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Abstract

Background: High-throughput RNA sequencing (RNA-seq) offers unprecedented power to capture the real
dynamics of gene expression. Experimental designs with extensive biological replication present a unique
opportunity to exploit this feature and distinguish expression profiles with higher resolution. RNA-seq data analysis
methods so far have been mostly applied to data sets with few replicates and their default settings try to provide the
best performance under this constraint. These methods are based on two well-known count data distributions: the
Poisson and the negative binomial. The way to properly calibrate them with large RNA-seq data sets is not trivial for
the non-expert bioinformatics user.

Results: Here we show that expression profiles produced by extensively-replicated RNA-seq experiments lead to a
rich diversity of count data distributions beyond the Poisson and the negative binomial, such as Poisson-Inverse
Gaussian or Polya-Aeppli, which can be captured by a more general family of count data distributions called the
Poisson-Tweedie. The flexibility of the Poisson-Tweedie family enables a direct fitting of emerging features of large
expression profiles, such as heavy-tails or zero-inflation, without the need to alter a single configuration parameter.
We provide a software package for R called tweeDEseq implementing a new test for differential expression based
on the Poisson-Tweedie family. Using simulations on synthetic and real RNA-seq data we show that tweeDEseq
yields P-values that are equally or more accurate than competing methods under different configuration parameters.
By surveying the tiny fraction of sex-specific gene expression changes in human lymphoblastoid cell lines, we also
show that tweeDEseq accurately detects differentially expressed genes in a real large RNA-seq data set with
improved performance and reproducibility over the previously compared methodologies. Finally, we compared the
results with those obtained from microarrays in order to check for reproducibility.

Conclusions: RNA-seq data with many replicates leads to a handful of count data distributions which can be
accurately estimated with the statistical model illustrated in this paper. This method provides a better fit to the
underlying biological variability; this may be critical when comparing groups of RNA-seq samples with markedly
different count data distributions. The tweeDEseq package forms part of the Bioconductor project and it is available
for download at http://www.bioconductor.org.
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Background

High-throughput gene expression profiling across sam-
ples constitutes one of the primary tools for character-
izing phenotypes at molecular level. One of the main
advantages of the rapidly evolving massive scale cDNA
sequencing assay for this purpose (RNA-seq [1]), over
the hybridization-based microarray technology, is a much
larger dynamic range of detection. However, the extent to
which this feature is fully exploited depends entirely on
the way the resulting data is analyzed when addressing a
particular biological question. For instance, in the identi-
fication of genes that significantly change their expression
levels between groups of samples, also known as differen-
tial expression (DE).

For DE analysis, after some pre-processing steps that
include the alignment of the sequenced reads to a ref-
erence genome and their summarization into features of
interest (e.g., genes), raw RNA-seq data is transformed
into an initial table of counts. This table should then be
normalized [2-4] in order to adjust for both technical
variability and the expression properties of the samples,
such that the estimated normalization factors and offsets
applied to the RNA-seq count data describe as accurately
as possible the relative number of copies of each feature
throughout every sample. As opposed to the continu-
ous nature of log-scale fluorescence units in microarray
data, RNA-seq expression levels are defined by discrete
count data, and therefore, require specific DE analysis
techniques.

Detection of DE genes using RNA-seq data was firstly
based on using models assuming a Poisson distribution
[5] with one single parameter, the mean, which simulta-
neously determines the variance of the distribution. Given
that the observed variation in read counts is much larger
than the mean (overdispersion), researchers have pro-
posed the use of negative binomial (NB) distributions
[6-8] which are defined by two parameters: the mean and
the dispersion. However, the larger power of RNA-seq
to capture biological variability can potentially introduce
into count data not only overdispersion, but also oddities
such as zero-inflation (i.e., in lowly expressed genes, the
proportion of zero counts may be greater than expected
under an NB distribution) and heavy tail behavior (i.e., a
large dynamic range within the same expression profile),
specially when many biological replicates are available.
Under these circumstances even a two-parameter NB dis-
tribution may not provide an adequate fit to the data (see
Figure 1). In turn, this may lead to incorrect statistical
inferences resulting in lists of DE genes with a potentially
increased number of false positive calls and poor repro-
ducibility. To overcome this problem, methods based on
the NB distribution [6-11] use sophisticated moderation
techniques that borrow information across genes and
exploit the mean-variance relationship in count data to

Page 2 of 22

improve the estimation of the NB dispersion parameter.
This requires, however, that the parameter configuration
is calibrated for the most appropriate moderation regime
which may depend on features such as sample size, the
magnitude of the fold-change, the variability of expres-
sion levels, the fraction of genes undergoing differential
expression and the overall expression level.

In this paper we propose to approach this problem
by using other count data distributions that fit expres-
sion profiles better than the NB without the need to
alter configuration parameters. The rest of the paper is
organized as follows. Using a large RNA-seq data set of
HapMap lymphoblastoid cell lines (LCLs) derived from
n = 69 unrelated Nigerian (YRI) individuals [12], we
start by assessing the goodness of fit of extensively repli-
cated expression profiles to the NB distribution, show-
ing a lack of fit for an important fraction of genes. We
illustrate how a more flexible family of count-data prob-
ability distributions, called the Poisson-Tweedie, provides
a better fit to these expression profiles. We provide data
supporting the hypothesis that the lack of fit to NB distri-
butions may be related to the dynamics of gene expression
unveiled by RNA-seq technology. We then introduce a
new test for differential expression analysis in RNA-seq
data based on the Poisson-Tweedie family of distribu-
tions. We demonstrate with simulations on synthetic and
real RNA-seq data how a single run of our approach pro-
vides P-values that are equally or more accurate than
NB-based competing methods calibrated with a variety
of configuration parameters. Finally, by surveying the tiny
fraction of sex-specific gene expression changes in LCL
samples, we approach the problem of assessing accu-
racy in DE analysis with real RNA-seq data and show
that, in the context of extensively replicated RNA-seq
experiments, tweeDEseq yields better performance than
competing NB-based methods without the need to make
an informed decision on the configuration of parameters.
This improvement is reported in terms of precision and
recall of DE genes and reproducibility of the significance
levels with respect to matching microarray experiments.

Results and discussion

The results we provide in this paper are based on data
from a previously published large RNA-seq experiment
[12] and on our own simulated count data. We down-
loaded and pre-processed the HapMap LCL raw RNA-seq
data, consisting of n = 69 samples from unrelated YRI
individuals, with our own pipeline (see Methods). The
resulting table of counts consists of 38,415 genes by 69
samples. We filtered out genes with very low expres-
sion levels and used different normalization methods
[2,4] (see Methods) to ensure that the results described
below do not depend on this fundamental step. In fact,
we have observed that normalized counts can lead to
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Figure 1 Fit of different count data distributions to diverse RNA-seq gene expression profiles. Fit of different count data distributions to the
female (a, ¢, ) and male (b, d, f) RNA-seq expression profiles of genes FEF1A2 (a, b), SCT (¢, d) and NLGN4Y (e, f). All plots show the empirical
cumulative distribution function (CDF) of counts (black dots) and the CDF estimated by a pure negative binomial model (black dashed line), a
Poisson-Tweedie model (red line) obtained with tweeDEseq and several moderated negative binomial models obtained with different parameter
configurations of DESeq and edgeR. Estimated dispersions, and shape in the case of tweeDEsegq, are indicated in the legend. Above the legend,
the P-value of the test of goodness-of-fit to a negative binomial distribution is shown. According to this test, expression profiles in panels (a, b, ¢
and e) do not follow a negative binomial distribution. Female samples display non-negative binomial features such as a heavy-tail (a, €) and
zero-inflation (¢, e). Gene NLGN4Y is documented in the literature as a gene with sex-specific expression, while the other two are not (FEF1A2 is a
housekeeping gene and SCT is an endocrine hormone peptide in chromosome 11 that controls secretions in the duodenum).




