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Abstract

Background: Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate
minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic
schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from
elementary modes. However, in their original formulation both algorithms are not fully comparable.

Results: Here we show that by a small extension to the integer program both methods become equivalent.
Furthermore, based on well-known preprocessing procedures for integer programming we present efficient
preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the
algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these
preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge
algorithm outperforms the binary integer approach.

Conclusions: Generally, both of our new implementations are by at least one order of magnitude faster than other
currently available implementations.

Keywords: Metabolic network analysis, Elementary modes, Minimal cut sets, Knockout strategies, Integer
programming, Berge’s algorithm

Background
The aim of metabolic engineering is to (re-)allocate avail-
able cellular resources in order to induce/stimulate cells
to produce substances of interest. For instance, by redi-
recting intracellular carbon fluxes, product yields can
be boosted and optimized [1,2]. However, the identifi-
cation of engineering targets is not straight-forward as
cellular metabolism is a highly interconnected and regu-
lated system of reactions. Consequently, naïve interven-
tions sometimes are ineffective or worse, adversely affect
other, even quite distant cellular functions. To deal with
the complex interactions in cellular metabolism and to
identify promising engineering targets several in silico
approaches have been developed [3-9]. Here we are par-
ticularly concerned with two algorithms [10,11], which
are based on elementary mode (EM) analysis [12,13] and
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eventually compute intervention strategies as minimal
cut sets.
EM analysis was successfully used to identify engi-

neering targets for the production of amino acids [14],
biofuels [15,16], and secondary metabolites [17] in various
organisms from C. glutamicum [14] to E. coli [15,16]
to S. cerevisiae [18] to A. niger [19]. In fact, EM analy-
sis is ideally suited for metabolic engineering [20,21] as
it allows for an unambiguous and unbiased decomposi-
tion of the analyzed network into inseparable, biologically
meaningful steady-state pathways. Any intracellular flux
distribution can be represented as a properly weighted
combination of these EMs. Thus, the full set of EMs
describes all possible steady-state functions. Conversely,
the cell’s metabolic capabilities can be restricted if EMs
are removed from the network. To remove an EM from
the network it suffices to delete at least one contributing
reaction [12,13]. However, as each reaction supports more
than one EM, other network functionality will be affected,
too. Now the question may be phrased as an optimization
problem. The task is to find a minimal intervention strat-
egy, which removes all unwanted functionality from the
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network while, at the same time, keeps desirable network
properties.
Recently, Hädicke and Klamt [11] introduced the

concept of constrained minimal cut sets (cMCSs) to
predict suitable minimal intervention strategies for a
given design criterion. They also presented an algorithm
(adapted Berge algorithm [11]; see also [22,23]) by which
cMCSs can be computed from EMs. Jungreuthmayer and
Zanghellini [10] conceived an alternative method to com-
pute cMCSs by solving a binary integer program (BIP)
over the EMs.
By adapting the BIP originally presented in [10] we

first demonstrate that both algorithms deliver indeed
equivalent results. Inspired by the theory of integer pro-
gramming, we then develop efficient preprocessing pro-
cedures, which allow both methods to handle problems
with hundreds of millions of EMs. Finally, by computing
intervention strategies in several realistic networks, we
benchmark and compare the computational performance
of both algorithms.

Methods
EMs are an unbiased way to characterize metabolic net-
works. An EM is defined by three properties [12,13]: (i) it
is a non-trivial, steady state flux distribution through the
network, (ii) it obeys all thermodynamic constraints on
reaction reversibilities, and (iii) no subset of an EM exists
which also is an admissible flux distribution and obeys (i)
and (ii). By this definition, an EM is a minimal, biologically
meaningful, steady-state pathway through a network. An
EM can be represented as a (flux) vector or by the set of
active reactions in the EM. Herein we will mainly use the
latter.
In the following we assume that all EMs are known.

