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Abstract

Background: Different genome annotation services have been developed in recent years and widely used.
However, the functional annotation results from different services are often not the same and a scheme to obtain
consensus functional annotations by integrating different results is in demand.

Results: This article presents a semi-automated scheme that is capable of comparing functional annotations from
different sources and consequently obtaining a consensus genome functional annotation result. In this study, we used
four automated annotation services to annotate a newly sequenced genome--Arcobacter butzleri ED-1. Our scheme is
divided into annotation comparison and annotation determination sections. In the functional annotation comparison
section, we employed gene synonym lists to tackle term difference problems. Multiple techniques from information
retrieval were used to preprocess the functional annotations. Based on the functional annotation comparison results, we
designed a decision tree to obtain a consensus functional annotation result. Experimental results show that our
approach can greatly reduce the workload of manual comparison by automatically comparing 87% of the functional
annotations. In addition, it automatically determined 87% of the functional annotations, leaving only 13% of the genes
for manual curation. We applied this approach across six phylogenetically different genomes in order to assess the
performance consistency. The results showed that our scheme is able to automatically perform, on average, 73% and
86% of the annotation comparison and determination tasks, respectively.

Conclusions: We propose a semi-automatic and effective scheme to compare and determine genome functional
annotations. It greatly reduces the manual work required in genome functional annotation. As this scheme does not
require any specific biological knowledge, it is readily applicable for genome annotation comparison and genome
re-annotation projects.

Keywords: Genome annotation comparison, Genome annotation determination, Automated annotation services
Background
Currently, researchers can use parallel sequencing tech-
nologies to obtain whole genome sequences with rela-
tively low cost and in a short time [1,2]. Determination
of the gene functions in a genome becomes a bottleneck
for further functional analysis. To resolve this issue,
several projects have been designed to provide auto-
mated genome annotation services [1,3-6], such as
IMG/ER (Integrated Microbial Genome Expert Review
system) from the Joint Genome Institute [4], the National
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Microbial Pathogen Data Resource’s RAST (Rapid An-
notation using Subsystems Technology) server [5],
JCVI (J. Craig Venter Institute) annotation service [7] and
University of Maryland’s IGS (Institute for Genome Sci-
ences) annotation engine [8]. These services can greatly re-
duce the cost and human efforts needed for annotating
genome sequences [3,9,10]. However, they often generate
different results from different annotation methods and it
is difficult to compare them and decide which one is more
suitable [10,11]. Genome annotation may refer to struc-
tural annotation and functional annotation. In this paper
we focused on functional annotation only. There are two
types of functional annotation differences: term difference
(using different terms to describe the same biological
function) and inconsistent annotation (different biological
function). The existence of a large number of term
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differences makes it very difficult to automatically com-
pare different genome annotation results by program-
ming. Researchers attempted to solve this issue by
introducing controlled vocabularies, such as Gene
Ontology (GO) [12]. However, only one out of the four
annotation services includes GO terms, making it
difficult to standardise terms by GO IDs. In addition,
EC and gene symbol are other standardisation ap-
proaches to deal with term differences. In this study,
we constructed a baseline method using database ID
comparison (EC and gene symbol) and annotation text
matching. We found that it can compare only 45% of
the annotations for Arcobacter butzleri ED-1 (Arc-ED).
Therefore, it is desirable to design a system capable of
automatically standardising term differences at a high
percentage rate. For inconsistent annotations, we need
to decide which annotation is more likely to be correct
[6,7,9]. The best approach is through experimental evi-
dence; however it is difficult to gain experimental evi-
dence for all inconsistent annotations in a newly
sequenced genome. In this paper, we adopted a com-
promising approach by using majority supported anno-
tations as the consensus annotations.
Some attempts have been made to solve the issue of an-