Esnaola et al. BMC Bioinformatics 2013, 14:254
http://www.biomedcentral.com/1471-2105/14/254

quite different MA-plots depending on the normalization
method, thus potentially affecting DE detection power
and accuracy (Figure 2).

The statistical methods proposed in this paper are
implemented in a package for the statistical software
R, called tweeDEseq which forms part of the Biocon-
ductor project [13] at http://www.bioconductor.org. We
have also created an experimental data package, called
tweeDEsegCountData, which contains the previously
described data set and is also available at the same URL.
All results presented in the paper were obtained using
these and other packages from R version 2.15.1 and Bio-
conductor version 2.11, and can be reproduced through
the scripts available as Additional file 1 to this article.

Review of competing methods

There is currently a large body of literature on DE anal-
ysis methods for RNA-seq data [5-11,14], nearly all of
them based on the NB distribution and developed to
deliver their best performance with few replicates. Anders
et al. (2010) [7] argued that for large number of individ-
uals “.. questions of data distribution could be avoided
by using non-parametric methods, such as rank-based
permutation tests” However, rank-based methods require
similar count data distributions between sample groups.
Due to the large variability across groups [15] captured
by RNA-seq data, this assumption will most likely be
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broken in this context. For example, panels e-f in Figure 1
illustrate the case of gene NLGN4Y (ENSG00000165246),
a gene located in the male-specific region of chromo-
some Y and reported to have sex-specific expression,
which shows remarkably different count data distribu-
tions between male and female samples. Permutation tests
are also underpowered since distribution tails are not
well estimated (due to the large dynamic range), which is
important when correcting for multiple testing.

In this paper we will focus our comparisons on the
two most widely used methods for DE analysis of RNA-
seq data, edgeR [6,8,10] (version 3.0.8) and DESeq [7]
(version 1.10.1) and explore those parameter configu-
rations in these methods that we found most relevant
for large RNA-seq data sets, according to the available
documentation. Both, edgeR and DESEqg, assume that
expression profiles from RNA-seq data follow an NB
distribution and borrow information across genes to
first estimate a common dispersion parameter. Then,
for each gene, they estimate its genewise dispersion and
moderate it towards the common one. The way in which
this moderation takes place depends on the method and
its configuration parameters. DESeq [7] allows switch-
ing between common (sharingMode="fit-only")
and genewise (sharingMode="gene-est-only")
dispersions. It provides a straightforward strategy
(sharingMode="maximum", default configuration) to
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Figure 2 Count data normalization. MA-plots of the count data corresponding to the YRI samples from Pickrell [12] et al. (2010) after applying the
following normalization methods: (a) raw count data without any normalization; (b) normalization with the edgeR [2] package; and (c)
normalization with the cgn [4] package. The x-axis (A) shows the average expression throughout female and male samples in log, scale and the
y-axis (M) shows the magnitude of the log,-fold change between female and male samples.
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choose between common and genewise dispersions by
taking the largest value for each gene. edgeR allows one
to calibrate, using the prior.df parameter, the transi-
tion from a purely genewise dispersion estimate (small
values of prior.df) to the common one (large values
of prior.df) by using an empirical Bayes approach. By
default prior.d£=20 which implies that a large weight
is given to the common dispersion. However, accord-
ing to the documentation, if the number of samples is
large, the common dispersion becomes less important
in the moderation step. Additional options in DESeq
and edgeR that may be relevant in the context of large
RNA-seq data sets are, in the case of DESeq, whether
dispersions are estimated from the entire pool of sam-
ples (method="pooled", its default) or separately per
sample group (method="per-condition"). In the
case of edgeR, whether the DE test is performed using
a likelihood ratio test (g1mLRT () function) or a quasi-
likelihood F-test [8] (glmQLFTest () function), after
dispersions are estimated. Table 1 summarizes these eight
combinations of methods and parameter configurations
and contains the key to the terms used in some figures to
distinguish among them.

Different gene expression dynamics require different
distributional assumptions on count data

We assessed the goodness-of-fit of every expression pro-
file in the LCL RNA-seq data to an NB distribution
(see Methods) by means of quantile-quantile (Q-Q) plots
(Figure 3) and about 10% of the genes show a substantial
discrepancy with respect to the NB distribution in the
counts (see right y-axis in Figure 3). Such a discrepancy
is absent from data simulated from NB distributions with
a similar number of genes including a small fraction of
them changing between two conditions (Additional file 2:
Figure S1).

This result suggests that NB distributions may be too
restrictive for an important fraction of expression pro-
files in large RNA-seq data sets. Among the possible
causes underlying the lack of fit of those genes to an
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NB distribution, a clear candidate is that the presence of
many samples can potentially introduce features such as
zero-inflation or heavy-tails (see Figure 1). So far, exten-
sive biological replication in RNA-seq experiments has
been the exception rather than the rule. However, it is
becoming increasingly clear [15] that in the coming years
larger RNA-seq data sets will be required to justify scien-
tific conclusions and provide reproducible results. There-
fore, we can expect to see more often gene expression
profiles with emerging features, such as zero-inflation and
heavy tails, that challenge RNA-seq methods based on the
NB distribution.

We propose to address this problem by adopting the
Poisson-Tweedie (PT) family of distributions [16] to
model RNA-seq count data directly. PT distributions are
described by a mean (u), a dispersion (¢) and a shape
(a) parameter (see Methods) and include Poisson and NB
distributions, among others, as particular cases [16]. An
important feature of this family is that, while the NB dis-
tribution only allows a quadratic mean-variance relation-
ship, the PT distributions generalizes this relationship to
any order [17]. We have implemented a maximum likeli-
hood procedure for the estimation and simulation of these
parameters from count data. These procedures are avail-
able in the tweeDEseq package through the functions
mlePoissonTweedie (), dPT() and rPT ().

Figure 1 illustrates the flexibility of the PT distribu-
tion to accurately fit different gene expression profiles
obtained from the un-normalized LCL RNA-seq data
set. Left and right panels correspond to female and
male samples, respectively and each row corresponds
to a different gene: EEF1A2 (ENSG00000101210), SCT
(ENSG00000070031) and NLGN4Y (ENSG00000165246),
respectively. Among these three genes, only NLGN4Y
has been reported in the literature to have sex specific
expresssion, while the other two are likely to lack such
property since EEFIA2 is a housekeeping gene and SCT
is an endocrine hormone peptide in chromosome 11 that
controls secretions in the duodenum. Each plot shows the
empirical cumulative distribution of observed counts as

Table 1 Methods and parameter configurations compared in this paper

Key Software Configuration parameters

DESeqPgO DESEQ method="pooled", sharingMode="per-condition"

DESegPmax DESEqQ method="pooled", sharingMode="maximum"

DESeqCgO DESEqQ method="per-condition", sharingMode="per-condition"

DESegCmax DESEqg method="per-condition", sharingMode="maximum"

edgeRdf20 edgeR common/trended/tagwise moderation regime with prior.df£=20 (default)

edgeRdf1 edgeR common/trended/tagwise moderation regime with prior.df=1

edgeRqlfDf20 edgeR common/trended/tagwise moderation regime with prior.df=20 (default) and quasi-likelihood

F-tests

edgeRglfDf1 edgeR

common/trended/tagwise moderation regime with prior.df=1 and quasi-likelihood F-tests
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Figure 3 Goodness of fit to the negative-binomial distribution. Quantile-quantile (Q-Q) plots of the goodness-of-fit of RNA-seq expression
profiles from Pickrell [12] et al. (2010) to a negative-binomial (NB) distribution. The right y-axis indicates the quantile of the observed distribution.
Columns correspond to different normalization methods where (a, d) correspond to raw un-normalized counts, (b, ) normalization with edgeR
and (¢, f) normalization with cgn. The top row (a, b, €) contains the Q-Q plots of the X2 goodness-of-fit statistic while the bottom row (d, e, f)
contains the same Q-Q plot mapped to a normalized Z-statistic to improve the visibility of the left tail of the distribution. Independently on how
count data are normalized, about 10% of the expression profiles show a substantial discrepancy to the NB distribution.

well as the parametric cumulative distributions obtained
through the estimation of parameters of the methods
compared in this paper under different configurations.
Note that the estimated dispersion parameter ¢ is identi-
cal between the two sample groups for edgeR and DESeq
(pooled) as these approaches estimate ¢ irrespective from
the sample groups. The P-value for testing whether the
data follow an NB distribution (Hy : a = 0), indicated
above the legend, reveals that in several sample groups
(panels a-c, e) this hypothesis is rejected (P < 0.05). In
those cases, methods based on the NB distribution pro-
duce dispersion parameters that do not fit the data as
accurately as the PT distribution. More concretely, heavy-
tails present in panels a,c severely hamper the estimation
of the pure NB and the common dispersion. These can be
improved using a parameter configuration more suited to
large sample sizes. However, this results in a poor estimate
of zero-inflation in panels c-e.

