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Abstract

Background: The emergence of high-throughput genomic datasets from different sources and platforms (e.g.,
gene expression, single nucleotide polymorphisms (SNP), and copy number variation (CNV)) has greatly enhanced
our understandings of the interplay of these genomic factors as well as their influences on the complex diseases. It
is challenging to explore the relationship between these different types of genomic data sets. In this paper, we
focus on a multivariate statistical method, canonical correlation analysis (CCA) method for this problem.
Conventional CCA method does not work effectively if the number of data samples is significantly less than that of
biomarkers, which is a typical case for genomic data (e.g., SNPs). Sparse CCA (sCCA) methods were introduced to
overcome such difficulty, mostly using penalizations with l-1 norm (CCA-l1) or the combination of l-1and l-2 norm
(CCA-elastic net). However, they overlook the structural or group effect within genomic data in the analysis, which
often exist and are important (e.g., SNPs spanning a gene interact and work together as a group).

Results: We propose a new group sparse CCA method (CCA-sparse group) along with an effective numerical
algorithm to study the mutual relationship between two different types of genomic data (i.e., SNP and gene
expression). We then extend the model to a more general formulation that can include the existing sCCA models.
We apply the model to feature/variable selection from two data sets and compare our group sparse CCA method
with existing sCCA methods on both simulation and two real datasets (human gliomas data and NCI60 data). We
use a graphical representation of the samples with a pair of canonical variates to demonstrate the discriminating
characteristic of the selected features. Pathway analysis is further performed for biological interpretation of those
features.

Conclusions: The CCA-sparse group method incorporates group effects of features into the correlation analysis
while performs individual feature selection simultaneously. It outperforms the two sCCA methods (CCA-l1 and CCA-
group) by identifying the correlated features with more true positives while controlling total discordance at a lower
level on the simulated data, even if the group effect does not exist or there are irrelevant features grouped with
true correlated features. Compared with our proposed CCA-group sparse models, CCA-l1 tends to select less true
correlated features while CCA-group inclines to select more redundant features.
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Background
In recent years, the development of a variety of affordable
high throughput genome-wide assays enables multiple
measurements of genomic markers from different plat-
forms and/or scales for the same subject, e.g., gene expres-
sion, single nucleotide polymorphisms (SNP), copy number
variation, and proteomic data. Each of these measurements
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reproduction in any medium, provided the or
provides different but complementary information about
genome variations. Combining multiple types of data not
only can contribute to a better understanding of biological
mechanism but also can have the potential to improve the
diagnosis and treatments of complex diseases. Therefore,
integrative approaches for large-scale genomic data analysis
are in highly demand [1-3].
A number of approaches have been proposed to analyze

multiple genomic data, e.g., partial least squares correl-
ation (PLSC [4]) and canonical correlation analysis (CCA
[5]). CCA is closely related to PLSC [6], which is obtained
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by maximizing the correlation between the linear combi-
nations of variables from two data sets, e.g., a linear com-
bination of SNPs and a linear combination of gene
expressions. CCA can provide a global and thought view
of data by compressing variables into 2 or 3 dimensions
which are actually able to contain the dominant character-
istics of data, for example, gene expressions involving in
the same pathway process have the similar effect from the
variations in multiple SNPs. It may hence provide better
understanding of the underlying known or unknown bio-
logical systems. For example, the co-expressed and co-
regulated genes and their associating SNPs. Different from
the regression based integrative methods (i.e., with
principle component analysis and PLS), CCA focus on the
canonical correlation framework without more prior
knowledge of which type of omic data is explained or
regressed by the another one (e.g., with transcripts and
metabolites). It is more applicable for exploring the corre-
lated information from the paired omic data sets by CCA
method. However, the conventional CCA model is not ef-
fective for the analysis of genomic data with small sample
size because of the issue of high dimensionality-the num-
ber of biomarkers is always greatly larger than that of sam-
ples. An example is the SNP array, where millions of SNPs
exist but only a few array samples are available. Conven-
tional CCA will perform poorly in such a case [7-9]. In
addition, this high dimensionality can result in possible
multi-collinearity (linear dependence) problem, and thus
computational difficulty [7].
To address the above issues, one way is to perform di-

mension reduction by using principle component ana-
lysis (PCA [10]) or independent component analysis
(ICA [11]) followed by the conventional CCA. Another
way is to introduce the sparsity penalty into the conven-
tional CCA model, named sparse CCA (sCCA) by in-
corporating the feature selection into CCA to detect the
correlation between a small subset of features. This is in-
spired by recent developments of sparse representation
methods, e.g., sparse linear regression (SLR [12]), sparse
logistic regression [13], and sparse principle component
analysis (SPCA [14]). To list a just few examples,
Waaijenborg et al. [15] introduced the l-1 norm and
elastic net penalties to the CCA model to analyze the
correlation between gene expression and DNA-markers.
Parkhomenko et al. [7] proposed a sCCA method with
lasso penalty based on SVD (Singular value decompos-
ition). Le Cao et al. [2] used the penalized CCA with the
elastic net to identify sets of co-expressed genes from
two different microarray platforms. Witten et al. [16]
developed a penalized matrix decomposition (PMD)
method and applied it to solve CCA with lasso and fuse
lasso penalties. Generally, all of these sCCA models have
the ability of identifying subsets of features by using
sparse penalties such as the l-1 norm(denoted by CCA-
l1) or elastic net (denoted by CCA-elastic net) [17,18];
however, they have not yet accounted for group struc-
tures within the data in the analysis, which often exist in
genomic data. For example, genes within the same path-
way have similar functions and act together in regulating
a biological system. These genes can add up to have a
larger effect and therefore can be detected as a group
(i.e., at a pathway or gene set level [19]).
Considering a group of features instead of individual