notation difference. Takeya et al. proposed a prototypical
scheme to compare different annotations and decide on
consensus annotations for a mouse genome annotation
project [13]. This scheme aims to eliminate the uninforma-
tive annotations (annotations without indication of clear
biological functions) and compare annotations with the se-
quence similarity search results through several steps.
However, a significant amount of human effort is required
to reconcile term differences and choose the accurate an-
notations. As a departure from prior research, we propose
a semi-automated approach that first compares annota-
tions and then obtains consensus annotations based on the
comparison results. First, we employed information re-
trieval techniques and introduced gene synonym lists to
standardise the term differences. Then we compared the
gene annotations in pairs. Lastly, based on the annota-
tion comparison results, we designed an annotation
decision approach, which employs majority voting to
obtain a consensus annotation. The experimental re-
sults show that our scheme is able to compare and
determine 87% and 87% of the annotations, respect-
ively. Moreover, when we applied our scheme on six
phylogenetically different genomes, it achieved 73% of
the annotation comparison rate and 86% of the anno-
tation determination rate.

Methods
Annotation comparison
In this study, we used the genome of Arcobacter butzleri
ED-1 (Arc-ED), a newly sequenced Epsilonproteobacterium,
to demonstrate our method [14]. The Arc-ED genome se-
quence was obtained from GenBank with accession num-
ber AP012047. Four automated annotation services were
employed to obtain the annotations. Then we merged the
structural annotation results as follows:

1) When the structural annotation results have the same
stop site, we consider them to be the same genes;

2) When the length of a gene is less than 150bp, we
remove it.

In this way, we obtained 2178 coding genes totally.
The genome annotations from the four automated anno-
tation services are used in the following sections for gen-
ome annotation comparison and determination tasks.
It was reported that there are a great amount of

term differences in automated annotation results [10].
We conducted a baseline comparison to demonstrate
the prevalence of differing annotations. The four au-
tomated genome annotation results are compared in
pairs, merely by database IDs and identical text matching
of the gene function. We extracted database IDs and
lower-cased the annotations. Then we compared the anno-
tations, using the following rules:

1) If the database IDs (ECs, gene symbols, Pfam IDs,
TIGRfam IDs, COG IDs) are the same, then we
considered them to be the same annotations. Here,
identical database IDs denote that at least one type
of the database IDs is exactly the same, and this rule
applies to the following comparison as well;

2) If annotation texts or terms (Pfam terms, TIGRfam
terms, COG terms) are identical, then we
considered them to be the same annotations;

3) If one annotation is an uninformative annotation
(such as “hypothetical protein” and “conserved
hypothetical protein”) and the other annotation has
functional annotation, then we considered them as
different annotations;

4) The matching relationship can be transferred. For
example, if IMG has the same annotation as both
IGS and JCVI, then annotations from IGS and JCVI
are considered to be the same.

It is shown that the baseline procedure can deal with
only 45% of the annotations automatically. To increase
the automated comparison rate, we discovered that there
are three types of term differences, they are:

1) Text variants (variants coming from different word
forms or stop words);

2) Synonyms and abbreviations;
3) Functional annotation variants (variants originating

from orthologous annotations in different organisms).
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In the following paragraphs, we introduce the ap-
proaches to handle term differences and the annotation
comparison scheme in detail. The datasets and Python
code used to carry out the following procedures can be
seen in the supplementary files (Additional file 1: code
and datasets.zip). Here we take the comparison result
between IGS and RAST to illustrate the entire compari-
son scheme, as shown in Figure 1. The same procedure
applies to the pair-wise comparison between any two of
the four annotations as well. In this case, we performed
the comparisons six times. We ran the baseline compari-
son and the result showed that it is able to deal with
39% of the annotations between IGS and RAST.

Text variant handling
In this section, we applied techniques developed in the
domain of information retrieval to deal with text vari-
ants. The first example, from Table 1, shows two an-
notations, using “kinases”/“kinase”, “proteins”/“protein”,
respectively. They indicate the same biological function
Figure 1 Flowchart of the gene annotation comparison procedure. Th
and the figures in each box denote the annotation comparison number an
but use different texts. For this condition, we used text
pre-processing techniques from information retrieval to
convert gene annotations into citation word lists. Gene
annotations are processed by tokenization, stop word re-
moval and lemmatization. The Python package ‘NLTK’ is
used to perform these jobs [15].