The main difference between the PT and NB distri-
butions lies in the additional “shape” parameter a of
the PT distribution which provides further flexibility
(see Methods). Using the LCL data processed with

different normalization methods, we show in Figure 4
all values of the shape parameter a for every gene as
function of its mean expression level, illustrating the
huge variability of this parameter in RNA-seq count
data. This wide range of values involves distinct possi-
ble distributional assumptions [16] beyond Poisson and
NB, such as Poisson-Inverse Gaussian, Pdlya-Aeppli or
Neyman type A. Similarly to the MA-plots of Figure 2,
the cgn normalization method seems to make the largest
impact on count data and, in this case, on the shape
parameter.

We have investigated whether this diversity of count
distributions underlying RNA-seq data is related to
different expression dynamics in genes. Using the
test for the goodness of fit to an NB distribution
(see Methods) we have considered as NB those genes that
do not reject the null hypothesis at P > 0.2 and as clear-
cut non-NB genes those with P < 2716, By mapping
all these genes to the Gene Expression Barcode catalog
[18] (see Methods) we obtained an independent and unbi-
ased estimation of their expression breadth. The results
in Figure 5 suggest that the expression breadth of non-
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Figure 4 Distribution of the Poisson-Tweedie shape parameter as function of the mean expression level. Estimated Poisson-Tweedie shape
parameter a as function of the mean expression level for each gene. Red dashed lines indicate the value of a corresponding to each specific
distribution within the Poisson-Tweedie family, denoted by Pois (Poisson), PIG (Poisson-Inverse Gaussian), NB (negative binomial), PA (Pélya-Aeppli)
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Pickrell [12] et al. (2010) are shown without any normalization (a), normalized with edgeR [2] (b), and normalized with cgn [4] (c).

NB genes approaches that of housekeeping genes closer (P < 1.247°) for every normalization method (see
than NB genes do, irrespective of the normalization Additional file 2: Table S1). These observations sug-
method. gest that genes with different expression dynamics can

In fact, Fisher’s exact tests for enrichment of non-NB  produce different count data distributions, and under-
genes among human housekeeping genes are significant  score the flexibility of the PT statistical model to capture
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Figure 5 Expression dynamics of genes with different count data distributions. Empirical cumulative distributions of the breadth of
expression estimated through the Barcode [18] database, for genes that do not reject the null hypothesis of a negative-binomial (NB) distribution in
a test for the goodness of fit at P > 0.2 (green lines), genes that do reject such a null hypothesis at P < 2716 (blue lines) and housekeeping genes
retrieved from literature [19] (red lines). Data from Pickrell [12] et al. (2010) are shown without any normalization (a), normalized with edgeRr [2] (b)
and normalized with cgn [4] (€). These plots show that, independently of the normalization method, non-NB genes at such significance level of
discrepancy with respect to the NB distribution approach closer the expression dynamics of housekeeping genes than genes with expression
profiles following the NB distribution.




Esnaola et al. BMC Bioinformatics 2013, 14:254
http://www.biomedcentral.com/1471-2105/14/254

these dynamics revealed by extensively-replicated RNA-
seq experiments.

Accurately testing differential expression

For the purpose of a DE analysis between two groups of
samples, we have developed a two-sample PT-test for dif-
ferences in means (see Methods) implemented through
the function tweeDE () in the tweeDEseq package. We
will assess the accuracy of this PT-based test using the
LCL data as well as synthetic count data from two dif-
ferent simulation studies. The first simulation study with
synthetic data provides an assessment of the type-I error
rate under four different scenarios involving distinct count
data distributions between sample groups (see Additional
file 2: Table S2 for a description of them). Here we com-
pare tweeDEseq with the configurations of edgeR and
DESeq which are closer to a straightforward NB model.
Additional file 2: Figures S2 to S5 show that tweeDEseq
properly controls the nominal probability of a type-I
error while edgeR, DESeqg and non-parametric tests
(U Mann-Withney and permutation) fail to do so
when data are not simulated from NB distributions. As
expected, these methods perform correctly when data
are generated under an NB model (see Additional file 2:
Figure S5) as expected. Additional file 2: Figure S6
also shows that in the calculation of very low P-
values, tweeDEseq clearly outperforms permutations
tests. In order to provide a practical recommendation
on the minimum sample size required by tweeDEseq
to yield accurate results we have estimated the prob-
ability of a type-I error across different sample sizes.
Additional file 2: Figure S7 indicates that 15 sam-
ples per group should be sufficient for tweeDEseq
to correctly control for a nominal significance level
o = 0.05.

In the second simulation study we have first assessed
the accuracy of the P-value distribution under the null
hypothesis of no differential expression with real RNA-seq
data by making repeatedly two-sample group compar-
isons within males and within females samples such that
we recreate the null hypothesis of no DE with real RNA-
seq data and no DE gene should be expected to be found.
The raw P-value distributions from such analysis should
ideally be uniform.

We have formally tested this hypothesis for every gene
by means of a Kolmogorov-Smirnov (KS) goodness-of-fit
test to a uniform distribution and examine the resulting
P-value distribution by means of Q-Q plots displayed in
Figure 6. Under the null hypothesis that all genes are not
DE, the KS P-values should lie along the diagonal of the
Q-Q plot. The figure, however, shows large discrepancies
to this criterion by some of the methods and configuration
parameters, indicating that they may not be adequate for
large RNA-seq data sets.
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The method introduced in this paper, tweeDEseq,
is consistently closer to the diagonal than every other
method throughout the two male and female com-
parisons and the two normalization methods. More
informally, the visual inspection of the histograms of
raw P-values given in Additional file 2: Figure S8 also
reveals that tweeDEseq provides P-value distributions
closer to the uniform under the null hypothesis of no
DE simulated from extensively replicated real RNA-seq
data.

As other authors have shown, in the context of anal-
ysis of RNA-seq data with very limited sample size [8],
small deviations from uniformity of P-values under the
null hypothesis can substantially affect FDR estimates
of DE genes. We have also assessed the calibration of
P-values and false discovery rates (FDR) with synthetic
count data of similar dimensions to the RNA-seq LCL
data set, concretely with p = 20,000 genes and n = 70
samples. Working with this type of data allows to assess
FDR estimates for a known subset of DE genes under
a variety of simulated scenarios, which we defined by
considering the combination of three different amounts
of DE genes (100, 1000 and 2000) and three different
magnitudes of fold-change (1.5, 2 and 4-fold). Similarly
to [8], data were simulated from a hierarchical gamma-
Poisson model with and without simulated library factors
(see Methods).

From every simulated data set, raw P-values for the
two-sample DE test were obtained with each method and
configuration parameters. Using the gvalue Bioconduc-
tor package [21] we estimated g-values and the fraction of
DE genes from each P-value distribution. Q-values pro-
vide a nominal estimation of the FDR for each gene and
in Figures 7 and 8 we show the empirical FDR (eFDR)
as a function of the nominal g-values for the simulations
with constant and variable library factors, respectively.
The dashed diagonal line indicates a correct calibration
of P-values whose nominal FDR equals the observed
eFDR. Lines above the diagonal correspond to liberal
DE analysis methodologies and below to conservative
ones.