Several tools to calculate EMs are freely available [24-27].

cMCS theory
Hädicke and Klamt [11] defined cMCSs as solutions I of
an intervention problem

I = I(T ,D, n). (1)

Here, D and T denote sets of desired and target modes,
respectively. The latter contains all EMs, which need to be
removed from the network. The former contains all EMs
with favorable functionality. An intervention I will be a set
of reactions that are deleted (knocked-out) in the network.
An EM is hit (and becomes inoperable) if at least one reac-
tion of I is part of the EM. The variable n denotes the
minimumnumber of desired EMs, which have to “survive”
the intervention. For a given intervention I, we collect all
the surviving desired modes in the set DI .
A proper solution I of equation (1) is a set of reactions

obeying two conditions: First, the removal of the reac-

tions in I will delete the complete target set, T , from the
network

t ∩ I �= ∅ ∀t ∈ T , (2)

and no subset of I will do so. This is the MCS property. To
be a constrained MCS the intervention I will keep at least
n desirable EMs unaffected, i.e.

|DI | ≥ n. (3)

As each EM represents a unique pathway through a net-
work, removing it from the network means to block that
path, which is easily doable by deleting at least one con-
tributing reaction. Thus, to meet condition (2), the task
is to find a (minimal) hitting set such that all pathways
in T are blocked [see equation (2)]. Mathematically, this
problem is also known as dualization of a (hyper-)graph,
a fundamental problem in discrete mathematics [28]. Sev-
eral algorithms for calculating hitting sets are available, of
which the Berge algorithm [22] has been shown to per-
form favorably for the problems considered herein [23].
However, minimal hitting sets ensure only that all target
modes are hit but do not per se ensure the constraint (3),
i.e. the survival of n desired modes.
A simple strategy to fulfill equation (2) in combination

with the constraint in equation (3), is to first calculate all
possible minimal hitting sets and then, in a second step,
to only select those solutions which also obey equation
(3). However, the computational performance can be opti-
mized if the constraint equation (3) is checked “on the fly”,
leading to the adapted Berge algorithm presented in [11].
A pseudo-code of the adapted Berge algorithm can be

found in [11], in the following we give a small example to
explain basic principles of the Berge algorithm. Consider
a hypergraph with hyperedges ε1 = {a, b} and ε2 = {a, c}
(in our application, ε1 and ε2 would represent target EMs).
The algorithm finds first all minimal hitting sets (cut sets)
for the first edge, i.e. γ1 = {a} and γ2 = {b}. It then adds
the next edge, ε2, and checks whether the already calcu-
lated cut sets are also cut sets for the current edge. Since
γ1 is hitting ε2, γ1 is kept unchanged. However, γ2 is not
a cut set for ε2 and, thus, is removed from the list of cut
sets. Instead, two new cut sets are created by individu-
ally adding each element of ε2 to γ2, i.e. γ3 = {b, a} and
γ4 = {b, c}. To guarantee minimality the algorithm checks
if a newly created cut set is a superset of an already exist-
ing one. That is, γ3 gets removed from the set of cut sets as
it is a superset of γ1. Next, a new edge is added to the sys-
tem and the calculation cycle starts over. Execution stops
when all hyperedges are processed. To account for the
intervention problem and accelerate the classic algorithm,
Hädicke and Klamt suggested to first check if a newly gen-
erated cut set is consistent with the constraint (3) and only
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then check its minimality against all previously calculated
cut sets [11]. This modification leads to the adapted Berge
algorithm [11] which will be used in the following.

cMCSs can be formulated as a BIP
In a recent paper [10] we showed that if |D| = n then the
intervention I = I(T ,D, n) is representable as a BIP. How-
ever, even the general problem that at least n out of |D|
modes need to survive the intervention can be formulated
as a BIP.
Let e be an EM of a metabolic network with m reac-

tions, fulfilling the steady state condition, and b = b(e) its
binary representation,

bi := bi(ei) =
{
1 if ei �= 0
0 if ei = 0 , i = {1, . . . ,m}. (4)

bi indicates whether reaction i is part of the EM e.
A solution x to equation (1) can be found by solving the

following BIP:

max ||x|| (5a)

s.t. bTd x ≥ ||bd||yd, d ∈ {1, .., |D|}, (5b)

bTd x ≤ ||bd||(1 + yd) − 1, (5c)
bTt x ≤ ||bt|| − 1, t ∈ {1, .., |T |}, (5d)
||y|| ≥ n, (5e)

x = (x1, . . . , xm)T, xi ∈ {0, 1}∀i, (5f)

y = (y1, . . . , y|D|)T, yi ∈ {0, 1}∀i. (5g)