Tokenization
Tokenization aims to chop annotations into words and
discard certain characters, such as punctuation. For ex-
ample, tokenization turns the annotation “DNA polymer-
ase III, beta subunit” into a list with elements “DNA”,
“polymerase”, “III”, “beta” and “subunit”. It is observed
that changing word order has little effect on biological
function expression, therefore unordered annotation
word lists are used in the following analyses.

Stop word removal
Stop words are words with little meaning and discrim-
inative power in documents. In information retrieval
e boxes represent the processes used to compare the annotations
d rate.



Table 1 Examples of three types of term difference

Term difference Annotation 1 Annotation 2

Text variant cAMP-binding proteins - catabolite gene activator and
regulatory subunit of cAMP-dependent protein kinases

putative cAMP-binding protein - catabolite protein activator
and regulatory subunit of cAMP-dependent protein kinase

Synonym and abbreviation RIP metalloprotease Membrane-associated zinc metalloprotease

Functional expression variant phosphoribosyl-ATP pyrophosphatase/
phosphoribosyl-AMP cyclohydrolase

phosphoribosyl-ATP diphosphatase
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research, there is a frequently used stop word list which
contains common words, such as “the” and “an”. We
found that the common words in gene annotations differ
from these stop words. For example, “putative” in “puta-
tive membrane protein” indicates little biological func-
tion, which ought to be removed for comparison. We
constructed a biological stop word list for this study,
which is available in the supplementary files (Additional
file 2: stop word list.pdf).

Lemmatization
It is known that words have inflected forms in order to
carry out different roles in annotations. For instance,
“proteins” and “protein” derive from the same lemma but
are textually different. In this study, we used WordNet to
obtain the lemmas of the words [16].

Annotation comparison
In the end, we used the following criteria to compare
the annotations in pairs:

1. When only one annotation is an uninformative
annotation (annotations without indication of clear
biological functions, such as “clustering with…” and
“conserved domain protein”), the relationship
between the two annotations is considered as “one
hypothetical protein and one clear function”,

2. We transformed the annotations into word lists and
when both of the annotations have the same word
list, we considered them to be the same annotation.

The results from Figure 1 show that the above proced-
ure can deal with 1% and 11% of the annotations for the
comparison between IGS and RAST.

Synonym and abbreviation handling
Synonyms and abbreviations are related to the differ-
ences deriving from the usage of different descrip-
tions of the same database entry. Genes with same
biological functions may have different gene names,
for example, “RIP metalloprotease”, “Membrane-associ-
ated zinc metalloprotease” and “rseP” come from the
same database ID and they denote the same function.
In addition, the Pfam database has Pfam term, Pfam ID
and Pfam abbreviation; for instance, “PALP”, “pfam00291”
and “Pyridoxal-phosphate dependent enzyme” come from
the same Pfam database entry and indicate the same Pfam
domain information. However, these annotations are text-
ually different, which stop computers from treating them
as the same annotation. In this case, we employed the gene
symbol data [17] from the NCBI database and Pfam data
from the Pfam database [18] as synonym lists to assist
annotation comparison. It is known that a protein may
have multiple domains to carry out biological functions.
We only consider annotations with entirely identical do-
main information as the same annotations, e.g. IMG an-
notated gene 15 with two Pfam domains pfam00126 and
pfam03466, therefore, if RAST has both of the domains
then they are considered to be the same annotation. This
procedure can improve the automated comparison rate
between IGS and RAST by 16%, which brings it to 67%.