To facilitate the comparison of methods across all sim-
ulated data sets we have calculated the mean squared
error (MSE) between the eFDR and the nominal FDR and
ranked the methods by increasing MSE. In Tables 2 and 3
we can find the MSE values and in Tables 4 and 5 the cor-
responding ranks of the methods according to the MSE
values. As it follows from the rankings in Tables 4 and 5,
tweeDEseq provides the best calibrated P-values in most
of the simulated data sets.

The previous calculations of g-values with the gvalue
package [21] provide us also with estimates 77y of the
fraction of genes under the null hypothesis of no differ-
ential expression. This, in turn, allows one to derive an
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estimated number of DE genes as p(1 — 1) with p being
the total number of genes. In principle, more precise P-
values both under the null and the alternative hypotheses
should provide more accurate estimates of the number of
DE genes. We show such an assessment for the previous
simulations in Additional file 2: Figures S9 and S10. To
summarize those results we have divided each estimate of
the number of DE genes by their actual simulated num-
ber of DE genes and aggregate those ratios throughout
the different simulation scenarios to ease the comparison
among the methods. We find this comparison in Figure 9
and it follows that tweeDEseq produces P-values that
lead to the most accurate estimation of the number of
DE genes, closely followed by edgeR with prior.df=1
when library factors are not held constant. In both set-
tings, DESeq leads to extremely conservative estimates of
the number of DE genes.

Identification of sex-specific gene expression in
lymphoblastoid cell lines

Assessing performance of DE analysis methods without
using simulated data is a challenging problem due to the
difficulty of knowing or ensuring the exact differential
concentration of RNA molecules in the analysed samples.
In this respect, sex-specific expression constitutes a use-
ful system to assess the accuracy of DE detection methods
due to the vast literature on genes contributing to gender-
specific traits. For this reason, in order to illustrate the
accuracy of tweeDEseq with real RNA-seq data, we have
searched for genes changing significantly their expres-
sion between female and male individuals of the RNA-seq
experiments on LCLs analyzed in this paper. Again, we
have compared different normalization procedures and
parameter configurations of edgeR and DESeq. Next
to considering the raw un-normalized data and the data
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Figure 7 Empirical FDR values for simulated data with constant library factors. Empirical FDR values on the y-axis as function of nominal
g-values on the x-axis calculated from data simulated with p = 20,000 genes, n = 70 samples and constant library factors. Each row and column
corresponds, respectively, to a different number of DE genes and magnitude of the fold-change. The method introduced in this paper,
tweeDEseq;, is consistently closer to the diagonal than other methods throughout the different simulations.

normalized with cgn, TMM normalization was used for
edgeR and tweeDEseq, while DESeq was used with its
own normalization method. We have used a single signifi-
cance cutoff of FDR < 0.1 at which genes were called DE.
Since LCLs come from a non-sexually dimorphic tissue
and are outside their original biological context, the frac-
tion of sex-specific expression changes we could expect
should be rather small.

In an attempt to verify the accuracy of these lists of DE
genes between female and male individuals, we searched
for genes reported in the literature to be potential con-
tributors to sexually dimorphic traits. This list of genes

with documented sex-specific expression was obtained
from genes in chromosome X that escape X-inactivation
[22] and from genes in the male-specific region of the
Y chromosome [23] (see Methods). This resulted in a
gold-standard set of 95 genes mapping to Ensembl Gene
Identifiers (release 63), which we shall denote by XiE
and MSY genes, depending on their origin. For every
predicted set of DE genes by each combination of DE
detection method and normalized data set, we calculated
precision and recall with respect to the gold-standard, and
the F-measure which summarizes the trade-off between
these two diagnostics.
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Figure 8 Empirical FDR values for simulated data with variable library factors. Empirical FDR values on the y-axis as function of nominal
g-values on the x-axis calculated from data simulated with p = 20,000 genes, n = 70 samples and variable library factors. Each row and column
corresponds, respectively, to a different number of DE genes and magnitude of the fold-change. The method introduced in this paper,
tweeDEseq;, is consistently closer to the diagonal than other methods throughout the different simulations.

In Figure 10 we can see that tweeDEseq pro-
vides better performance than the other competing
methods under different parameter configurations. The
improvement is small with respect to the second best-
performing method and parameter configuration but we
would like to emphasize that tweeDEseq does not
require any informed decision on a parameter config-
uration, as opposed to edgeR and DESeq. To assess
the robustness of this figure, we have run this compar-
ative assessment with a more stringent filter on lowly
expressed genes and, as Additional file 2: Figure S11
shows, tweeDEseq keeps performing better than the

other methods, this time however only when data are
normalized.

In Additional file 2: Table S3 we report the complete list
of 55 DE genes detected by tweeDEseq from the data
normalized with cgn, which is when it yields the best
precision-recall tradeoff. More than a half of genes in this
list (32) are located in either the X or Y chromosomes
and where the first 10 with largest fold-change contain 7
from the gold-standard set of MSY and XiE genes. Among
the other 3, we find TTTY1S, a testis-specific non-coding
transcript from the Y chromosome and the other two lack
functional annotation in Ensembl release 63.
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#DE Rank 1.5-fold change 2-fold change 4-fold change
MSE Method MSE Method MSE Method
1 0.050 DESeq - Pmax 0.050 DESeq - Pmax 0.031 tweeDEseq
2 0.122 tweeDEseq 0.053 tweeDEseq 0.037 DESeq - Cmax
3 0.155 DESeq - Cmax 0.065 DESeq - Cmax 0.070 DESeq - Pmax
4 0.257 DESeq - PgOn 0.104 DESeq - PgOn 0.072 DESeq - PgOn
100 5 0.306 edgeR - QLF Df1 0.138 edgeR - QLF Df1 0430 edgeR - QLF Df1
6 0313 edgeR - QLF (def) 0.177 edgeR - QLF (def) 0452 edgeR - QLF (def)
7 0.558 edgeR - (def) 0336 edgeR - (def) 0.790 edgeR - (def)
8 0.755 edgeR - Df1 0431 edgeR - Df1 0.957 edgeR - Df1
9 9.688 DESeq - CgOn 6.232 DESeq - CgOn 5133 DESeq - CgOn
1 0.008 tweeDEseq 0.004 tweeDEseq 0.004 tweeDEseq
2 0.008 DESeq - Cmax 0.008 DESeq - PgOn 0.007 DESeq - PgOn
3 0.016 DESeq - PgOn 0.015 DESeq - Cmax 0.014 DESeq - Cmax
4 0.043 edgeR - QLF Df1 0.087 DESeq - Pmax 0.081 DESeq - Pmax
1000 5 0.045 edgeR - QLF (def) 0413 edgeR - QLF (def) 0429 DESeq - CgOn
6 0.082 DESeq - Pmax 0.459 edgeR - QLF Df1 21.358 edgeR - QLF (def)
7 0.105 edgeR - (def) 0.532 DESeq - CgOn 22.208 edgeR - (def)
8 0.155 edgeR - Df1 0.639 edgeR - (def) 23401 edgeR - QLF Df1
9 0.735 DESeq - CgOn 0.835 edgeR - Df1 25.004 edgeR - Df1
1 0.002 DESeq - PgOn 0.001 DESeq - PgOn 0.000 DESeq - PgOn
2 0.002 tweeDEseq 0.001 tweeDEseq 0.001 tweeDEseq
3 0.025 DESeq - Cmax 0.031 DESeq - Cmax 0.036 DESeq - Cmax
4 0.053 edgeR - QLF (def) 0.090 DESeq - Pmax 0.093 DESeq - Pmax
2000 5 0.056 edgeR - QLF Df1 0.183 DESeq - CgOn 0.140 DESeq - CgOn
6 0.093 DESeq - Pmax 1.444 edgeR - QLF (def) 34551 edgeR - QLF (def)
7 0.113 edgeR - (def) 1.702 edgeR - QLF Df1 35.365 edgeR - (def)
8 0.169 edgeR - Df1 1.724 edgeR - (def) 35468 edgeR - QLF Df1
9 0.271 DESeq - CgOn 2219 edgeR - Df1 36.929 edgeR - Df1

Data in this table correspond to the mean squared error (MSE) values between the empirical false discovery rates (eFDR) and the nominal g-values obtained from the

simulation study shown in Figure 7 in which library factors were held constant.