Here we used the indices d and t as a reminder that the
EM vectors, bi, are elements of the sets D and T , respec-
tively. The solution vector, x, is the binary representation
of a single cMCS, where xi = 0 marks reactions which
get deleted, while xi = 1 stands for reactions that remain
unaffected by the genetic intervention. The elements of
the binary, auxiliary vector, y, indicate whether or not a
desirable mode survives the intervention (1 and 0, respec-
tively). Note that our notation uses superscripts to denote
coordinates of vectors and subscripts to denote different
vectors. Finally, ||x|| := ∑m

i=1 xi represents the multilinear
norm of x.
Suppose yd = 1, then equation (5c) always holds and

can be omitted. Equation (5b) requires that xi ≥ bid,
∀i ∈ {1, . . . ,m}. Only then the product of bTd and x is
equal to the norm of bd. Thus, bd is included in the final
design. In contrast to bd, bt will be removed from the net-
work as equation (5d) requires that the product bTt x is
smaller than the ||bt||. This is the case only if at least one
reaction in bt is deleted. Except for equation (5e), the sys-
tems of equations in this case resembles the BIP problem
presented in Jungreuthmayer and Zanghellini [10].

If yd = 0, then equation (5b) is ineffective. Equation (5c)
however simplifies into a “kill constraint”, thus eliminating
bd from the surviving modes.
The binary auxiliary variables y = (y1, . . . , y|D|)T were

introduced to guarantee that at least n out of |D| modes
survive the intervention. In both cases ||y|| counts the
number of surviving desired modes, and equation (5e)
makes sure that at least n desired modes survive the
intervention.
Alternative MCSs may be calculated by excluding exist-

ing solutions xj by adding the following constraints [10] to
the set of equations (5a)-(5g):

xTj x ≤ ||xj|| − 1, (6a)

[ 1 − xj]T x ≥ 1, (6b)

where we used 1 to denote an all-one-vector. Equation (6a)
guarantees that new solutions are found in subsequent
steps, whereas equation (6b) prevents the calculation of
solutions that are supersets of already existing solutions.
Note that the term 1 − xj represents the binary comple-
ment of xj.
The number of constraints added to the BIP can almost

be cut in half (in fact, n/2−1) by keeping in mind that the
norm of the current solution xj will never be larger than
the previous optimum xj−1. To sequentially calculate all
MCSs the full BIP reads

max ||xj|| (7a)

s.t. bTd xj ≥ ||bd||yd , d ∈ {1, .., |D|}, (7b)

bTd xj ≤ ||bd||(1 + yd) − 1, (7c)
bTt xj ≥ ||bt|| − 1, t ∈ {1, .., |T |}, (7d)
||xj|| ≤ ||xj−1||, ||x0|| = m, (7e)

[1−xk]Txj ≥ 1, k ∈ {0, .., j−1}, (7f)
||y|| ≥ n, (7g)

xj = (x1j , . . . , xmj )T, xi ∈ {0, 1}∀i, (7h)

y = (y1, . . . , y|D|)T, yi ∈ {0, 1}∀i. (7i)

If iteratively applied, the BIP in equation (7) returns all
MCSs, xj, sorted in increasing order of deletions. Note
that although the constraint in equation (7e) is redundant,
it significantly enhances the computational performance
of the BIP solver.

Preprocessing methods
Mathematically, BIPs are classified as NP-hard problems.
However, extensive research has focused on improving the
formulation of BIPs. The basic idea is to use simple logic
rules which turn a BIP into a “better” formulation, which
is easier to solve [29]. Standard BIP preprocessing rules
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essentially fix variables, improve bounds or detect inactive
constraints [29].
In the following we will be concerned with standard BIP

preprocessing methods to reduce the size of the interven-
tion problem in equation (1) but not with the internal
structure of the algorithms. These preprocessing proce-
dures will allow to reduce the size of the intervention
problem in equation (1), which can then be solved by the
Berge algorithm or a BIP. In the following, by “Berge algo-
rithm” we mean the adapted Berge algorithm reported by
Hädicke and Klamt [11] which extends the standard Berge
algorithm to compute only minimal hitting sets (cut sets)
that comply with the constraint (3) on the desired modes
[11].
We assume that all EMs are converted to their binary

representation according to equation (4). Furthermore, we
split the complete set of EMs in three sets, D, N , and T .
Here the neutral set, N , contains all (binary) EMs, which
are neither element of D nor T .
Step 1. First, we remove all reactions that are simultane-

ously zero in all EMs of T . These reactions do not support
any EM inT . Deleting themwill not remove any unwanted
mode.
Step 2. Next, essential reactions are identified. If delet-

ing a reaction reduces the number of survivingmodes inD
to less than n [i.e. violates equation (3)], then this reaction
is considered to be essential and cannot be knocked out.
A reaction i is essential if |D| − si < n, with si = ∑|D|

j=1 x
i
j .