Functional annotation variant handling
Since different annotation services use variant reference
genome databases and gene annotation algorithms to as-
sign protein functions, we may be presented with variant
annotations, which are the best hits, coming from different
organisms. It is believed that orthologous gene annotations
(OGA) are derived from the same ancestor and have simi-
lar functions. However, when we check the annotation re-
sults, it is difficult to figure out where the annotations
come from and assert whether they refer to the same bio-
logical functions or not. For example, “phosphoribosyl-ATP
pyrophosphatase/phosphoribosyl-AMP cyclohydrolase” and
“phosphoribosyl-ATP diphosphatase” come from the same
OGAs and are assumed to carry out similar functions. A
holistic collection of OGAs can help us to link annota-
tions from different organisms together. In the following
study, we used OMA (the Orthologous MAtrix project),
a comprehensive collection of OGAs, as a bridge to
compare different annotations [19]. OMA first launches
all-against-all alignments between two genomes using the
Smith-Waterman algorithm, then the “symmetrical best
hits” are considered as orthologous genes [20]. The data
from OMA are pair-wise Bidirectional Best Hits (BBHs).
In our study, we transformed them into an OGA collection
by grouping all of the annotations mapped to the investi-
gated gene. We downloaded OMA data and extracted
the bacteria and archaea gene annotations for the follow-
ing studies.
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Orthologue identification
In order to use OGAs from OMA to compare the annota-
tions, we should figure out the corresponding OGAs for a
specific Arc-ED gene. In our study, we used A. butzleri
strain RM4018 (Abu), the phylogenetically closest organ-
ism to Arc-ED, to map the OGAs to Arc-ED genes. The
linkage between Arc-ED and Abu gene annotations is built
up using Bidirectional Best Hit (BBH), a standard approach
to identify two genes with very strong similarities as
orthologues. We conducted a BLAST search between
Arc-ED and Abu to find BBHs by requiring the BLAST
E-value to be less than 1E-5. The Abu genome is in-
cluded in the OGA data and we mapped 1484 Arc-ED
genes to OGAs, consequently.

OGA-based annotation comparison
We used two approaches to compare gene annotations
with their corresponding OGAs. Primarily, gene annota-
tions are considered to be the same when both of them
have the same words as any gene annotation in their
corresponding OGAs. In this way, we compared a fur-
ther 7% of the annotations between IGS and RAST as
shown in Figure 1.
Secondly, for gene annotations unable to be com-

pared by the above procedure, we used a vector space
model to evaluate the similarities between gene annota-
tions and OGAs. Then, we set a threshold and used it
to assign the same gene annotations. When both of the
two automated gene annotations have sufficiently high
Figure 2 Flowchart of similarity cut-off determination for vector spac
similarity with OGAs, they are regarded as the same
gene annotations. The complete process of this method
is shown in Figure 2. We described the vector space
model first, and then the procedure to establish the
similarity cut-off. In this study, Arc-ED gene annotations
and OGAs are viewed as vectors, with each element
representing word frequency. The vector space model is
used to capture the text similarity between gene anno-
tations and OGAs. In the meantime, we used term fre-
quency – inverse document frequency (tf-idf ), a classic
word weighting scheme, to assign various weights to
different words [21]. The intuition is that the import-
ance of a word, w, can be approximated by the product
of word frequency, tfw, and the inverse document fre-
quency, idft. Inverse document frequency is denoted by
the logarithm value of dividing the total number of
documents (annotations) by the number of documents
(annotations) containing the word. It aims to scale the
weights of the common words, such as “protein” and
“function” in the annotations. The word weight for an
Arc-ED gene annotation Gw is defined in the following
equation [21]:

Gw ¼ tf w;G⋅ log
NG

df w;G

where Gw is the gene annotation word weight vector,
tfw,G is the gene annotation word frequency, NG is the
number of gene annotations in the entire collection
e model.
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and dfw,G is the number of gene annotations containing
word w.
As for OGA, a modified equation shown below is

used to consider document length and repeated words
(It should be noted that OGA in the following equa-
tion refers to the corresponding OGA for the specific
Arc-ED gene.):

Ow ¼ tf w;O
tf w;O þ 1:5LO

avg:len

⋅ log
NO

df w;O

where Ow is the OGA word weight vector, tfw,O is the
OGA word frequency, LO is the OGA word length,
avg.len is the OGA average word length, NO is the
number of OGAs and dfw,O is the number of OGAs
containing word w.
Moreover, cosine similarity is used to capture the simi-

larity between an annotation and an OGA, as below [21]:

s G;Oð Þ ¼
∑
w
GwOw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
w
G2

w⋅∑
w
O2

w

q

where s(G,O) is the weighted cosine similarity, Gw is the
gene annotation word weight vector and Ow is the OGA
word weight vector.
For instance, we have two annotations for gene 978

