlibrium
with causative variants, we suspect that many of these
sites may actually mark members of as yet unannotated
families of small genes. Indeed, in our own GWA stud-
ies [46], many peaks turned out to coincide with NCR
or other CRP family members that prior to our intensive
family-based annotation studies had been un-annotated
inMedicago.

Discovery of genes resembling Nodule-Cysteine-Rich (NCR)
peptides in Arabidopsis
In striking contrast to Arabidopsis, theMedicago genome
harbors a huge number (583 versus 3) of Nodule
Cysteine-Rich peptides (NCRs, CRP1130-CRP1530) –
Defensin-Like proteins with nodule-specific expression
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(Table 1). These NCRs are unique to Medicago (specif-
ically, legumes in the Inverted Repeat-Lacking Clade)
[47] and have recently been shown to play vital roles
in the communication between Medicago and symbiotic
rhizobia [48,49].
Surprisingly, three CRPs were found in the Arabidop-

sis genome falling into the nodule-specific sub-families
(CRP1130-CRP1530, or NCRs). Previously, NCRs were
thought to be unique to Medicago and other IRLC
legumes, playing a vital role in the legume-rhizobia sym-
biotic interaction [50]. Looking closely at the sequence
alignments (Additional file 21: Figure S7), these “Ara-
bidopsis NCRs” have all the conserved cysteine residues
in the expected configuration, while also exhibiting sub-
stantial divergence from Medicago NCRs - and forming
a separate Arabidopsis-specific clade. Furthermore, only
one Arabidopsis NCR is predicted in each sub-class. It
is possible, therefore, that these “Arabidopsis NCRs” are
descendants from the most recent common ancestral
genes that later evolved into Medicago NCRs. After the
Arabidopsis-Medicago divergence, these ancient NCRs
could have become increasingly divergent in the legume
(Medicago) clade, eventually gaining new functions in
nodule development and symbiosis, possibly through neo-
functionalization, conferring a selective advantage and
thus increasing rapidly in copy number through gene
duplication.

Limitations of the SPADA pipeline
Because the model prediction step in the pipeline is not
optimized for multi-exon gene models nor the extremely
large introns present in animal genomes, we do not yet
recommend SPADA to identify small peptides in ani-
mals (especially mammals). Also, SPADA is not expected
to work well with bacterial genomes due to the absence
of introns in their gene models. However, we speculate
this pipeline will work well with organisms such as yeast,
oomycete and fungi, since they have similar gene struc-
tures to plants [51,52]. In fact, it was recently found
that oomycetes and fungi genomes encode large num-
ber of secreted effectors as a result of the evolutionary
“arms-race” between pathogen and host [53,54]. Poten-
tially, SPADA will be useful in effector discovery in these
pathogen genomes given that a growing number of infor-
mative family alignments are becoming available.

The SPADA pipeline is useful beyond secreted peptides
and outside plants
Although SPADA was initially designed to target secreted
peptide families in plants, it can be used on non-
secreted peptide families, especially in fungal systems. In
the Results section, we tested SPADA using draft genome

contigs of the mushroom A. bisporigera in search of
additional members of a class of potent liver toxin pro-
peptides characterized in earlier work [39]. Roughly 20
pro-peptides belonging to this family had been cloned and
sequenced, with only about a dozen present among the
draft genome sequence contigs. SPADA identified 5 new
family members with convincing alignments and signifi-
cant E-values (2.4 × 10−17 < E < 5.8 × 10−8). Three of
these were in contigs long enough that extensive homol-
ogy in the 3’-UTR region characteristic of the family
could be observed. The contigs of the remaining two
hits ended shortly after the coding sequence preventing
3’-UTR homology characteristics from being confirmed.
When the same input HMM constructed from the known
20 pro-peptides [39] was used to scan against a related
mushroom Amanita thiersii that is known not to pro-
duce toxic peptides, SPADA did not identify any candidate
genes with E <0.01.

Conclusions
SPADA is a homology-based gene prediction program
to accurately identify and predict the gene structure for
short peptides with one to a few exons. SPADA works
well on small plant peptides such as the cysteine-rich
peptide families. SPADA gives much more accurate and
precise gene calls than traditional ab initio gene find-
ing programs in tested genomes. Running SPADA on
less well-annotated plant genomes (e.g.,Medicago) reveals
numerous mis-annotated and unannotated CRPs in the
current genome annotation. Predictions made by SPADA
constitute the most complete set of plant cysteine-rich
peptides, and in this regard, will provide an invaluable
resource for the research of small, secreted peptides in
plants. The systematic application of SPADA to other
classes of small peptides by communities will greatly
improve the genome annotation of different protein fami-
lies in public genome databases.

Availability and requirements
Project name: Small Peptide Alignment Discovery Appli-
cation
Project home page: https://github.com/orionzhou/
SPADA
Operating system(s): Linux
Programming language: Perl
Other requirements: SPADA is a perl-based pipeline
that internally runs HMMer, Augustus, Genewise, Spli-
cePredictor and a number of custom scripts. Instructions
for installation and running are available at https://github.
com/orionzhou/SPADA/wiki.
License: Apache License, Version 2.0
Any restrictions to use by non-academics: None

https://github.com/orionzhou/SPADA
https://github.com/orionzhou/SPADA
https://github.com/orionzhou/SPADA/wiki
https://github.com/orionzhou/SPADA/wiki
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set.
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prediction components under different search E-value thresholds.

Additional file 5: Table S1. CRPs predicted by SPADA in A. thaliana using
E-value threshold of 0.001.

Additional file 6: Table S2. CRPs predicted by SPADA inM. truncatula
using E-value threshold of 0.001.

Additional file 7: Figure S2. Genome distribution of CRPs predicted in
Arabidopsis thaliana.

Additional file 8: Figure S3. Genome distribution of CRPs predicted in
Medicago truncatula.

Additional file 9: File S2. CRP predictions made by SPADA in A. thaliana
andM. truncatula using search E-value threshold of 0.001 (in GFF3 format).

Additional file 10: Figure S4.Multiple sequence alignments ofMedicago
CRP sub-families CRP0000 and CRP1400.
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SPADA in A. thaliana.

Additional file 12: Table S6. Expression support of the CRPs predicted by
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Additional file 13: Table S7. CRPs predicted by SPADA in A. thaliana
using E-value threshold of 1.

Additional file 14: Table S8. CRPs predicted by SPADA inM. truncatula
using E-value threshold of 1.

Additional file 15: File S3. Novel CRP predictions made by SPADA in A.
thaliana andM. truncatula as determined by manual inspection (in GFF3
format).

Additional file 16: Table S9. SPH peptides predicted by SPADA in A.
thaliana.

Additional file 17: File S4. SPH predictions made by SPADA in
Arabidopsis using search E-value threshold of 0.001 (in GFF3 format).

Additional file 18: Figure S5. A typical Arabidopsis CRP mis-annonated
in Arabidopsis Unannotated Secreted Peptide Database (AUSPD).

Additional file 19: Figure S6. A typical rice CRP mis-annonated in
OrysPSSP.

Additional file 20: Table S10. Evaluation of SPADA, AUSPD and OrysPSSP
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Additional file 21: Figure S7. Sub-class alignments of three Arabidopsis
NCRs withMedicago NCRs. In each alignment the first sequence comes
from Arabidopsis and the rest all come fromMedicago.
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