Consider the example in Table 1 with |D| = 5 and n = 3.
R1 and R7 are essential reactions, as for them |D| − si =
5 − 3 = 2 < 3 = n, which indicates that knocking out
R1 or R7 will kill more desirable modes than allowed. We
note that if |D| = n, all active reactions are essential.
In general, the more essential reactions we find, the

more the system can be reduced. Consequently, it is ben-
eficial if n is large (ideally n = |D|), as this results in
the maximum number of essential reactions. Removing all
essential reactions from the system is a critical step that
opens the possibility to apply several other preprocessing
procedures.
The removal of all essential reactions results in an

important change of the system. By definition EMs are

Table 1 Example of determining essential reactions

R1 R2 R3 R4 R5 R6 R7 R8

dT
1 0 1 0 0 1 0 1 0

dT
2 0 0 0 0 0 1 0 0

dT
3 1 0 1 0 1 0 0 0

dT
4 1 1 0 0 0 0 1 0

dT
5 1 0 1 0 0 0 1 0

s 3 2 2 0 2 1 3 0

non-decomposable, i.e. an EM is not a subset of any other
EM. However, if the essential reactions are removed then
the residual EMs may become subsets or duplicates of
other modes. Hence, the next step is to find all duplicate
modes in T and to remove them from the system.
Step 3. Next, we screen T to find and remove resid-

ual EMs that are supersets of other residual EMs in T .
Consider the target set (of residual EMs), T , shown in
Table 2. Themodes are sorted in order of ascending norm.
The example illustrates that mode t1 can be removed by
knocking out reaction R2. However, knocking out reaction
R2 also kills t2, as t2 is a superset of t1.
The same procedure can be applied to the other modes

as well. Mode t3 has a norm of 2 and is killed either by
knocking out reaction R4 or reaction R7. As both reac-
tions are part of t4 and t5, they are certainly removed if
mode t3 is killed.
Step 4. In a final preprocessing step, we remove dupli-

cate reactions across all EMs in both sets, D and T . Using
the illustration in Table 2, this wouldmean that we remove
duplicate columns. Note that this step is most effective
after all supersets were removed. For instance, in Table 2
columns R1, R3 and R8 are identical only if t2, t4, and t5
are removed. In this step it is not possible to analyzeD and
T separately. Reactions need to be identical in both sets,
D and T , in order to be removed.

Implementation
We implemented the BIP algorithm in C using Gurobi
Optimizer 5.0, http://www.gurobi.com/ for solving the
BIP problem. The adapted Berge algorithm was imple-
mented in C. The software is available from the authors on
request. The simulations were all carried out on an Intel
Xeon CPU X5650 @ 2.67GHz under a Linux operating
system.

Test cases
We used the E. coli core model, E0, [30] and two smaller
models, E1 and E2, which were derived from the E0 model

Table 2 Set of (residual) target modes before and after
subset-superset elimination

R1 R2 R3 R4 R5 R6 R7 R8 ||ti||
tT1 0 1 0 0 0 0 0 0 1

tT2 0 1 0 0 1 0 0 0 2 *

tT3 0 0 0 1 0 0 1 0 2

tT4 1 0 0 1 0 0 1 0 3 *

tT5 0 0 0 1 0 0 1 1 3 *

tT6 1 0 1 0 0 0 1 1 3

Modes which are removed during the preprocessing, are marked by *. Note that
the residual target modes t1 , . . ., t6 are no longer EMs, as they have already gone
through step 1 and 2 of our preprocessing procedure.

http://www.gurobi.com/
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Figure 1 Overview of the different E. colimodels. For simplicity we only show pathways. Cofactors etc. are suppressed. Metabolites contributing
to the biomass are depicted in yellow. Pathways included in the E2 model are indicated in red. E1 contains the red and blue pathways only, while E0
[30] incloses all reactions, including the non-colored pathways. A detailed listing of all models may be found in the Additional file 1.
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Table 3 Topological properties of the E. colimodels used