feature has been found to be effective for biomarker
identification [20-23]. Yuan and Lin proposed the group
lasso for group variables selection [20]. Meier et al. [21]
extended it to the logistic regression. Puig et al. [22] and
Simon et al. [24] modified the group lasso to solve the
non-orthonormal matrices. Although group lasso pen-
alty can increase the power for variable selection, it re-
quires a strong group-sparsity [25], and cannot yield
sparsity within a group [26]. Friedman et al. [26] pro-
posed a sparse group lasso penalty by combining the l-1
norm with group lasso to yield sparsity at both the
group and individual feature level. Zhou et al. [27] ap-
plied it to genomic feature identification. Recently some
work has been reported to incorporate the ‘group effect’
into a conventional CCA model. Chen et.al studied
structure based CCA and proposed tree-based and
network-based CCA [28]. Chen et al. incorporated the
group effect into an association study of nutrient intake
with human gut microbiome [29]. Both papers show an
improvement when incorporating the group effect, how-
ever, a prior knowledge of group structure is needed and
only the group effect of one type of data is discussed.
Motivated by this, in this paper we develop a more gen-
eral group sparse CCA method. This model has the fol-
lowing advantages: 1) feature selection will be performed
at both group and single feature levels. Both irrelevant
groups of features and individual features in the
remaining groups will be removed at the same time,
without prior knowledge of group structures; 2) it pro-
vides a general framework for canonical correlation ana-
lysis. It can be reduced to the CCA group model which
can account for the group effect of multiple features. It
can also revert to the popular CCA-l1 (or CCA-elastic
net) model by setting the group penalties to zeros.
In order to solve the model, an effective optimization

algorithm, namely block cyclic coordinate descent algo-
rithm, was designed. We built the model based on regu-
larized SVD, which is similar to that used in sparse PCA
[30], PMD (penalized matrix decomposition) [16] and
2-D penalized CCA [31]. Since the objective function
used in the model was not convex, we re-formulated the
model using the Lagrange form and transformed it into
a biconvex optimization problem with the method in
[16]. Unlike the existing sCCA models, the non-
differentiability of sparse group lasso penalty used in the
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model poses a challenge for optimization and the stand-
ard coordinate descent algorithm will not work well. To
this end, we designed an effective optimization method
based on the block cyclic coordinate descent algorithm
[24,26]. Our proposed group sparse CCA model can in-
clude both CCA-l1 and CCA-elastic net as special exam-
ples and hence the optimization method can be applied
to solve these models as well.
The rest of the paper is organized as follows. The

model and algorithm for our proposed group sparse
CCA are described in section method. The performances
of our model and other sCCA models are compared via
both simulated and real data in section of results. The
advantages and limitations of the proposed model are
summarized in conclusion.

Materials
Gliomas data
Human gliomas are a group of brain tumors lacking an
optimal treatment. Genomic techniques such as SNPs
and gene expression arrays provide complementary in-
formation, which can be used together to improve the
diagnosis and treatment of these tumors. Therefore,
identifying the relationship between SNPs and gene ex-
pression is significant. The sCCA can be used for solving
this problem by identifying correlations between gene
expressions and SNPs.
Real data was downloaded from GEO database

(GSE6109 for SNP genotype data and GSE4290 for gene
expression). It was collected from 144 human gliomas
containing 24 astrocytomas,46 oligodendrogliomas and 74
glioblastomas [32]. They include 58960 SNP measure-
ments (XbaI-restricted DNA, Genechip Human Mapping
50 K arrays) and 54675 gene expression measurements
(HG-U133 Plus 2.0). SNPs with >20% missing data were
deleted and further missing data were imputed. The gene
expression data were normalized. We assigned SNPs that
are within the region 1 kb upstream of the transcription
start sites (TSS) and to the end of the transcribed to be as-
sociated with a gene. By the canonical pathways from the
Molecular Signatures Database (MSigDB), we identified
the pathway named Reactome Downstream Events in
GPCR Signaling (DEIGS), containing the most genes (432
genes). This pathway was analyzed by the proposed sCCA
method. There are 897 gene expression measurements
and 1106 SNPs included in this pathway.

NCI60 data
Two expression datasets obtained on 60 cell lines from
the National Cancer Institute (NCI) were used; see [33]
for more details of data. A total 60 cell-lines were assayed
for gene expression (the Staunton data set) and cDNA
(the Ross data set). Those 60 cell-lines were derived from
patients with leukemia (LE), melanomas (ME), cancers of
ovarian (OV), breast (BR), prostate (PR), lung (LU),
renal (RE), colon (CO) and central nervous system (CNS).
The gene expression data were obtained using Affymetrix
HG-U133A chip and cDNA data were profiled by spotted
cDNA microarrays. Both data sets were normalized and
pre-processed as described below.
In the Ross data set, 9703 spots were detected and

those with more than 15% missing values were removed.
The remaining missing values were imputed by a k-
nearest neighbour approach [34]. The missing data was
imputed by 16 nearest neighborhoods where the similar-
ity between the two points was measured by Euclidean
distance. The expression of these 16 neighborhoods would
be weight averaged. The contribution of each neighbor-
hood point was weighted by its similarity to the missing
point. A subset of 1375 spots was further selected by
filters used in [33]. In the Staunton data set, 7129 probe
sets were used to screen each sample and 1517 probe sets
having at least 500 average difference units across all cell
lines were selected after a series of pre-processing steps
described in [34].
To study the group effects of these biomarkers, we

need to separate those genetic markers into different
groups. We used hierarchical clustering method to clus-
ter gene expression probes and cDNA spots based on
the absolute values of their Pearson correlation coeffi-
cients and then grouped them with the threshold 0.2. In
gliomas data set, 897 expression probes were grouped
into 122 groups. SNPs were grouped by their gene anno-
tations. Those SNPs located in the same gene region will
be grouped together, resulting in 176 genes. In NCI60
data, there were 127 groups of expression probes and
139 groups of cDNA spots to be analyzed.

Results
Simulation
To investigate whether the group sparse CCA can im-
prove the detection power when the group effect exists,
we performed four simulated studies. We also used the
simulation to compare its performance with the other two
popular used sCCA methods (CCA-group and CCA-l1)
under several conditions such as different sample size,
varying number of correlated variables in the group and
different correlations between two data sets.
In each study, two data sets X and Y, consisting of p

and q variables/features respectively were simulated.
Data sets X and Y were divided into GX and GY groups
respectively. For the sake of simplicity, the sparsity of
each group was set the same in both X and Y. The sam-
ple size is n. To correlate the subset of variables in X
with the subset of variables in Y, we first set a latent

variable ϒ = {γi|i = 1,…, n} with distribution N 0; σ2γ
� �

to

have the similar effect on the correlated variables in two
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data sets. Then X data set was generated by xi∼N
θX ⋅γ i; σ

2
eΣp�p

� �
while Y data set by yi∼N θY ⋅γ i; σ

2
eΣq�q

� �
,

where the vector xi ∈ Rp, yi ∈ Rq are the observations
of the i-th sample in X and Y; θX ¼ θ1X ; θ

2
X ;…; θpX

� �
,

θY ¼ θ1Y ; θ
2
Y ;…; θqY

� �
, θ j

X≠0; θ
k
Y≠0, if xj, yk are the corre-

lated variables. Otherwise, the variables would be consid-

ered as random noise with zero means (θ j
X ¼ 0, θkY ¼ 0);