from IGS and IMG results. They are ‘glutamyl-tRNA
(Gln) amidotransferase subunit A (Glu-ADTsubunit A)’
and ‘aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase
subunit A (EC 6.3.5.-)’, respectively. They are different in
terms of text. When we compared them with OGA, we
discovered that OGA contains a mixture of texts, such
as ‘glutamyl-tRNA(Gln)’, ‘amidotransferase’ and ‘Aspartyl/
glutamyl-tRNA(Asn/Gln)’. We know that this gene
should carry out a function related to amidotransferase,
therefore, the more ‘amidotransferase’ appears in IGS
and IMG annotations, the more weight this word
should have. In the meantime, we find out that OGA
contains repeated words, such as ‘glutamyl-tRNA’, ‘Gln’,
‘amidotransferase’ and ‘subunit’. The first three words
are specific to this OGA and less likely to appear in the
OGAs of the other genes, thus they should have more
weight. ‘subunit’ is a common word which appears
across annotations with different functions and should
have less weight. The similarity between IGS and OGA
is computed as 0.901 through this weighting scheme.
Furthermore, we need to know the cut-off in order to

assign different annotations to the same function. The
entire procedure to determine the cut-off is shown in
Figure 2. First, we created the non-orthologous dataset
by randomly reshuffling the mapping between OGAs
and gene annotations. In the meantime, we controlled
that the OGA for a gene annotation won’t be the same
as the OGAs of its orthologue. For example, supposing
that Arc-ED gene i is mapped to OGA through Abu
gene j in the orthologous dataset, all of the mappings
from Arc-ED gene i to OGAs through the annotations
different from the Abu gene j annotation are allowed in
the non-orthologous dataset. Subsequently, we com-
puted 100000 non-orthologue similarity scores. We
used the top 100th similarity score, which is around
0.7, as the similarity score cut-off. This indicates that
when the similarity score is larger than 0.7, the prob-
ability of a non-orthologous annotation assumed to be
the orthologous annotations is below 0.001. Hence, gene
annotations with similarity score both larger than 0.7
with an OGA are considered to derive from the same
OGA and have the same function. The results between
IGS and RAST from Figure 1 show that the OGA-based
similarity comparison method can deal with a further 3%
of the annotations.

Matching between comparison results
Finally, same gene annotations are used to map the an-
notations unable to be compared in the previous sec-
tions. For example, when the IGS gene annotation is the
same as the IMG and JCVI annotations, they are consid-
ered to be the same annotations as well. This process
can compare 6% of the IGS and RAST annotations and
altogether we can compare 1811 out of 2178 gene anno-
tations automatically, accounting for 83% of the coding
sequences. 367 (17%) gene annotations can not be com-
pared automatically and thus they are left for manual
examination. It is shown that our method is significantly
better than the baseline method, which increases the an-
notation comparison rate from 39% to 83%.

Paired annotation comparison results
We show the step-by-step paired comparison results be-
tween any two of the four automated annotations in
Table 2. The numbers represent the percentage of the an-
notations automatically compared in each step. It is shown
that all of the automated comparison rates between any
two of the annotations exceed 80%. On average, text vari-
ant handling (one HP another non-HP, annotation and
database term) can compare around 22% of the annota-
tions; synonyms and abbreviation handling (gene symbol
entry, Pfam entry) is able to deal with around 11% of the
annotations; functional annotation variant handling pro-
cedure (orthologue, vector space model) can compare
around 6% of the annotations. Lastly, matching procedure
is able to make a further 2% of the annotation comparison.

Overall annotation comparison results
The overall comparison results show that our procedure
can handle 87% of the annotations. Only 13% of the an-
notations could not be compared automatically and
needed manual comparison.