E2 E1 E0

Metabolites 63 64 74

- Internal 49 50 52

- External 14 14 22

Reactions 60 64 75

- Irreversible 26 30 36

- Reversible 34 34 39

Elementary modes 55,666 485,169 124,341,216

by removing several reactions. Compared to the E0model,
glucose was considered as the only carbon substrate for
E1 and exchange of α-ketoglutarate, acetaldehyde, acetate,
formate, lactate, and pyruvate was not allowed. In addi-
tion to these modifications we also removed the glyoxy-
late shunt and the (NAD and NADP dependent) malic
enzymes to obtain the E2model from E1. All three models
are illustrated in Figure 1. Their main topological proper-
ties are summarized in Table 3. A list of reactions for these
models may be found in the (Additional file 1).
To test the numerical efficiency of the implemented

MCS algorithms we set up the following intervention
problems: We first identify the most efficient EMs in
all models. Efficiency is defined as the product between
growth rate and ethanol secretion. Next, we classify all
EMs to be desirable, whose ethanol secretion is larger or
equal than the excretion of the most efficient EMs. Tar-
gets are all other modes that do not utilize ethanol. Modes
which take up ethanol (negative secretion) are considered
neutral, as ethanol uptake is repressed in the presence

of glucose in the growth medium [31]. Therefore these
modes do not need to be targeted. In Figure 2 we illustrate
the intervention problem and the choice ofD,N , andT for
the E2 model. The major properties of the design criteria
for the different E. colimodels are listed in Table 4.

Results
Berge algorithm outperforms the BIP
Figure 3 shows the computation time to calculate all
MCSs using either method as a function of the mini-
mally required number n of surviving desired EMs. We
used the design criteria outlined above. At n = 2 we
found 81,168 and 441,095 MCSs in E2 and E1, respec-
tively. (The number of MCSs as function of n may be
found in Additional file 2: Figure S1.) In all tested situa-
tions the adapted Berge algorithm clearly outperforms the
BIP. Even in the most demanding case (n = 2), the Berge
algorithm calculated all MCSs in E1 in less than 10 min.
On the other hand, it already took the BIP 22 hours to cal-
culate all 331 MCSs for n = 85 in the smaller E2 model. In
the same situation the Berge implementation finished in
0.4 sec.
It is interesting to observe that over a wide range of val-

ues for n the runtime in both methods changes according
to a power law (see Figure 3). However, only for the Berge
algorithm the exponent remained approximately constant
in both test cases.
Preprocessing-times are essentially independent of n

and only scale with the total number of processed EMs.
For cases with very few MCSs (see Additional file 2:
Figure S1) the Berge algorithm took even less time than
the preprocessing.
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Table 4 Cardinalities for the sets involved in the
intervention problem In(T ,D,n)with n ∈ {1, . . .,nmax}

E2 E1

|D| 5,132 (9%) 46,254 (10%)

|N | 18,447 (33%) 217,877 (45%)

|T| 32,087 (58%) 221,038 (45%)

nmax 1,120 (2%) 11,436 (2%)

nmax denotes the maximum number of “surviving” modes for a given set of T
andD. That is, for n > nmax the intervention In is infeasible. Numbers in brackets
give the cardinality in percent of the total number of EMs.

Preprocessing reduces overall computation time
To test the impact of our preprocessing procedures we set
up identical intervention problems for all models. That
is, we solved I0 = I(T0,D, n), I1 = I(T1,D, n), and
I2 = I(T2,D, n), where we used the indices 0, 1, and 2
to denote the dependence on the models E0, E1, and E2,
respectively. We used identical sets of desired EMs in all
models, i.e. D0 = D1 = D2 = D and n0 = n1 = n2 = n.
T i, i ∈ {0, 1, 2} consisted of all EMs not contained in D.
Values for D, n, T i and the runtimes for the Berge algo-
rithm in two different cases (n/|D| ≈ 1 and n/|D| 	 1)
may be found in Table 5.
In the most demanding case (n/|D| 	 1), the Berge

algorithm with preprocessing identified 1,720 MCSs in
less than 30 minutes in the large E0 model with its 124
million EMs (see Table 5). Only 1% of the computation