γi is the i-th observation of γ, and σ2γ and σ2e are the vari-

ances of γ and noise variable, and
P

pxp and
P

qxq are the
variance-covariance matrices of each data set. We simu-
lated the group effect within each dataset by referring to
[20,21,35,36]. For each data set, we set the auto-regressive
correlation between associated variables i and j within the
same group to ρ|i − j| and the correlation between different
groups from uniform distribution Unif(0.2,0.4). ρ was pre-
ferred to be 0.5 according to [20]. The irrelevant variables
were drawn from a normal distribution with mean zero
and covariance from Unif(0,0.2).
If one data set (assuming Y) contains categorical vari-

ables (e.g., SNP), we first simulated two set of continuous
data X and Y. Then the variables in Y were converted into
categorical variables with three levels (e.g., -1, 0, 1) [37].
The minor allele frequency(MAF) p from the uniform dis-
tribution Unif(0.2,0.4) was selected randomly for each
SNP; then based on Hardy-Weinberg Equilibrium(HWE),
SNPs were converted according to the homozygous
frequency p2, heterozygous frequency 2p(1-p), and
homozygous frequency (1-p)2. For the irrelevant SNPs,
they were sampled from the HapMap CEU panel (phase
III) at chromosome 22 with 15329 SNPs(HWE < 0.001,
MAF > =0.05) by the software HAPGEN2 [38].
We used the total true positive rate (TTPR), total false

positive rate (TFPR) and total discordance (TD) to
evaluate the performance of the modes. TTPR reflects
the number of correctly identified correlated variables
while TD is the number of incorrectly identified vari-
ables in both X and Y data sets. They are defined as

TTPR ¼ TPXþTPY
TPXþFNXþTPYþFNY

, TFPR ¼ FPXþFPY
FPXþTNXþFPYþTNY

and TD = FP _ X + FN _ X + FP _ Y + FN _ Y
where TP_X , TP_Y, FP_X, FP_Y, FN_X, FN_Y are true
positives, false positives and false negatives in X and Y
respectively. In each study, 50 replications were simu-
lated and 5-fold cross validation was used for parameter
selection in each replication.
The receiver operating characteristics (ROC) curve

was also adopted for the comparison of three methods
in identifying the correlated variables. The curve was
drawn with TFPR versus TTPR and by varying the tun-
ing parameters. For CCA-l1 and CCA-group methods,
there are two parameters searched by a 10 × 10 grid λ
takes the values: 0.04, 0.08, …, 0.4) with totally 100
parameter combinations. For group sparse CCA method,
there are four parameters searched by a 10 × 10 × 10 ×
10 grid of totally 10000 parameter combinations. Since
group lasso penalty and l-1 norm penalty can both
shrink the coefficient vectors, we adopted two steps to
draw the ROC curve by varying sparsity level: first we
obtain the optimal parameters based on the cross valid-
ation; then we vary one parameter while fixing the other
parameters as the optimal ones to draw the curve. The
average values over 50 replications were used to plot the
ROC curves. The ROC curves of varying the first param-
eter were provided in Additional file 1.
Based on above descriptions, four simulation studies

were conducted to investigate the performance of the
methods in terms of recovering group structure (Simula-
tion 1), the effect of group size (Simulation 2), the sam-
ple size (Simulation 3) and the true correlation value
(Simulation 4).

Simulation 1 the recovering accuracy of correlated
variables using different CCA models
We simulated p = 400 variables in data set X and q = 500
variables in data set Y, which contain 60 correlated vari-
ables (defined as true variables) in each data set with the
rest as noise. Data set X is divided into GX = 20 groups
and data set Y contains GY = 25 groups with the group size
20. The sample size is 100, σγ = 1 andσe = 0.5. We set the
vector θX to have 15 1 s, 30 -1 s, 15 1.5 s and the
remaining 0 s; vector θγ with length q have 15 -1 s, 15 –
1.5 s, 30 1 s and the rest are 0 s. Each 15 non-zero coeffi-
cients are assigned randomly into one group along with
the remaining 5 noise variables as shown in Figure 1(a, e).
The correlated variables in each data set are assigned
into four groups and correlated within each group.
Figure 1(b-d, f-h) shows the results of recovered loading
vectors u and v by CCA-l1, CCA-group and CCA-
sparse group methods respectively. It can be seen that
the CCA-sparse group method can better estimate true
u and v than the other two methods. The CCA-l1selects
more noise variables than true u, increasing the false
positive in Figure 1(b). Also, it misses out some true
variables in Figure 1(f ) when selecting v. The CCA-
group can better recover all the groups with true vari-
ables but also give more false positives in the groups.

Simulation 2 the effect of the number of correlated
variables in the group
Variables can be distributed randomly in the data. Some
of them could be grouped together while others are
sparsely located in groups. We run this simulation to
study the performance of the methods when the number
of correlated variables within the group is changed. We
simulated data set X with p = 400 variables and data set
Y with q = 500 variables. 40 variables in each data set are



Figure 1 A comparison of the performance of three sCCA methods. (a) True u; (b-d). u recovered by CCA-l1, CCA-group and CCA-sparse
group respectively. (e) True v; (f-h). v recovered by three SCCA methods.
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correlated and the rest are noise variables. Data set X
contains GX = 40 groups and data set Y contains GY = 50
groups with the same group size of 10. The sample size
is 100 and the standard deviation σγ = 1, σe = 0.3. In each
data set, the number of groups containing correlated
variables is set to be (4, 5, 8, 10, 20, 40) each time and
each group contains (10, 8, 5, 4, 2, 1) true variables cor-
respondingly. The averaged results over 50 replications
are shown in Figure 2. When correlated variables are
distributed in 4 groups, both CCA-group and CCA-
group sparse models give much higher TTP while lower
TD than those of CCA-l1. When the number of groups
increases (true variables are more sparsely distributed
into different groups), the TTP of CCA-group is still
quite high but TD increases rapidly. The TTP of CCA-l1
will increase while having TD at a low level. The CCA-



Figure 2 The comparison of three methods for different group
size. (a) The total true positive recovered by CCA-l1,CCA-group and
CCA-sparse group when group size changes by (4, 5, 8, 10,20, 40);
(b) The total discordance of three methods when changing
group size.