Reproducibility with respect to microarray data

The YRI LCL samples we have analyzed have been previ-
ously assayed using microarray chips [24] and this enables
a comparison between the gene expression read out of
both technologies. In particular, we wanted to assess the
degree of reproducibility of the significance levels of DE.
While there may be many aspects from both technolo-
gies that can potentially bound the extent to which we
can reproduce rankings of DE, we postulate that more
accurate P-values in DE genes should lead to higher repro-
ducibility of significance levels of DE genes.

With this purpose, we applied limma [25] on the
microarray data and called genes DE at 10% FDR, just as
we did with RNA-seq data, and then compared the —log;,
units of the raw P-values from DE genes called in RNA-
seq by each DE detection method to the —log;, P-value

units from genes called DE by 1 imma. In Additional file 2:
Figure S12 we show this comparison for every gene that
is called DE either by 1imma in microarray data or by
the other compared method in RNA-seq data. Although
we can observe a significant linear relationship between
P-values in every compared method, the low fraction of
variability explained by the fitted linear model (R?> < 0.25)
in every of those comparisons indicates a rather poor level
of reproducibility for every method.

A closer look to genes in that figure indicates that the
lack of reproducibility mostly comes from genes called
DE by one method and technology but not by the other
(dots close to zero in either the x or the y-axis). There
may be many reasons, unrelated to the DE detection
method itself, why a gene is not called simultaneously DE
in two completely independent RNA-seq and microarray
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#DE Rank 1.5-fold change 2-fold change 4-fold change
MSE Method MSE Method MSE Method
1 0.030 DESeq - Pmax 0.059 DESeq - Cmax 0.046 tweeDEseq
2 0.099 tweeDEseq 0.064 tweeDEseq 0.055 DESeq - Pmax
3 0.189 DESeq - Cmax 0.072 DESeq - Pmax 0.057 DESeq - Cmax
4 0.194 DESeq - PgOn 0.116 DESeq - PgOn 0.106 DESeq - PgOn
100 5 0.258 edgeR - QLF Df1 0.129 edgeR - QLF Df1 0.124 edgeR - QLF Df1
6 0.348 edgeR - QLF (def) 0.129 edgeR - QLF (def) 0.153 edgeR - QLF (def)
7 0.581 edgeR - (def) 0.273 edgeR - (def) 0.290 edgeR - (def)
8 0.667 edgeR - Df1 0420 edgeR - Df1 0.380 edgeR - Df1
9 8.882 DESeq - CgOn 6.429 DESeq - CgOn 5217 DESeq - CgOn
1 0.005 tweeDEseq 0.006 tweeDEseq 0.008 tweeDEseq
2 0.009 DESeq - Cmax 0.012 DESeq - Cmax 0.010 DESeq - Cmax
3 0.013 DESeq - PgOn 0.012 DESeq - PgOn 0.011 edgeR - QLF Df1
4 0016 edgeR - QLF Df1 0.016 edgeR - QLF Df1 0013 edgeR - QLF (def)
1000 5 0.019 edgeR - QLF (def) 0.017 edgeR - QLF (def) 0.024 DESeq - PgOn
6 0.054 edgeR - (def) 0.051 edgeR - (def) 0.045 edgeR -(def)
7 0.083 DESeq - Pmax 0.082 DESeq - Pmax 0.067 DESeq - Pmax
8 0.087 edgeR - Df1 0.083 edgeR - Df1 0.077 edgeR - Df1
9 0.700 DESeq - CgOn 0.545 DESeq - CgOn 0.529 DESeq - CgOn
1 0.003 tweeDEseq 0.004 tweeDEseq 0.005 DESeq - Cmax
2 0.003 DESeq - PgOn 0.006 edgeR - QLF Df1 0.017 edgeR - QLF (def)
3 0.006 edgeR - QLF Df1 0.006 edgeR - QLF (def) 0.018 edgeR - QLF Df1
4 0.007 edgeR - QLF (def) 0.007 DESeq - PgOn 0.023 tweeDEseq
2000 5 0.025 DESeq - Cmax 0.024 DESeq - Cmax 0.029 DESeq - Pmax
6 0.028 edgeR - (def) 0.026 edgeR - (def) 0.053 edgeR - (def)
7 0.049 edgeR - Df1 0.047 edgeR - Df1 0.088 edgeR - Df1
8 0.091 DESeq - Pmax 0.077 DESeq - Pmax 0.092 DESeq - PgOn
9 0.267 DESeq - CgOn 0.238 DESeq - CgOn 0465 DESeq - CgOn

Data in this table correspond to the mean squared error (MSE) values between the empirical false discovery rates (eFDR) and the nominal g-values obtained from the

simulation study shown in Figure 8 in which library factors were variable.

Table 4 Rankings of methods by the mean squared error of false discovery rates under constant library factors

Method #DE =100 #DE = 1000 #DE = 2000
1.5FC 2FC 4FC 1.5FC 2FC 4FC 1.5FC 2FC 4FC

tweeDEseq 2 2 1 1 1 1 2 2 2
DESeq - PgOn 4 4 4 3 2 2 1 1 1
DESeq - Pmax 1 1 3 6 4 4 6 4 4
DESeq - CgOn 9 9 9 9 7 5 9 5 5
DESeq - Cmax 3 3 2 2 3 3 3 3 3
edgeR - (def) 7 7 7 7 8 7 7 8 7
edgeR - QLF (def) 6 6 6 5 5 6 4 6 6
edgeR - Df1 8 8 8 8 9 9 8 9 9
edgeR - QLF Df1 5 5 5 4 6 8 5 7 8

Data in this table correspond to the rankings of every method by the mean squared error (MSE) values shown in Table 1.
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Table 5 Rankings of methods by the mean squared error of false discovery rates under variable library factors

Method #DE =100 #DE =1000 #DE = 2000
1.5FC 2FC 4FC 1.5FC 2FC 4FC 1.5FC 2FC 4FC

tweeDEseq 2 2 1 1 1 1 1 1 4
DESeq - PgOn 4 4 4 3 3 5 2 4 8
DESeq - Pmax 1 3 2 7 7 7 8 8 5
DESeq - CgOn 9 9 9 9 9 9 9 9 9
DESeq - Cmax 3 1 3 2 2 2 5 5 1
edgeR - (def) 7 7 7 6 6 6 6 6 6
edgeR - QLF (def) 6 6 6 5 5 4 4 3 2
edgeR - Df1 8 8 8 8 8 8 7 7 7
edgeR - QLF Df1 5 5 5 4 4 3 3 2 3

Data in this table correspond to the rankings of every method by the mean squared error (MSE) values shown in Table 2.

experiments on the same biological material, such as dif-
ferent isoforms being probed in the microarray and sum-
marized in RNA-seq or differences in sample preparation.
Therefore, for our current goal of assessing reproducibil-
ity of DE detection methods, we believe it makes sense to
restrict this comparison to those genes that are called DE
by both, 1imma in microrray data and the corresponding
method in RNA-seq data.

We can find this restricted comparison in Figure 11
which reveals that in this case only tweeDEseq attains
a significant (P < 0.05) linear fit with respect to the P-
values from 1imma with a level of reproduciblity (R?> =

0.6) substantially larger (46% increase) than the second
best method (DESeq - PgO) with R* = 0.41.