time was used for the Berge algorithm. Ninety-four per-
cent of the computation is spent on preprocessing. After
preprocessing the initial system of 124 million EMs was
reduced to approximately 300,000 modes. In all tested
cases with enhanced preprocessing, reading EMs and pre-
processing took at least 90% of the total computation time.
We repeated the same simulation without preprocessing.
While the total runtime with and without preprocessing
is comparable if only a few MCSs are found, the runtime
savings in MCS calculation more than outweigh the run-
time losses due to preprocessing if many MCSs solve an
intervention problem. To emphasize this point we show
the total runtime as function of the number of MCSs for
Figure 3 in the Additional file 2: Figure S1.
Finally in Table 6 we show several examples from the lit-

erature, which can be easily and efficiently solved by either
method. As a comparison we have also listed runtimes
using the current version (version 2012.1) of CellNetAna-
lyzer (CNA) [32]. CNA uses a MATLAB implementation
of the Berge algorithm. However, its preprocessing capa-
bilities are less developed. That is why both programs, our
Berge-algorithm and BIP, outperformCNA in all instances
by at least one order of magnitude. Note however that
CNA uses a MATLAB script, while our programs are
implemented in C. A significant part of the performance
difference may therefore be attributed to the slower per-
formance of MATLAB compared to native executables
written in C.
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Table 5 Runtime of the Berge algorithmwith and without preprocessing (PP) for two intervention problems I(T ,D,n)with differing n
E2 E1 E0

|D| 489 (0.88%) 489 (0.10%) 489 (0.00%)

|T | 55,177 (99.12%) 484,680 (99.90%) 124,340,727 (100.00%)

n1 = 400; n1/|D| = 0.82

MCSs 4 11 44

Min. deletions 5 8 16

Max. deletions 5 8 17

Without PP With PP Without PP With PP Without PP With PP

System size 60 × 55, 177 13 × 1 64 × 484, 680 17 × 3 75 × 124, 340, 727 28 × 6

Reading EMs (sec) 0.031 (26%) 0.035 (43%) 0.281 (26%) 0.308 (37%) 71.858 (24%) 76.274 (26%)

Preprocessing (sec) 0.078 (65%) 0.044 (55%) 0.717 (65%) 0.495 (60%) 194.328 (64%) 202.539 (69%)

Calculate MCSs (sec) 0.011 (9%) 0.001 (2%) 0.100 (9%) 0.021 (3%) 35.866 (12%) 15.294 (5%)

Total (sec) 0.121 (100%) 0.081 (100%) 1.099 (100%) 0.823 (100%) 302.053 (100%) 294.108 (100%)

n2 = 40; n2/|D| = 0.08

MCSs 72 274 1,720

Min. deletions 5 6 14

Max. deletions 7 10 19

Without PP With PP Without PP With PP Without PP With PP

System size 60 × 55, 177 47 × 2, 295 64 × 484, 680 51 × 8, 664 75 × 124, 340, 727 62 × 321, 272

Reading EMs (sec) 0.031 (10%) 0.033 (25%) 0.277 (7%) 0.308 (20%) 71.084 (3%) 77.771 (5%)

Preprocessing (sec) 0.078 (26%) 0.083 (65%) 0.715 (17%) 1.162 (76%) 193.805 (7%) 1,493.367 (94%)

Calculate MCSs (sec) 0.196 (64%) 0.012 (10%) 3.136 (76%) 0.068 (4%) 2,475.110 (90%) 15.909 (1%)

Total (sec) 0.306 (100%) 0.128 (100%) 4.129 (100%) 1.539 (100%) 2,740.004 (100%) 1,587.053 (100%)

In all casesD are identical and T chosen such that it contains all remaining EMs. Note that the columns “without PP” state the runtimes without performing step 1 to 4 of our PP procedures. However, we still sort EMs in
ascending order of norm. This is why PP-time is not zero even in the cases without PP. The row “system size” refers to the dimensions of the network, which enters the Berge-algorithm, i.e. after PP.
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Table 6 Runtime analysis for the Berge algorithm and BIP using several examples from the literature with different
design objectives

Runtime (sec)