Figure 3 A comparison of three methods for different sample
size. (a) The TTP (spell it out) value of using the CCA-l1,CCA-group
and CCA-sparse group with sample size from 50 to 500; (b) The TD
by the three methods with sample size from 50 to 500.
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sparse group performs better and is more stable than
other methods for having higher TTP and the lowest
TD. When more correlated variables are assigned to the
same group (e.g., 4 v.s 1 out of 10 variables), the CCA-
sparse group model will obtain higher TTP and lower
TD. This indicates that, if more true variables are
grouped, the power of CCA-sparse group method will
be increased and the false positives will be decreased
(see Additional file 1).

Simulation 3 the effect of sample size
In this study, we discuss the effect of sample size on the
recovery performance. We simulated data set X with p =
400 variables, GX = 40 groups and data set Y with q =
500 variables, GY = 50 groups. The group size was fixed
to be 10. 60 variables in each data set are correlated,
which are distributed evenly into 6 groups. We then in-
crease the sample size in step of 50 from n = 50 to 500
in order to compare the performance (e.g., discordance)
of using different methods. Figure 3(a) shows the TTP
with respect to different sample size. It can be seen that
when the sample size increases, the TTP of all methods
increases while the TD decreases. The CCA-group can
achieve a better identification of true correlated variables
than those using other two methods, but it also has
more TD. The TTP of CCA-sparse group is less than
that of CCA-group but more than that of CCA-l1. How-
ever, the TD by CCA-sparse group is much less than
that of CCA-group. Especially when the sample size is
large (>300), the TD of CCA-sparse group and CCA-l1
will stay at the low level. In addition, the TTP and TD of
CCA-group and CCA-sparse group tend to have little
changes when more than 150 samples are used, while
those of CCA-l1 keep changing until almost 300 samples
are used. The ROC curves (Additional file 1) at different
sample sizes (50,200,300) well demonstrate that the
CCA-sparse group can obtain a competitive power and
sensitivity with much less samples than the other
methods.

Simulation 4 the performance of the methods influenced
by noise
Finally, we discuss the performance of three models
under different noise levels, and study how noise affects
the recovery of correlations between two data sets. We
simulated data set X with p = 200 variables, GX = 20
groups, and data set Y with q = 250 variables, GY = 25
groups, having the same group size 10. The correlation
of different values is calculated between 20 variables
in X and 30 variables in Y. The sample size is 100 and
σγ = 1. According to the estimation of the highest correl-
ation in [7], there are several factors involved with esti-
mating the highest correlation between the two data
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sets, i.e. σγ, σe,
X
i

αi,
X
i

βi, the number of true variables

in each data set, and the correlation among true vari-
ables within the same group. We fixed other factors but
changed the standard deviation σe in the noise model
from 0.1 to 1 with interval 0.1 to manipulate the correl-
ation coefficient between two data sets. The highest cor-
relation estimated (refer to [7]) is decreased from 0.958
to 0.18 accordingly From the results in Figure 4, we can
see that when the true correlation increases due to the
decrease of noise, more true variables can be recovered
with less total discordance by all three methods. The
CCA-group model can recover the most correlated vari-
ables but also has the highest total discordance. Com-
pared to other two models, the CCA-l1 model has a
lower TD but also the lowest TTP. The CCA-sparse
group model can achieve comparable of TTP as that of
the CCA-group while can have significantly reduced TD.
Especially when σe < 0.4, the TD of CCA-sparse group
decreases rapidly. The same result can be shown in ROC
curves(σe = 0.2, 0.4, 0.8, see Additional file 1); CCA-
sparse group is expected to give increasingly more
power than CCA-l1 as well as better sensitivity than
CCA-group when σe is reduced.
Figure 4 A comparison of three methods for different correlation
level influenced by noise. (a) The value of total true positive
obtained by three methods when the standard deviation of noise
increases from 0.1 to 1, showing the highest correlation of true
variables between two data sets within the range from 0.958 to 0.18.
(b) The total discordance by three methods when the standard
deviation of noise changes from 0.1 to 1.
To test the computational complexity, we applied the
methods on a simulated large data set with 1000 samples
by 1000 gene expressions and 10000 SNPs. In one repli-
cate, each single run time of three methods was on aver-
age 0.1444 sec, 0.1782 sec, and 0.1636 sec respectively.
The time of running 5-fold cross validation based on the
lambdas searching grid was 22.47 sec, 57.32 sec and
203.66 sec respectively. The memory usage was about
547.2 Mega bytes for all of them. The longer time of
CCA-sparse group method was because of more param-
eters introduced in the model (e.g. two more parameters
for controlling the sparsity within the groups, compared
to CCA-group and CCA-l1 methods). The experiments
were carried out on a desktop computer with a dual-
core 2.8 GHz x86 64 bit processor, 6 GB memory. This
shows that three sCCA methods are generally scalable
and computationally affordable for large data sets.

Application to real data analysis

Comparison of three sCCA model sets
We applied the CCA-l1, CCA-group and CCA-sparse
group to the analysis of these data sets for the purpose of
comparisons. The comparisons were based on the correla-
tions derived from the independent data sets, and the fea-
ture/variable selection in terms of feature overlapping by
the methods, as well as the feature difference across the
dimensions. Here each dimension indicates each pair of
canonical variates. Each input data sets was normalized to
have zero means in the column and unit variance to cor-
rect the scale differences from different datasets.

Independent correlation test
To test the performance of exploring the maximum cor-
relation between two data sets using different methods,
we divided the subjects into two groups: the training
group and independent testing group. The training
group was used to obtain the optimal parameters for the
models while the testing group was used for testing the
correlation between the two independent data sets. In
the gliomas data, 100 subjects from 144 subjects were
used for training and the rest 44 were used for testing.
In NCI60 data set, 60 subjects were divided into 40
training subjects and 20 testing subjects. To alleviate the
effect of subject difference, we permuted the subjects 30
times. The box-plot of the results is shown in Figure 5.
The median correlation ± standard deviation obtained in
gliomas data (Figure 5(a)) and NCI60 data (Figure 5(c))
by the CCA-sparse group (0.5829 ± 0.0392 in the gli-
omas data and 0.9765 ± 0.0075 in NCI60), CCA-l1
(0.5527 ± 0.0454 and 0.9767 ± 0.0079) and CCA-group
(0.3495 ± 0.0464 and 0.8999 ± 0.0297) are displayed re-
spectively. The median correlations by the CCA-sparse
group and CCA-l1 are higher than those of CCA-group