Finally, we have carried out a comparison between the
entire output of DE genes obtained with tweeDEseq in
RNA-seq data with the entire output DE genes obtained
with 1imma in microarray data. In Figure 12 we show
the resulting volcano plots where we have highlighted
with black dots those genes that are exclusively profiled
by each technology. As the figure suggests, many more
of these genes occur in RNA-seq than in microrray, one
remarkable case being the XIST gene which shows the
largest fold-change and significance level and corresponds
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Figure 9 Estimation of the number of differentially expressed (DE) genes from simulated data. Boxplots of ratios of estimated to true
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Figure 10 Precision and recall comparison on the LCL RNA-seq
data. Precision (y-axis) and recall (x-axis) values for genes called DE at
1% FDR by different DE detection methods and configuration
parameters. The right y-axis indicates values of the F-measure shown
by dot lines. As the figure shows, tweeDEseq provides higher
F-measure values than other methods indicating a better
precision-recall tradeoff.

to the X-inactive specific non-coding RNA gene which
acts as one of the key regulators in silencing one of the
copies of chromosome X in females. Blue and red cir-
cles denote MSY and XiE genes, respectively. As expected,
all MSY and XiE DE genes report significantly higher
expression in males and females, respectively, except for
the XiE gene NLGN4X in RNA-seq, likely due to low
expression from the inactive X chromosome in female
samples [26]. Surprisingly the volcano plots show that
limma on this microarray data set is able to detect a
few more such genes than tweeDEseqg on RNA-seq
data. Last, but not least, an important difference between
the volcano plots of Figure 12 is the fact that expres-
sion changes larger than 2-fold in these microarray data
are nearly synonymous of statistical significance while
with RNA-seq a sizeable fraction of genes with 2-fold or
larger changes show very poor significance levels. This is
likely due to the larger variability of gene expression mea-
surements in RNA-seq experiments with many samples
and underscores the importance of using methods that
properly assess the statistical significance of the observed
changes.

Conclusions

The increased amount of biological variability revealed
by extensive replication in RNA-seq experiments brings
new challenges to the task of identifying genes whose
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change in expression is both, biologically and statistically
significant. In microarray data, large fold-changes derived
from large data sets were nearly synonymous of statisti-
cal significance. The volcano plots in Figure 12 and the
examples of specific genes in Figure 1 illustrate why this
is not true anymore with RNA-seq count data. Those
figures unveil that one of these new challenges is to dis-
tinguish statistically significant changes among those that
are already large in magnitude. In this paper we pro-
vide an approach to this problem by using the PT family
of distributions, showing that it captures a much richer
diversity of expression dynamics in RNA-seq count data
than the statistical models based in the NB distributions
alone (see Figures 4 and 5). We have implemented a
two-sample PT-test in a software package for R, called
tweeDEsegq, for detecting DE genes and demonstrated
with simulations that produces more accurate P-value dis-
tributions that lead to better calibrated g-values and FDR
estimates.

We have made an attempt to assess DE detection
accuracy with real RNA-seq data by comparing male
and female LCL samples normalized with three different
methods and comparing the results to a gold-standard set
of genes with documented sex-specific expression. This
assessment also shows that tweeDEseq provides a bet-
ter precision-recall tradeoff than the compared NB-based
methods (see Figure 10 and Additional file 2: Figure S11).
We have also made a comparison with matching sam-
ples hybridised on microarray chips which allowed us to
verify that tweeDEseq yields a higher degree of repro-
ducibility of significance levels with respect to microrray
data.

All these different comparative assessments have been
performed against two of the most widely currently
used methods for DE analysis of RNA-seq data, edgeR
and DESeq, under four different parameter configura-
tions each, since their default parametrisation is tailored
towards very limited sample size. Making an informed
decision on what is the most appropriate setup is not
trivial for the non-expert user and, for this reason, it is
important to underscore that tweeDEseq is competitive
with all of the methodologies that follow from the differ-
ent configurations of edgeR and DESeq without the need
to set a single parameter.

The fact that the volcano plots from tweeDEseq and
limma, derived from RNA-seq and microarray data,
reveal that 1imma is able to find a larger number of DE
genes from the gold-standard, suggests a long way still
ahead of us to fully exploit the RNA-seq technology for
DE. Not only regarding experimental aspects, but also sta-
tistical ones such as properly detecting and adjusting for
unwanted sources of non-biological variability, for which
there is currently no well-established available techniques,
as in the case of microarray data.
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as function of those from the compared RNA-seq method. Only tweeD

Blue dots indicate genes with documented sex-specific expression.
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Figure 11 Reproducibility of differential expression (DE) between microarray and RNA-seq. Raw P-values of differential expression in — logy
scale for DE genes called at 10% FDR by both, limma (y-axis), from microarray data, and the other compared DE detection method applied on
RNA-seq data (x-axis). A regression line is depicted in red. On the bottom-right corner of each panel, p indicates the Pearson correlation whereas R’
and P indicate, respectively, the coefficient of determination and P-value of the test for zero regression coefficient, of the — log; p-values of limma

P-values of DE genes reported by both, limma on microarray data and the compared RNA-seq method, attaining also the highest p and R? values.

Eseq provides a significant (p < 0.05) level of reproducibility between

Other applications of high-throughput sequencing tech-
nology that output counts of molecules, like in Copy
Number Variation (CNV) analysis, could potentially ben-
efit of models based on the PT-distribution. It is our
perception that richer count data models of this kind will
become increasingly necessary to draw accurate conclu-
sions from data as technology brings us closer the actual
biology of the cell.

Methods

Pre-processing of RNA-seq data

We have analyzed data from Pickrell et al. (2010) [12]
that sequenced RNA from LCLs in 69 Nigerian (YRI) [12]
individuals. Raw reads were downloaded from http://eqtl.
uchicago.edu/RNA_Seq_data/unmapped_reads and pre-
processed using the GRAPE pipeline [27]. This pipeline
consists of first mapping the reads to the human genome
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Figure 12 Comparison of DE analyses between microarray and RNA-seq. \Volcano plots of DE analyses performed on matching LCL samples
profiled with RNA-seq (a) and gene expression microarrays (b). The x-axis corresponds to log, fold-changes between female and male individuals
while the y-axis corresponds to —log P-value of significance. RNA-seq data were analysed with tweeDEseq while microarray data were analysed
with 1imma. Grey dots indicate genes common to both, the RNA-seq and the microarray gene expression matrices, while black dots indicate genes
occurring exclusively in one of the two data sets. Blue and red circles indicate genes documented in the literature with sex-specific expression,
concretely belonging to the male-specific region of chromosome Y and escaping X-chromosome inactivation in females, respectively.

version hgl9 using the GEM mapper software [28]. Sec-
ond, mapped reads were summarized into gene-level
counts according to the GENCODE annotation version 3¢
[29] with Ensembl release 63 gene identifiers, by select-
ing those reads that mapped either completely within
an exon or spanning a junction. This resulted in an
initial table of counts of 38,415 Ensembl genes. This
table of counts form part of the experimental data pack-
age tweeDEsegCountData available at http://www.
bioconductor.org under the name pickrelll.

The table of counts was filtered to discard lowly
expressed genes by keeping only those with an average
of more than 0.1 counts per million (CPM) through-
out the samples. The results shown in Additional file 2:
Figure S11 were obtained by applying a more stringent
minimum cutoff of 0.5 CPM. When we applied a normal-
ization method that adjusted for gene length and G+C
content (see below), genes without this information were
also discarded. When the minimum CPM was 0.1, then
31,226 genes were kept when no normalization method
or edgeR-TMM was applied and when cgn was applied
then 27,438 were kept (see pg. 5 and 6 from Additional
file 1). When the minimum CPM was 0.5 then these num-
bers decreased to 19,166 and 18,009 genes, respectively.

Three approaches to normalizing the table of counts
from the LCL data have been considered. The first one

is to work with the initial table of raw counts without
any kind of normalization, the second one is to apply
TMM [2] normalization as implemented in the edgeR
[30] package, the third one is to use the methodology
implemented in the cgn [4] Bioconductor package which
adjusts for sample-specific effects of gene length and G+C
content of every gene. When using the DESeq method
for DE analysis in the LCL samples, the TMM normal-
ization procedure was replaced by its own normalization
procedure.