Table 2 Paired comparison results between automated annotation services

IGS vs IMG IGS vs JCVI IGS vs RAST IMG vs JCVI IMG vs RAST JCVI vs RAST

Baseline 62% 51% 39% 46% 40% 32%

One HP another non-HP 1% 1% 1% 2% 2% 1%

Annotation and database term 23% 20% 11% 27% 14% 30%

Gene symbol entry 1% 2% 5% 1% 4% 5%

Pfam entry 3% 7% 11% 6% 10% 8%

Orthologue 1% 2% 7% 3% 7% 6%

Vector space model 1% 2% 3% 1% 2% 2%

Matching 1% 3% 6% 1% 4% 1%

Overall result 93% 88% 83% 87% 83% 85%

Baseline: baseline annotation comparison result; One HP another non-HP: one annotation is a ‘hypothetical protein’ and another one has a characterised function;
Annotation and database term: two annotations have the same annotation text or database terms; Gene symbol entry: annotations are derived from the same
gene symbol entry; Pfam entry: annotations are derived from the same Pfam entry; Orthologue: annotations are derived from the same OGA; Vector space model:
vector space model comparison; Matching: matching between comparison results; Overall result: total number of gene annotations compared.
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Annotation determination
In this section, we used the annotation comparison re-
sult and constructed a decision tree (Figure 3) to derive
a consensus genome annotation result. Without any bio-
logical evidence, we could not assert which annotation
was more reliable than the others. Therefore we assumed
that the gene annotations with the majority supports
ought to be of high reliability. The decision rules are
shown as follows:

1) We first check if all of the annotation results are
uninformative annotations, such as “uncharacterized
Figure 3 Flowchart of gene annotation determination procedure.
annotation” and “hypothetical protein”. In this case,
we choose “hypothetical protein” as the consensus
annotation.

2) We then check if all of the annotation results are
the same or derive from the same OGA.

3) In the last step, we check whether the
annotations that agree with each other form a
majority, and then we use them as the consensus
annotation.

4) The rest of the annotations unable to be determined
by the above processes need to be manually
reviewed for annotation determination.



Table 3 Discrepant annotations between automated
annotation services and consensus annotation

Annotation service Number of discrepant annotations

IGS 74

IMG 122

JCVI 133

RAST 134
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The annotation determination result is promising in
that it is able to determine a large amount of the an-
notations automatically. Altogether, we determined the
annotations for 1892 (87%) genes, leaving only 286
(13%) genes for manual review. Of the entire genome,
302 (14%) genes use “hypothetical protein” annotations
as the consensus annotations. In the meantime, 1188
(55%) annotations are the same among four automated
annotations and 402 (18%) annotations are supported
by majority of the results.

Result and discussion
In this section, we carried out three experiments to evalu-
ate our approach. First, we attempted to study if our ap-
proach is able to improve the Arcobacter butzleri ED-1
genome annotation by integrating different annotation re-
sults. Second, we are interested in discovering whether the
performance of our approach is consistent across phylo-
genetically different genomes. Third, we tried to study if
the consensus annotation obtained is consistent with the
literature-based annotation from EcoCyc.

Discrepant annotations between the consensus
annotation and four annotation services
We manually compared the four automated annotation
results of Arcobacter butzleri ED-1 with the consensus
annotation to evaluate the quality of the annotation
obtained. There are around 100 inconsistent annotations
for different annotation results, as shown in Table 3. IGS
has the least and RAST has the most discrepant annota-
tions with the consensus annotation: 74 and 134 genes
Table 4 Examples of discrepant annotations between automa

Gene ID IGS IMG

76 putative membrane
protein

hypothetical protein conserved h

2119 hypothetical protein ABC-type Co2+ transport
system

547 hypothetical protein hypothetical protein prepilin-t
cleavag

dom

2176 hypothetical protein hypothetical protein conserved h
respectively. We presented an example to showcase the
discrepant annotations between the automated annota-
tions and consensus annotation in Table 4. For instance,
IGS, IMG, JCVI and RAST are the only services to pro-
vide characterised functional annotations for genes 76,
2119, 547 and 2176, respectively. In this case, merging
the different annotation results can effectively increase
the coverage of consensus annotation.
Since there is little biological evidence to evaluate the an-