Figure 5 The correlations and the features obtained by three sCCA methods based on 30 permutations of subjects. (a). The comparison
of estimated correlations in glioma data; (b). The comparison of number of selected feature in glioma data; (c). The correlation comparison in
NCI60 data; and (d) the feature selection comparison in NCI60 data (follow the same as (a) and (b)).
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in both gliomas and NCI60 data. In addition, the stand-
ard deviations of the correlations by the CCA-group
model in both data sets are larger than those of the
other two methods, which tends to select the whole
group of features including some unexpected ones as
shown in Figure 5(b, d). In the gliomas data (Figure 5(b)),
the CCA-sparse group selects less number of features and
obtain a larger correlation with the smallest standard devi-
ation. The CCA-group finds the largest amount of features
but obtains the smallest estimation of correlations. The
CCA-l1 can get the less number of features with better es-
timate of the correlation, but is still a little less than that
of CCA-sparse group. In the NCI60 data (Figure 5(d)), the
CCA-l1 identified the similar correlation value to that of
CCA-sparse group but had a higher standard deviation
and selected more features. All of these figures indicate
that the detection of correlations and features by the
CCA-sparse group method has the lowest sensitivity to
the samples. Compared to other methods, the CCA-sparse
group can extract less number of features to achieve a
higher correlation.
To further discuss the stability of the selected features

during the permutation, we counted the number of fea-
tures selected in 30 permutations by three methods and
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picked the features with the frequency of appearance
greater than 20. Figure 6 shows the Venn diagrams of
the selected features in u by three methods. It can be
seen that, in both data sets, the features selected by
CCA-l1 are almost included in those by other two
methods, and overlap mostly with CCA-sparse group
method. In addition, there are overlapped features (10
and 14 features) selected between the CCA-sparse group
and CCA-group methods. Compared to CCA-l1, CCA-
sparse group selects less features in u as shown in
(Figure 5(b,d)); however, more features are selected with
high frequency, which indicates higher stability of the
method.

Interpretation of the canonical variate pairs
Based on the independent test results, we use those opti-
mal parameters as candidates for the cross validation to
perform the correlation analysis on the complete subjects
(including both training and testing samples) and analyze
the biological significance of the canonical variates.

First and other canonical variate pairs
Table 1 shows three pairs of canonical variates for each
data set by three sCCA methods. In both data sets, the
correlations by the CCA-group are smaller than those of
CCA-sparse group and CCA-l1. This agrees with the re-
sults in the independent analysis. In the gliomas data,
the maximum correlation was, surprisingly obtained on
the second dimension for all the methods. In the NCI60
data, all the correlations are very high in three dimen-
sions, especially greater than 0.93 by the CCA-sparse
group and CCA-l1 methods, which is consistent with
the results in [2]. We can see that except the third ca-
nonical variate in NCI60 data, the CCA-sparse group
can mostly identify the highest correlation with the least
number of features, which confirms the analysis results
in Figure 5. The maximum correlation is obtained on
the first dimension for CCA-sparse group and the
Figure 6 A comparison of the number of selected features with high
sCCA methods in the gliomas data (a) and the NCI60 data (b).
second pair for CCA-group and CCA-l1 methods. This
trend of non-decreasing correlations in both data sets is
not expected in the conventional CCA model, since it
aims to extract the canonical variate with the maximum
correlation at each step. This point was also discussed in
[2] due to the optimization criterion and regularization
term used in sCCA models. It can be found that the per-
mutation of the correlation is in accord with the permu-
tation of the dimensions.
To test the significance of the correlation estimation,

we kept the selected features unchanged while permut-
ing the subjects 10000 times in one data set to approxi-
mate the null distribution of the correlation with these
selected features as in [2]. The p value was measured by
the proportion of the correlations larger than the ori-
ginal correlation. We gave the p value of the correlation
estimation using the first pair of canonical variates in
Table 1. Almost all of the methods can derive the correl-
ation based on the dimension with very low p values,
which demonstrates the significance of the sparse CCA
methods and the selected optimal parameters.

Comparison of selected features
As described in the algorithm, when multiple pairs of ca-
nonical variate exist, we derive the next pair of loading
vectors which are assumed to be orthogonal to those
previously identified ones. Therefore, there is a small de-
gree of overlap of the selected features between two
loading vectors (i.e. uj and uj+1 or vj and vj+1), which in-
dicates that those selected features at each loading vec-
tor may carry different level of uncorrelated information.
This orthogonal property could be kept in the sparse
CCA methods but is not often the case; see Table 2. We
calculated three pairs of loading vectors for each method
and compared the features, which are overlapping be-
tween any two pairs of loading vectors. There are few
features overlapped between the CCA-sparse group and
CCA-l1 in almost all dimensions. Only 0 to 7 features
frequency 20 out of 30 from the first canonical variate by three



Table 1 Correlations and the number of features from three pairs of loading vectors

Data
set

Model dim1 dim2 dim3 p(dim1)

corr. No.(u) No.(v) corr. No. No. corr. No. No.

Glioma CCA-group 0.3036 103 113 0.3675 153 93 0.3501 110 104 0.0005

CCA-l1 0.5362 72 78 0.6884 83 76 0.5743 78 82 <0.0001

CCA-sparse group 0.5903 53 47 0.7023 41 61 0.5728 67 60 <0.0001

NCI60 CCA-group 0.8425 189 184 0.8943 100 125 0.8310 125 115 <0.0001

CCA-l1 0.9645 100 171 0.9527 67 120 0.9495 131 88 <0.0001

CCA-sparse group 0.9649 45 71 0.9633 66 109 0.9355 97 108 <0.0001
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are overlapping in the gliomas data and 0 to 8 features
are overlapping in NCI60 data. Especially, there are no
features overlapping across the three dimensions of u
for CCA-sparse group in both data sets. However, for
CCA-group, there are a large number of overlapping fea-
tures. Since the feature selection with CCA-group is
based on the group level, the overlapping of the individ-
ual features cannot be controlled.