Raw counts were transformed into filtered and nor-
malized counts for the purpose of producing MA-plots
(Figure 2), assessing goodness of fit to the NB distribu-
tion (Figure 3), examining the relationship between mean
expression level and the shape parameter of the PT distri-
bution (Figure 4) and doing DE analysis with tweeDEsedq.
In the case of DESeq raw counts were transformed into
normalized counts only when used with the cqn normal-
ization method.

In the case of edgeR-TMM normalization, counts
were transformed following the steps that the function
exactTest () in edgeR takes: calculate normalization
factors with the TMM method (calcNormFactors () ),
estimate effective library sizes and adjust counts to
effective library sizes obtaining non-integer normalized
pseudocounts (equalizeLibSizes()) which were
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subtracted by 0.5 and then raised to the smallest inte-
gers not less than these pseudocounts (ceiling()).
These steps are written together in the function
normalizeCounts () from the tweeDEseq package.

In the case of cqn, normalization offsets are calculated
by the function cgn () as log, RPMs, which are added
to original raw log, RPMs. These are rolled back to abso-
lute numbers and “unlogged” obtaining non-integer nor-
malized pseudocounts which, analogously to the edgeR-
TMM case, were subtracted by 0.5 and then raised to
the smallest integers not less than these pseudocounts
(ceiling () ). The rationale behind subtracting 0.5 to
the pseudocounts instead of directly truncating or raising
to the next integer value, is to try to approach as much
as possible the correct proportion of zero counts in the
normalized data.

However, when performing DE analysis with edgeR,
or with DESeq and its own normalization procedure,
the specific recommendations made by the correspond-
ing software authors were followed. More concretely,
raw counts were not transformed in order to preserve
their sampling properties and normalization adjustments
entered the DE analysis through the corresponding nor-
malization factors and offsets arguments within the func-
tions that test for DE (see scripts for details in Additional
file 1).

Pre-processing of microarray data

The microarray LCL data from [24] was processed from
the raw CEL files available at http://www.ncbi.nlm.nih.
gov/geo under accession GSE7792. Firstly, we only con-
sidered YRI samples. Secondly, data was processed using
the Bioconductor oligo package. Quality assessment was
performed by calculating NUSE and RLE diagnostics
(Bolstad et al.,, 2005) and discarding those samples that
either of the two reported diagnostics was considered
below a minimum quality threshold. Third, using the
RMA algorithm (Irizarry et al., 2003) implemented in the
rma () function from the oligo package with argument
target="core", expression values were background
corrected, normalized and summarized into Affymetrix
transcript clusters. Fourth, most samples formed part
of family trios and only samples belonging to father
or mother were kept. Fifth, using the getNetAffx ()
function from the oligo package, Ensembl Transcript
identifiers well obtained for each Affymetrix transcript
cluster identifier. Sixth, using the bioconductor package
biomaRt, Ensembl Transcript identifiers were translated
into Ensembl Gene identifiers, resolving multiple assign-
ments by keeping the Ensembl Gene identifier that had a
match in the Ensembl Gene identifiers forming the table of
counts of the [12] RNA-seq data, or choosing one arbitrar-
ily, otherwise. Seven, duplicated assignments of the same
Ensembl Gene identifier to multiple Affymetrix transcript
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cluster identifiers were resolved by keeping the transcript
cluster with largest expression variability measured by its
interquartile range (IQR).

At this point an expression data matrix of 16,323
Ensembl Genes by 74 samples was obtained and using
the scanning date of each CEL file, samples were grouped
into 5 batches, out of which one containing only three
male samples was discarded leaving a total of 71 sam-
ples distributed into 4 balanced batches across gender.
Batch effect was removed by using the QR-decomposition
method implemented in the removeBatchEffect ()
function from the Bioconductor package limma [25]
while keeping the sex-specific expression effect by setting
the gender sample indicator variable within the design
matrix argument. Finally, samples and genes were further
filtered to match those from the RNA-seq table of counts.

Matching RNA-seq and microarray expression data
matrices

To perform the analyses summarized in Figure 11 and
Additional file 2: Figure S12 we further filtered the
previously pre-processed RNA-seq and microarray gene
expression matrices to match both Ensembl Gene iden-
tifiers and individual HapMap identifiers. This resulted
in two gene expression data matrices of equal dimension
with 15,194 genes and 36 samples. We only considered the
RNA-seq data normalized with the cgn package.

To perform the analyses summarized in Figure 12 we
built two other gene expression data matrices where, as
before, samples were restricted to those 36 that matched
between RNA-seq and microarray data but genes were
not, leading to a RNA-seq and microarray gene expres-
sion data matrices of 27,438 and 16,323 Ensembl Genes by
36 samples, respectively. Genes were not matched since
the purpose of these analyses was to gather insight into
the differences and challenges in detecting DE genes using
RNA-seq with respect to microarray gene expression data
with many replicates.

Functional annotations

Functional annotations for Ensembl genes forming
the tables of counts, were retrieved from http://
jun2011.archive.ensembl.org with R and the
biomaRt Bioconductor package. Gene length and G+C
content annotations, used with the cgqn normalization
method, were obtained by downloading all human cDNAs
from ftp://ftp.ensembl.org/pub/release-63/fasta/homo_
sapiens/cdna/Homo_sapiens.GRCh37.63.cdna.all.fa.gz
and calculating the length and G+C content of the longest
c¢DNA for each Ensembl gene.

The gold-standard list of genes with sex-specific expres-
sion was built with genes reported in the literature that,
in one hand, escape chromosome X inactivation [22] and,
on the other hand, belong to the male-specific region of
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chromosome Y [23]. In both cases, gene symbols were
first translated into Ensembl gene identifiers and then fur-
ther filtered to keep only those included in the set of
Ensembl gene identifiers release 63. This resulted in a
gold-standard list of 95 genes with sex-specific expression.

The list of housekeeping genes was retrieved from the
literature [19] and mapped to Ensembl genes release 63,
resulting in a final set of 669 housekeeping genes. The
expression breadth reported in Figure 5 was obtained
through the Barcode Gene Expression catalog [18] which
uses information from 18,656 publicly available microar-
ray samples from 131 tissue types, of the HG-U133 Plus
2.0 Affymetrix chip, to estimate the proportion of tis-
sue types in which a given probeset is expressed in more
than half the samples. After discarding unreliable probes
(annotated with high-entropy in the catalog), we use these
values as surrogates for expression breadth by mapping
Affymetrix probeset identifiers to the genes in our table
of counts through the hgul33plus2.db Bioconductor
annotation package, leading to 16,292 genes with expres-
sion breadth values. When two or more probesets mapped
to the same gene, the maximum value was taken for that
gene.

All these functional data are included in the exper-
imental data package tweeDEsegCountData avail-
able at http://www.bioconductor.org under the keywords
annotEnsembl63, genderGenes and hkGenes.

Poisson-Tweedie distributions
Poisson-Tweedie (PT) distributions have been studied by
several authors [31-34] and unify several over-dispersed
count data distributions (see Figure one in [34]). This fam-
ily of distributions can be defined by a probability generat-
ing function and mass probabilities have to be computed
using a recursive algorithm [31,34]. El-Shaarawi et al.
(2011) [34] compared different recursions and parameter-
izations of this family providing an algorithm to compute
the PT probability distribution function. In the R package
tweeDEseq we have developed a fast implementation,
written in the C programming language, of this recursive
algorithm. We briefly describe here the PT family of distri-
butions as well as how we have used it to analyze RNA-seq
count data in the context of a differential expression (DE)
analysis.

Following El-Shaarawi et al. (2011) [34], let ¥ ~ PT
(a, b, c) be a PT random variable with vector of parameters
0 = (a,b,c)T defined in the domain

0= (_OO: 1] X(Or +OO)X[01 1)' (1)

The PT random variable Y has a probability generating
function (pgf) of the form:

b
Gy(yla, b,c) = exp {a((l —0%—(1- cy)“) , (2
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when a # 0, while when a = 0, then:

(1—0) T
A-en]

Using this parameterization, the following recursive
algorithm can be used to compute the PT probability
distribution function [34]:

lim0 Gy(la,b,c) = |: (3)

b[(1—c)*~1]/a £0
e ,y a )
= 4
bo {(l—c)b, a=0, (4)
1 k
p1=bcpy,  pry1 = m bCPk + erk+1_jl9j ’
j=1
k=1,2,...
(5)
where
j—1+ a) .
n=0-a)c, rip1=|—])crj =12,...
1=( ) 41 ( T i)
(6)

and p; denotes the probability of observing i counts.