Organism Objective |D| |T| # MCS Min.� Max.� Berge BIP CNA

E. coli [16] (anaerobic) ethanol 12 4,998 1,048 6 9 0.011 0.287 2.83

E. coli [16] (aerobic) ethanol 12 429,264 55,488 11 15 0.883 2.174 547.61

E. coli [15] (anaerobic) isobutanol 7 5,615 760 7 10 0.011 0.233 2.69

E. coli [33] (anaerobic) n-butanol 7 7,341 2,280 7 10 0.015 0.226 3.43

Both algorithms use all preprocessing procedures. For comparison we also use the program package CellNetAnalyzer [32] which uses a MATLAB script of the Berge
algorithm. (Abbreviations: #MCS, number of MCS; min. �, minimal number of deletions; max. �, maximal number of deletions; CNA, CellNetAnalyzer).

Preprocessing strongly reduces the system size
In Figure 4 we used a BIP and show the computation time
as a function of the number of MCSs for the aerobic E.
coli [33] model of Trinh et al. [16] (see line number 2 in
Table 6 for model details). Note that although Table 6 lists
55,488 different MCSs, the BIP (and our Berge algorithm
for that matter) only needs to calculate 164 solutions. Due
to preprocessing the original network is reduced from 71
reactions and 429,275 EMs to an equivalent system with
only 23 columns and 28 rows. This smaller system has
164 MCSs, which are then reconstructed to the full set of
MCSs by expanding duplicated columns. A similar obser-
vation may also be made in Table 5. In these examples the

system size is at least reduced by a factor of 30 (case E2,
n2 = 40).
Surprisingly, the computation time does not monoton-

ically increase with the number of solutions [i.e. with the
number of additional constraints, see equation (7)] but
drops dramatically whenever the norm of the solution
decreases. Note that a decreasing normmeans an increase
in the number of required knockouts. In this model the
computation time significantly drops after solution num-
ber 11, 53, 116, and 156. At these instances the number
of required deletions changes from 11 to 12, to 13, to 14,
and to 15, respectively. In all these cases the constraint
in equation (7e) decreases too and introduces a tighter
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Figure 4 Computation time of the BIP as function of the number of MCSs for the aerobic E. coli [33] model of Trinh et al. [16] (line number
2 in Table 6). The accumulated computation time for the respective models is plotted in the lower panel. The top panel shows the computation
time for each solution. Note that it is impossible to calculate the runtime per solution for the Berge algorithm as the algorithm does not allow to
continuously output the solution.
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bound on the system. This allows the solver’s internal pre-
processing to more efficiently compress the system, which
in turn brings down the computation time. If, however,
the norm of the solution does not change then the com-
putation time scales approximately exponentially with the
number of MCSs. This behavior is expected as each solu-
tion adds a new constrain to the system, which makes it
harder to solve.

Discussion
Recently cMCSs have been introduced to predict opti-
mal intervention strategies in order to achieve an arbitrary
metabolic objective [11]. Two algorithmic approaches
have been published for their calculation [10,11]. Here we
showed that both methods are equivalent. We addressed
the numerical efficiency of both methods in typical design
problems and found that in terms of runtime the Berge
algorithm is superior compared to BIP.
It may appear as a surprise that the Berge algorithm

performs so well even for the large cases presented in
this study, especially since the Berge method is known
for its unfavorable performance in huge networks [34].
However, here we showed that efficient preprocessing can
dramatically reduce the size of the networks. The adapted
Berge algorithm could then be run on the reduced sys-
tems. Apparently, for small systems the Berge algorithm is
effective.
The importance of preprocessing in the calculation of

MCSs has been stressed earlier [23]. The preprocessing
strategies introduced herein focus especially on the addi-
tional constraints posed by cMCSs, whereas [23] dealt
only with (unconstrained) MCSs. We were able to show
that our implementation outperforms the currently avail-
able tool for computing (c)MCSs (see Table 6). The per-
formance gain can be attributed to both the improved
preprocessing and the efficient implementation in C.
Herein we used standard preprocessing routines, which
are frequently applied in BIP [29]. Extensive literature
on preprocessing in binary and integer programming is
available, see for instance Savelsbergh [35] for a good sum-
mary of basic ideas. Since cMCSs can be stated as a BIP,
these methods are readily adoptable. However, due to the
algorithmic complexity of BIP (solving numerous linear
optimizations as part of one BIP, etc.), a full enumeration
based on BIP seems not be competitive compared to the
Berge algorithm (see Figure 3). Rather the usage of BIP
preprocessing rules followed by the Berge algorithm to
calculate cMCSs is suggested as an optimal computation
strategy.
The efficiency of preprocessing is dependent on the