Discussion
Biological interpretation of NCI60 data analysis
We give some discussions on graphical representations
to study the discriminating ability of the selected fea-
tures. The biological interpretations are provided by
pathway analysis. Le Gao et al. performed the hierarch-
ical clustering analysis of Ross and Staunton data sets in
[2]. A better clustering of the cell lines can be obtained
based on their tissue of origin with Ross data set. The 60
cell lines in Ross data set were mainly divided into three
groups by their correlations: 1) cell lines with epithelia
characteristics (mainly LE and CO, plus BR_MCF7 and
BR_T47D); 2) cell lines with mesenchymal characteris-
tics(mainly RE, CNS,LU and OV); and 3) ME cell lines
(plus BR_MDAMB435 and BR_MDAN).
Based on these three groups of cell lines, we used

graphical representation to evaluate whether the canon-
ical variates and the corresponding identified features
can represent different tumor cell lines. We computed
Table 2 Comparison of the number of the commonly selected

Dataset Glioma

Model CCA-group CCA-l1 CCA-sparse gr

[u]dim1-2 34 4 0

[u]dim1-3 0 5 0

[u]dim2-3 65 0 0

[u]dim 1-2-3 0 0 0

[v]dim1-2 0 1 2

[v]dim1-3 77 2 0

[v]dim2-3 0 6 7

[v]dim 1-2-3 0 0 0
three pairs of canonical variate by the CCA-sparse group
method and drew the scatter plot of the samples using
the first v.s. the second canonical variate (Figure 7(a))
and the first v.s. the third canonical variate (Figure 7(b)).
Here each cell line was represented by three canonical
variates. Each canonical variate was taken as one dimen-
sion of the cell line. It can be seen that the genes se-
lected in the first dimension could help discriminate cell
lines with epithelia from cells lines with mesenchymal
characteristics; the features in the second dimension
could discriminate themelanoma cell lines from the
other cell lines and the features in the third dimension
are opt to separate the CO cell lines from the LE cell
lines. The similar representations can be derived for
CCA-group and CCA-l1 method (not shown here). We
found that there was a permutation for the dimension 1
and dimension 2 in the CCA-group method, which is
consistent with the permutation of correlation in dimen-
sion 1 and 2 as shown in Table 2.

Pathway analysis
To further evaluate the biological significance of the fea-
tures as well as the genes selected by the CCA-sparse
group method, we used the Ingenuity Pathway Analysis
(IPA: Ingenuity Pathways Analysis, http://www.ingenuity.
com) to analyze those significant canonical pathways for
discriminating different cell lines as shown in Figure 8.
The genes in three dimensions by the CCA-sparse group
features in the three pairs of loading vectors

NCI60

oup CCA-group CCA-l1 CCA- sparse group

0 0 0

29 4 0

0 4 0

0 0 0

27 3 1

54 6 8

0 5 1

0 0 0

http://www.ingenuity.com
http://www.ingenuity.com


Figure 7 NCI60 data: graphical representation of the samples with the canonical variate (u1,u2) (a) and (u1,u3) (b). BR = Breast,
CNS = Central Nervous System, CO = Colon, LE = Leukemia, ME = Melanoma, LU = Lung, OV = Ovarian, PR = Prostate, RE = Renal.
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were taken as input in IPA software to identify the corre-
sponding pathways.
In the first dimension, the integrin signaling, paxillin sig-

naling, agrin interactions at neuromuscular junction and
actin cytoskeleton signaling pathways were identified.
Those pathways play essential roles in some important
biological processes including cellular movement, cell
differentiation and cellular interactions with the cell-
extracellular matrix [39-41]. Some genes, i.e. integrins and
actinin and vinculin are over-expressed in RE and CNS
cell lines, compared to LE and CO cell lines. The identi-
fied leukocyte extravasation signaling is known to be re-
sponsible for the leukocyte migration and might be related
to the metastasis in the leukemia cell lines (LE) [42].
Several genes (i.e. ITGB5 and PTK2) in the glioma inva-
siveness signaling are over-expressed for the invasion and
migration of glioma cells in the CNS cell lines [43]. In the
second dimension, some genes including EGFR,MAPK9,
MMP14 and CDKN2A from the Epithelial cell signaling
in helicobacter pylori infection, p53 signaling, GnRH sig-
naling and metabolic pathways are over-expressed in mel-
anoma cells and involve with cellular growth, migration
and metastasis [44-46]. In the third dimension, the tight
junction signaling pathway (i.e. CLDN4, ACTN1,TJP1)
was identified, which is consistent with epithelial charac-
teristics of CO cell lines [47]. Leukocyte transendothelial
migration pathway was also identified to separate LE cell
lines from CO cell lines.



Figure 8 Pathway analysis of genes selected with the first dimension (variate) of CCA-sparse group model.
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Although group sparse CCA can handle high number
of variables with small sample size, the larger sample
size can improve the results. From the simulation result,
we can see the higher false positive and lower true posi-
tive when the sample size is too small.
In simulation, the group effect for relevant variables

within the group is simulated with autoregressive correl-
ation by ρ|i − j|. We chose the ρ value as 0.5 as suggested
by [20]. The higher ρ value indicates higher correlation
between variables correlation. The group effect for rele-
vant variables between two groups is drawn from Unif
(0.2,0.4). In group sparse CCA model, the between
group correlation is expected to be low. If there is a
strong correlation between two groups, similar to the
lasso, it will result in the multi-collinearity issue. The
correlation between two data sets may not be affected
but the power of detecting correlated variables will de-
crease. In this case, we suggest to combine two highly
correlated groups into one group or to incorporate the
between group correlation information into the model.
In group sparse CCA model, the groups are assumed

to be non-overlapping. This criterion can be met when
grouping gene expressions by the hierarchical model or
SNPs by their gene annotations. However, if we group
gene set or SNPs by their pathway index, the group
overlapping may exist. In this case, we can modify group
sparse CCA by using the algorithm of Chen et al.’s or
expand the overlapped genes (or SNPs) into both groups
as discussed in [48].

Conclusions
In this paper, we propose a group sparse CCA model to
explore the correlation between two different types of
genomic data. We solve the model with an efficient
algorithm based on regularized SVD and block cyclic
coordinate decent approach. The general model we
propose can include CCA-l1, CCA-elastic net and
CCA-group models as special examples. Our algorithm
for solving CCA-l1 is very similar to that in [7] and we
show that the algorithms for CCA-l1 and CCA-elastic
net will converge to the same solution under a particu-
lar condition. We compare the performance of group
sparse CCA method with CCA-l1 and CCA-group
methods on simulation data under different conditions
such as sample size, group size and the measurement of
correlations. Undoubtedly, our CCA-sparse group me-
thod outperforms the existing ones by identifying fea-
tures with more true positives while controlling the
total discordance at a low level. The real data analysis
on human gliomas and NCI60 data sets shows that the
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CCA-sparse group can explore significant correlations
with smaller variance and the selected features shows
higher stability. The graphical display and pathway ana-
lysis of NCI60 data indicates the selected features contain
important information of different tumors. For these rea-
sons, we believe that the CCA-sparse group method is an
interesting and valuable approach for feature selection and
correlation analysis.

Methods
In this section, we first introduce sparse CCA model,
based on which the group sparse model is presented.
Then the numerical algorithms using the block cyclic
coordinate descent to solve the model are described.
Finally, the model and algorithm are extended to include
the CCA-group model, CCA-l1 and CCA-elastic net
models.