notation quality, a reasonable approach to verify an anno-
tation is by bioinformatic evidence. We used BLAST [22],
Pfam [22], TMHMM [23] and TIGRfam [24] search results
as the bioinformatic evidence. The intuition is that when
there are one or more evidence supporting a certain bio-
logical function, we consider it to be the reliable annota-
tion. We manually compared the RAST annotation with
the consensus annotation. The cut-off settings for different
algorithms are as follows: BLASTP (e-value < 1E-5), Pfam
(e-value < 0.001), TIGRfam (e-value < 0.001). Some results
are shown in Table 5 and the complete data can be found
in the supplementary files (Additional file 3: discrepant an-
notations.xls).
We classified the different annotations into four cat-

egories. The first category is that the consensus annota-
tion is proper; the second category denotes that none of
the results are appropriate due to conflicting evidence;
the third category is that the RAST annotation result is
more reliable; the fourth category is that we could not
decide which annotation is more reliable due to insuffi-
cient evidence.
Among the 134 genes with different annotations, 25

genes have more precise or reliable annotations in the
consensus annotation (gene 44 and 1333 in Table 5). For
example, gene 44 is annotated “hypothetical protein” by
RAST and “membrane transport family protein” by the
consensus result, respectively. When we carried out
Pfam, TIGRfam, BLAST and TMHMM searches, it was
shown that this protein contains trans-membrane heli-
ces. Therefore, it should be designated as “membrane
transport family protein”. Moreover, we discovered two
genes which neither of the annotations is accurate (gene
ted annotation services and consensus annotation

JCVI RAST Consensus annotation

ypothetical protein hypothetical protein Putative membrane protein

ABC-type Co2+ transport
system, periplasmic

component

ype N-terminal
e/methylation
ain protein

hypothetical protein prepilin-type N-terminal
cleavage/methylation

domain protein

ypothetical protein FAD/FMN-containing
dehydrogenases

FAD/FMN-containing
dehydrogenases



Table 5 Discrepant annotations between RAST and consensus annotation

Gene ID RAST annotation Consensus annotation Reliable annotation Bioinformatic evidence

44 hypothetical protein membrane transport family protein consensus Pfam, TIGRfam, BLAST, TMHMM

1333 protein of unknown function
DUF481

Putative salt-induced outer membrane
protein

consensus BLAST

77 hypothetical protein tat (twin-arginine translocation) pathway
signal sequence domain protein

neither NADH dehydrogenase, FAD-
containing subunit (BLAST)

2081 conserved hypothetical protein Methyltransferase domain. neither Tellurite resistance protein TehB
(pFam)

982 histidine kinase bacterial extracellular solute-binding
proteins, family 3 family protein

RAST two-component sensor histidine
kinase (BLAST)

1900 hypothetical protein N- methylation RAST hypothetical protein (BLAST)

183 conserved hypothetical protein putative membrane protein not enough evidence

212 conserved hypothetical protein transcriptional regulator, Spx/MgsR family not enough evidence
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77 and 2081 in Table 5). For instance, RAST annotated
gene 77 as “hypothetical protein” and the consensus
annotation used “tat (twin-arginine translocation) path-
way signal sequence domain protein” as the annota-
tion. Neither of the annotations is reliable because
BLASTP and Pfam results show that the function is
“NADH dehydrogenase, FAD-containing subunit”. 9
gene annotations in RAST have more bioinformatic
evidence than the consensus result (gene 982 and
1900 in Table 5). In addition, we observed that two
genes are annotated as “hypothetical protein” in RAST
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Figure 4 Automated annotation comparison results for six genomes.
annotation comparison results for Escherichia coli K-12 MG1655, Chlamydia
genitalium G37, Mycobacterium tuberculosis H37Rv and Rickettsia prowazekii
following sections as well.
but are assigned characterized functions in the consen-
sus annotation (gene 183 and 212 in Table 5). We
found that and none of the bioinformatic tools was
able to figure out the characterised functions. Lastly,
we had insufficient bioinformatic evidence to deter-
mine the annotations for 98 genes. The results demon-
strated that the consensus annotation tends to have
more bioinformatic evidence than RAST annotation.
Therefore, our approach is able to improve the auto-
mated annotation for the Arcobacter butzleri ED-1
genome by integrating different annotations.
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eco, ctr, hpy, mge, mtu, rpr stand for the automated genome
trachomatis D/UW-3/CX, Helicobacter pylori 26695, Mycoplasma
Madrid E, respectively. These abbreviation representations apply to the