For the sake of interpretability, we reparameterize 6 =
(a,b,c) to 6 = (u, ¢, a), where  denotes the mean, ¢ =
o2 /1 is the dispersion index (o2 is the variance), and a the
shape parameter that is used to define some count data
distributions that are particular cases of PT such as Pois-
son or negative binomial. The relationship between both
parameterizations is the following:

1-a
c=¢_1, b:,u(l——a)(). )
¢—a (¢—Dd—a)“

The PT model includes not only Poisson (@ = 1) and neg-
ative binomial (NB) (¢ = 0) but also other distributions
that have been used to analyze count data such as Poisson-
Inverse Gaussian (PIG) (@ = %), Pélya-Aeppli (P-A)
(@ = —1) or Neyman type A (a — —o00). Therefore, the
PT distribution family unifies several diverse count data
distributions, including different overdispersed distribu-
tions such as NB or PIG. These distributions can model
different scenarios as, for instance, a RNA-seq expression
profile with a wide dynamic range leading to a heavy tail
in the distribution. In such a case, PIG has a heavier tail
than NB and this would make it more appropriate for such
a gene. Note that an extremely heavy tail implies overdis-
persion, but the converse does not hold; hence the NB
distribution is not adequate to model RNA-seq expression
profiles of genes with a wide dynamic range due to their
intrinsic biological variability [15].

Given a certain parameterization Kokonendji et al.
(2004) [17] prove that the mean-variance relationship for
the PT family can be expressed as:

o =pu 1+ exp {2 - pDy}) ®
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where p is the shape parameter of that specific parame-
terization. It follows that, whereas the NB distribution is
only able to capture a quadratic mean-variance relation-
ship, the PT family is able to generalize this relationship
to any order. As a result, it is more convenient to use the
PT model when dealing with count data which presents
variable overdispersion.

Parameter estimation for Poisson-Tweedie distributions
We need to estimate the parameter vector 0 = (1L, ,a)
to develop, on the one hand, a test of goodness-of-fit to
an NB distribution and, on the other hand, a two-sample
PT-test for differences in means. This latter test is used
for detecting differentially expressed genes. Without loss
of generality, let yg be the number of counts for gene g in
sample &, derived from pre-processing RNA-seq data. We
assume that y, follows the PT distribution:

Yk ™~ PT(Mg, ¢gr ﬂg) . 9)

In practice, we do not know the parameters 6, =
g, Pg, ag, but we can estimate them from data by maxi-
mum likelihood when the sample size is sufficiently large
so that it guarantees the desirable large sample properties
of unbiasedness and minimum variance of the maximum
likelihood estimate (MLE). In the Additional file 2: Sup-
plementary Information we provide a simulation study
in order to estimate the minimum number of samples
per group that approximately meets this requirement (see
Additional file 2: Figure S7).

We obtained the MLE 6 using a quasi-Newton method
with constraints. We have implemented such a procedure
using the optim function in R. In order to guarantee
good convergence, we consider as initial parameters the
moment estimates of 11, and ¢, and a;, = 0. We choose
this value for a; because it corresponds to an NB model
that is the natural cut-point of PT’s parameter space.

Goodness-of-fit to a negative binomial distribution

In the framework of PT distributions we can formulate a
test of the goodness of fit to an NB distribution by consid-
ering Hy : a = 0 versus H, : a # 0. Using a likelihood
ratio test (LRT), the testing statistic is [34]

_ max, 52 L, @ alyo, - - . ym)

max ; j E(,&,¢3|y0, ...

(10)
,)’m)

where numerator and denominator correspond to the
likelihood functions for the PT and NB models, respec-
tively. Since the PT model has just one parameter more
than the NB model, the quantity 2log 7 ~ x7 under the
null hypothesis, as n grows large, and it can be used to
decide whether count data follow a NB distribution by
means of a Q-Q plot (see Additional file 2: Figure S2) or
by calculating the corresponding P-value.
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Test to determine differentially expressed genes

For a given gene, let us assume that we observe
€1,€2,...,¢, counts for n individuals and that we tab-
ulate these counts into a contingency table with cells,
Y0, Y1, - -»¥m where m = max{cy,...,c,}. Therefore, y,
represents the number of observations with ¢ counts.
Then, the log-likelihood can be written as follows

m
log £@1yo, ... ym) = Y _yili(d), (11)
i=0

where ;(§) = log[p,'(é)] and pi(é) denotes the mass prob-
ability at i with i = 0,1,...,m and is computed using
the recurrence given in equation (6). El-Shaarawi et al.
(2011) [34] indicate that when regularity conditions hold,
that is, when 6 is an interior point of the parameter space
©, asymptotic normality of § can be assumed. Therefore,
the negative inverse Hessian matrix of the log-likelihood
at the MLE 6 corresponds to the estimated covariance
matrix of §. In particular, for the ; parameter we have that
92 A -
Var(u) = —E |:3MZ log £(01yo, - . . ,ym)} . (12)
Consequently, if we are interested in comparing the mean
counts for two sample groups, denoted by u4 and up, a
two-sample PT-test for the mean with null hypothesis Hy :
Z—’; = 1, which we perform in logarithmic scale as Hy :
log(;ta) = log(up), can be built by calculating the PT-
statistic:
_ fa — LB
VVar(ua) + Var(ug)
The PT-statitic, 7, follows a standard normal distri-
bution under the null hypothesis. Therefore, the (1 —
a)% percentile of a N(0, 1) distribution is used to deter-
mine whether the observed differences between the two
groups are statistically significant or not by providing a
corresponding P-value that can be later on corrected for

multiple testing using, for instance, Benjamini-Hochberg’s
FDR [35].

(13)

Simulation of RNA-seq data

The results shown in Figure 6 recreating the null hypoth-
esis of no DE with real RNA-seq data were performed
by dividing the LCL data into two separate data sets of
male and female samples. From each data set we boot-
strapped 100 times two groups of 20 samples uniformly
at random, thus obtaining on the one hand, group pairs
of female samples and, on the other hand, group pairs
of male samples. On each bootstrapped data set we per-
formed the two-sample test for DE detection of every
method between the groups of female versus female sam-
ples and male versus male samples. We also considered
two versions of the data, one with the raw un-normalized
counts and the other with the counts normalized with the
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cagn package [4]. In principle, there are no DE genes to be
discovered from these comparisons, and therefore, under
the null hypothesis of no DE, the P-value distribution for
any given gene throughout the 100 bootstrapped data sets
should be uniform.

The simulations shown in Figures 7, 8 and 9 contained
synthetic RNA-seq data generated from a gamma-Poisson
mixture model in a similar way to other published studies
[8]. Under this model, we first draw dispersion parameters
¢g for every gene g at random from a gamma distribu-
tion Gamma(k = 2,0 = 0.7) and means according to
three different fold-changes (1.5, 2 and 4) where half of
the genes were up-regulated and the other half down-
regulated. The Ag; Poisson parameter for every gene g and
sample i was drawn at random from a gamma distribution
Gamma(k = a,0 = 1/(¢ — 1)) witha = fug/(¢ — 1)
and f ~ N(0,0) corresponding to library factor which
was either constant (o = 0) or variable (0 = 0.5). Counts
were simulated for each gene g from the resulting mixture
gamma-Poisson distribution with parameters Ag; for each
sample i. Note that the resulting marginal distribution
from the gamma-Poisson is a negative-binomial.

Software availability

e Project name: tweeDEseq

¢ Project home page: http://www.bioconductor.org/
packages/release/bioc/html/tweeDEseq.html
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