Sparse CCA model
We denote the two sets of data with n samples by X and
Y, where X has p features and Y has q features, and usu-
ally p, q> > n. We assume that the columns of X and Y
have been standardized to have mean zero and standard
deviation one. The variance matrix of X and Y is de-
noted by ∑XX and ∑YY respectively, and the covariance
between X and Y is denoted by ∑XY or ∑YX. The CCA
method aims to find two loading vectors or projections
α, β, the linear combinations of variables in X and Y, to
maximize the correlation between αtX and βtY as shown
in (1):

max
α;β

αt
X

XY
β s:t: αt

X
XX

α ¼ 1;βt
X

YY
β ¼ 1

ð1Þ
The scales of α and β are set one since they have no

effects on the correlation. This problem can be solved by
the SVD of matrix K

K ¼
X−1=2

XX

X
XY

X−1=2

YY
¼
X

idiuivi ð2Þ

where di is the positive square root of the i-th eigen-value
of KtK or KKt and sorted as d2

1≥d
2
2⋯≥d2

r≥0 (r = rank
(XtY)). ui, vi are the corresponding i-th eigenvectors. The
loading vectors can be derived by

αi ¼
X−1=2

XX
ui; andβi ¼

X−1=2

YY
vi ð3Þ

the matrices
X−1=2

XX
and

X−1=2

YY
in (2) might be ill-

conditioned because of the high dimensionality of data;
conventional CCA is not working effectively for genomic
data which have a large number of features but small
number of samples. Previous work [7,17] has found that
simply treating the covariance matrices as diagonal can do
a better work. We adopt Witten et al.’s [17] method by re-
placing the covariance matrices with an identity matrix I
and hence penalize the vectors u, v instead of the loading
vectors α, β. By imposing sparse penalties on vectors u, v,
we have the following sparse CCA optimization problem:

min
u;v

K−duvtk k2FþΨ uð Þ þΦ vð Þ s:t: uk k22¼ 1; vk k22¼ 1

ð4Þ
Where Ψ (u) and Ф (v) denote the penalized function

on u and v respectively. Since (4) is not convex, by Wit-
ten et al.’s method, we relax it to the following
optimization problem:

min
u;v

K−duvtk k2FþΨ uð Þ þΦ vð Þ s:t: uk k22≤1; vk k22≤1
ð5Þ

where uk k22¼ 1; vk k22¼ 1 should be satisfied when the so-
lution is obtained (see optimization algorithms in Method).

Group sparse CCA
It is natural to consider a group of features in concert to
achieve higher power of detecting correlations in some
applications including biomarker selection. Inspired by
previous work described in introduction, we modify (5)
to introduce the sparse group lasso penalty into the
CCA model. For simplicity, we will only consider non-
overlapping groups in this paper. Assume that features
in X and Y are partitioned into L and H disjoint groups:
G1

X;G
2
X;…;GL

X and G1
Y;G

2
Y;…;GH

Y respectively. The fol-
lowing group sparse CCA model is proposed to consider
the group structure in the data:

minu;v K−duvtk k2Fþλ1 1−τ1ð Þ uk kG þ λ1 τ1ð Þ uk k1
þλ2 1−τ2ð Þ vk kG þ λ2 τ2ð Þ vk k1 s:t: uk k22≤1; vk k22≤1

ð6Þ

where uk kG ¼
XL
l¼1

ωl ulk k2; vk kG ¼
XH
h¼1

μh vhk k2 are the

group penalties to account for the joint effect of vari-
ables within the same group. ul and vh are the sub-
vectors of u and v corresponding to the group l and h
respectively. τ1 and τ2 are parameters to control the bal-
ance between group sparsity and individual feature
sparsity. λ1 and λ2 are the tuning parameters to control
the sparsity of the groups. ωl and μh are the weights to
adjust the group size difference. We set them to be si

1/2 ,
where si is the i-th group size.
The group penalty uses the non-diffentialbility of ‖ul‖2

at ul = 0 to set the coefficients of the group to be exact 0
and then the entire group of features will be dropped to
achieve the group sparse. Similarly, for the l-1 norm
penalty on the individual features, it also results in the
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sparsity of individual feature coefficients. Therefore,
group sparse CCA method can select the features group-
by-group as well as individual features within a group at
the same time.
Because of these penalizations, the solution of group

sparse CCA will use the following procedures: search for
the first projection pair with a small subset of non-zeros
groups of features through maximizing the correlation;
then find the second sparse projection pair that maxi-
mizes the correlation but is irrelevant to the first pair.
This process is not stopped until the r-th projection pair
is gained.
In a particular case, when τ1 = τ2 = 0, (6) is reduced to

the CCA-group method with only group lasso penalty as

Ψ uð Þ ¼ λ1
XL
l¼1

ωl ulk k2;Φ vð Þ ¼ λ2
XH
h¼1

μh vhk k2 ð7Þ

As discussed above, without sparse penalty on individual
features, CCA-group model can select features group by
group and all features within a group will be retained.

Optimization algorithms
The cyclic coordinate decent algorithm is efficient to
solve generalized linear regression model [13,26,49], es-
pecially when handling large systems of equations. It
finds one parameter at a time by fixing the other param-
eters. Similarly, a block cyclic coordinate decent algo-
rithm is developed to estimate a block of parameters
each time while fixing the other blocks of parameters.
Taking the estimates of current step as the start of the
next step in the algorithm, called ‘warm start’ makes the
method to be remarkably efficient. Therefore, in this
paper we use the block cyclic coordinate decent to solve
the optimization problem in group sparse CCA model.
For simplicity, we decouple the problem in (5) into

two simple biconvex optimizations: 1) when v is fixed,
(5) is a classical convex optimization with respect to u;
2) when u is fixed, it is the optimization with respect to
v. The initial value of u and v can be derived from the
classical CCA decomposition. Therefore, the problem in
(5) can be solved by the following algorithm:

1) Initialize u and v to have unit l-2 norm;
2) Solve u, v using the following iterations until it

converges:

a) Fix v = vj − 1,

uj← argminu;d K−duvtk k2FþΨ uð Þ s:t: uk k22≤1
b) Fix u = uj,

vj← argminv;d K−duvtk k2FþΦ vð Þ s:t: vk k22≤1
c) dj← tr(Kvj(uj)t) or dj← tr(Ktuj(vj)t).