imposed design criterion. In the worst case the set of
desired modes is empty (D = ∅) and T contains all EMs
of a network. This situation corresponds to unconstrained
MCSs and thus to a full dualization of the hypergraph

spanned by the target modes. Except for step 4, none of
our preprocessing routines then provides an advantage
and other solvers may be more appropriate [34]. However
such cases are not relevant in the context of metabolic
engineering, where we want to optimize favorable func-
tionality. To fully utilize the potential of preprocessing the
ratio n/|D| should be close to one. This means that many
essential reactions will be removed from the system, and
as a result of that many supersets will be detected, too.
However, in practice it may suffice if only a few EMs out
of the set of desired modes survive, i.e. n/|D| 	 1. Still,
preprocessing provides a significant performance gain as
indicated in Table 5. The runtime costs of preprocess-
ing will be outweighed by the savings in MCS calculation,
if the intervention problem has many solutions. In prac-
tice, preprocessing will therefore be favorable, as typical
applications have a few thousand solutions (see Table 6).
In our paper [10] we used weights in the objective func-

tion of the BIP to take experimental difficulties in the
deletion of reactions into account. For instance, some
reactions cannot be deleted as they are driven by diffu-
sion, rather than catalyzed by an enzyme. Other reactions,
on the other hand, may require the deletion of multiple
genes as they are catalyzed by different enzymes in paral-
lel. By an appropriate choice of the weights in the objective
function BIP is able to predict the experimentally easiest
deletion strategies first [10]. However, in the preprocess-
ing procedures above we did not consider weights in the
objective function. Identifying particular solutions in the
complete list of MCSs has to be done in a separate post-
processing step (for example by appropriately sorting the
output, which can be done quite fast). Thus even with
an additional post-processing step our implementation of
Berge’s algorithm will be faster than BIP. Note however
that the integration of regulatory information into the
cMCS framework is a unique feature of the BIP approach
[10].
Both methods, the Berge algorithm as well as BIP, still

show room for computational improvements. In the case
of the Berge algorithm the computational bottleneck sits
in the filtering of potential MCSs to determine if they
are, in fact, true MCSs and not supersets of true MCSs
[23]. Generating new MCS-candidates, however, is very
quick. Therefore ways of enhancing the superset-filtering
procedure will be the scope of future work.
One disadvantage of the Berge algorithm is its inability

to predict MCSs continuously during the runtime. During
execution all MCSs remain candidate-MCSs. Only upon
termination, when the minimality of all candidate MCSs
has been checked against each other, candidate-MCSs
become MCSs and can be outputted. Thus, even if we
were interested in only one solution, the Berge algorithm
will – in general – return more than one MCS upon ter-
mination. However, other solvers are available [34]. Their



Jungreuthmayer et al. BMC Bioinformatics 2013, 14:318 Page 11 of 12
http://www.biomedcentral.com/1471-2105/14/318

adaption for the current situation is the scope of further
work.
BIP on the other hand, is able to predict a single solu-

tion without the need to enumerate all. In fact, due to the
optimization principle only one MCS with a smallest or
largest number of deletions can be calculated. In Figure 4
we illustrated the runtime per solution as function of
the number of MCSs. The drop in runtime after cer-
tain solutions indicates that more advanced preprocessing
procedures may further reduce the runtime significantly.
In fact, our preprocessing focused on standard procedures
like variable fixing. More advanced methods will further
reduce the runtime for both the Berge algorithm and the
BIP. Additionally we used GUROBI, a commercially avail-
able multi-purpose optimization toolbox, to solve the BIP.
However, a specialized knapsack solver may potentially
boost the performance.

Conclusions
We predicted minimal metabolic intervention strate-
gies in typical metabolic engineering problems using
two different methods (an adapted Berge algorithm and
a BIP). We investigated the numerical performance of
these approaches. Both methods significantly profited
from the enhanced preprocessing procedures developed
here. Under the tested conditions, our implementation
of Berge’s algorithm performed best even outperforming
other, currently available software.
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