3) Update the remaining matrix K←K − djuj(vj)t; go
to Step 1) to obtain the next pair of loading vectors
(uj+1,v j+1).
For Step a), the objective function can be decomposed as:

K−duvtk k2F¼ tr K−duvtð Þ K−duvtð Þt
� �

¼ tr KK tð Þ−2� d � tr Kvutð Þ þ d2 ð8Þ

Similar decomposition can be done in Step b). Since
the matrix KK t is known, d can be derived from tr(Kvj

(uj)t) in a) or tr(Ktuj(vj)t) in b). We translate the equality
condition imposed on Step a) and b) into the Lagrange
form by multiplying it with a Lagrange factor Δ such

that uk k22¼ 1 and vk k22¼ 1 is satisfied. Therefore, a)
(similarly for b)) can be changed as:

Fix v ¼ vj−1;

uj← argmin
u

−tr Kvutð Þ þΨ uð Þ þ Δ uk k22−1
� � ð9Þ

For the group sparse CCA model, the Lagrange form
in (9) becomes:

min
u

−tr Kvutð Þ þ λ1 1−τ1ð Þ
XL
l¼1

ωl ulk k2
þ λ1 τ1ð Þ uk k1 þ Δ uk k22−1

� � ð10Þ

Where Δ is the parameter to make uk k22¼
XL
l¼1

u2
l ¼ 1.

A block cyclic coordinate decent algorithm is then
used to solve (10). For group k = 1,2,…,L, each group will
be inspected first. If a group is selected, we will select
each variable in the group by the coordinate decent
algorithm with the soft-threshold. Since the optimization
is convex, the optimal solution of (10) can be deter-
mined by the sub-gradient equation,

Kvð Þ kð Þ−2Δû kð Þ ¼ λ1 1−τ1ð Þωkξ þ λ1 τ1ð ÞΓ;

Γj ¼
sign û kð Þ

j

� �
; if û kð Þ

j ≠0

∈ Γjj Γj
�� ��≤1	 


; if û kð Þ
j ¼ 0

; j ¼ 1; 2;…; lk and

8<
:

ξ ¼
û kð Þ

û kð Þk k2
; if û kð Þ≠0

∈ ξ ξk k2≤1g; if û kð Þ ¼ 0
��	

8<
:

ð11Þ

We can see that the coefficient vector of the k-th
group û kð Þ ¼ 0 will be satisfied if

S Kvð Þ kð Þ; λ1τ1
� ����

���
2
≤λ1 1−τ1ð Þωk ð12Þ

Otherwise û kð Þ can be updated by



û kð Þ←
Sg kð Þ Kvð Þ

Δ
; Sg kð Þ Kvð Þ ¼ 1

2
S Kvð Þ kð Þ; λ1τ1
� �

−λ1 1−τ1ð Þωk

S Kvð Þ kð Þ; λ1τ1
� �

S Kvð Þ kð Þ; λ1τ1
� ����

���
2

2
64

3
75 ð13Þ
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where Δ = ‖[Sg1(Kv), Sg2(Kv),…, Sgk(Kv)]‖2 to make

ûk k22¼ 1, and S(·) is the soft-threshold function. A de-
tailed description of the algorithm for solving group
lasso CCA is shown in Additional file 2 A.
For the CCA-group model, i.e., a special case of group

sparse CCA when τ = 0, the soft-threshold operator in
(12) could be reduced to the following simple form:

S Kvð Þ kð Þ; λ1τ1
� ����

���
2
¼ Kvð Þ kð Þ

���
���
2

ð14Þ

Substituting (14) into (12), we can get the solution of
CCA-group lasso model.

Extension to the other models
From the general sparse CCA formula (5), we can derive
the CCA-l1 and CCA-elastic net models as special
examples.
The CCA-l1 is obtained when using the l-1 norm as

the penalty,

Ψ uð Þ ¼ λ1 uk k1; Φ vð Þ ¼ λ2 vk k1 ð15Þ
The CCA-elastic net model is obtained by using the
elastic net penalization,

Ψ uð Þ ¼ λ1 1−τ1ð Þ uk k22þλ1 τ1ð Þ uk k1;
Φ vð Þ ¼ λ2 1−τ2ð Þ vk k22þλ2 τ2ð Þ vk k1

ð16Þ

where τ1, τ2 are the parameters to control the trade-off
between l-2 norm and l-1 norm penalized terms. The
cyclic coordinate decent algorithm can also be applied
to solve (15) and (16) and the following fact holds:

The equivalence of the solution
Let u�

l1; v
�
l1

� �
, u�

eNet ; v
�
eNet

� �
be the optimal loading vec-

tors by the CCA with the l-1 norm and elastic net penal-
ization respectively. When the regularization parameters
satisfy: λ�eNetτ1 ¼ λ�l1 , with the same iteration procedure,
the solutions for the loading vectors will be equal, i.e.,
u�
l1 ¼ u�

eNet ; v
�
l1 ¼ v�eNet .

The discussion of this relation is given in Additional file
2 B. Roughly speaking, if substituting (14) and (15) into
(9), we will see that the condition on u with l-1 norm pen-
alty has the similar estimate as that with the elastic net. In
addition, under the l-1 norm penalization, (11) is very
similar to the algorithm in Parkhomenko et al. [7]. Both of
them use the soft-thresholding to obtain the sparse solu-
tion while the only difference is in the use of the tuning
parameter. Our CCA-l1 is also similar to the PMD in [16],
where the regularized SVD was used to solve sparse PCA
and then extended to solve CCA.

Tuning parameters selection
The group sparse CCA model uses parameters (λ1, λ2, τ1,
τ2) and soft-thresholding in the algorithm to obtain the
non-zero variables and the number of groups. For the
sake of simplicity, we fix the sum of two penalties as λ1
and λ2 and use τ1, τ2 as a balance between group penalty
and single variable penalty respectively. The k-fold
cross-validation was recommended by Waaijenborg
et al. [37] and Parkhomenko et al. [7] for parameter se-
lection. We choose the parameters that can minimize
the mean difference between the canonical correlations
obtained with the training and testing subsets as (17).

Δcorr ¼ 1
k

Xk
i¼1

cor X−iu
−i;Y −iv

−i� �
−cor X iu

−i;Y iv
−i� ��� ��

ð17Þ

This criterion determines the number of variables
which tend to have the same correlations in both train-
ing and testing subsets.

Additional files

Additional file 1: Contains the results of ROC curves drawn by changing
the penalty parameter values under different simulation studies.

Additional file 2: Contains the algorithm for solving group sparse
CCA model and the proof of the equivalence of the solutions by
CCA-l1 and CCA-elastic net methods.
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