Table 6 Genome annotation comparison results for six
genomes

Organism Paired
comparison

Baseline Our
method

Improvement

eco IGS vs IMG 52% 86% 34%

IGS vs RAST 37% 68% 31%

IMG vs RAST 32% 66% 34%

ctr IGS vs IMG 55% 79% 24%

IGS vs RAST 40% 61% 21%

IMG vs RAST 50% 73% 23%

hpy IGS vs IMG 49% 79% 30%

IGS vs RAST 38% 64% 26%

IMG vs RAST 46% 72% 26%

mge IGS vs IMG 81% 93% 12%

IGS vs RAST 82% 91% 9%

IMG vs RAST 82% 90% 8%

myt IGS vs IMG 43% 72% 29%

IGS vs RAST 35% 56% 21%

IMG vs RAST 39% 62% 23%

rpr IGS vs IMG 54% 77% 23%

IGS vs RAST 32% 59% 27%

IMG vs RAST 40% 67% 27%
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Performance validation on six phylogenetically different
genomes
To evaluate the performance of our method, we applied
our scheme to six prokaryote genomes: Escherichia coli
K-12 MG1655, Chlamydia trachomatis D/UW-3/CX,
Helicobacter pylori 26695, Mycoplasma genitalium
G37, Mycobacterium tuberculosis H37Rv and Rickettsia
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Figure 5 Automated annotation determination results for six genome
prowazekii Madrid E. We noticed that the JCVI anno-
tation service was temporarily unavailable, so we only
used the rest of the annotation services to annotate
the genomes. The paired comparison results for the
six different genomes in Figure 4 and Table 6 show
that the baseline method can compare, on average,
49% of the annotations. Our scheme is able to further
improve the comparison rate to around 73%. The best
result is obtained for the Mycoplasma genitalium G37
genome. 92% of the gene annotations can be compared.
We then followed the same rules described in section

2 for the annotation determination task. The six genome
determination results are shown in Figure 5. Overall, the
annotation determination scheme can automatically de-
termine 86% of the annotations, leaving 14% of the an-
notations for manual check. Meanwhile, around 50% of
the consensus annotations come from the annotations
supported by all of the annotations. Around 30% of
the consensus annotations are derived from majority-
supported annotations. These results suggest that our
approach is able to achieve high percentage of annota-
tion comparison and determination rates.

Annotation quality evaluation on the E.coli genome
To evaluate the quality of the consensus annotation, we
compared the E.coli consensus annotation with the
literature-based annotation result obtained from the
EcoCyc database [25]. EcoCyc identified 4499 genes for
the genome of E.coli and the consensus result recog-
nized 4394 genes. 4019 genes are shared between the
two results and our scheme determined 3443 (86%)
gene annotations. We then carried out the manual com-
parison work between the consensus annotation and
EcoCyc annotation. The complete data are attached in
m
ge m

yt rp
r

nt organisms

e function majority vote manual check

s.
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the supplementary files (Additional file 4: comparison be-
tween consensus annotation and EcoCyc annotation.xls).
Our scheme is able to identify 3104 (77%) genes with the
same functional annotations as EcoCyc. In the meantime,
only 339 (9%) genes in consensus result have different
annotations from EcoCyc result. It is shown that the con-
sensus annotation obtained is able to identify high per-
centage of the annotations as same as EcoCyc result.
To examine if our integration scheme really produced

better results than the individual services, we also com-
pared the annotation results between IMG and EcoCyc.
We chose IMG because it carried out comprehensive
bioinformatic search in the annotation process [4]. The
result shows that there are 352 different annotations be-
tween them, slightly bigger than the difference between
EcoCyc and the consensus annotation. This result indi-
cates that the integration scheme has improved the an-
notation quality.

Conclusions
In this paper, we present a semi-automated procedure to
compare and determine genome annotations from differ-
ent annotation sources. The contributions of this ap-
proach are divided into two parts:

1) We designed an automated annotation comparison
and determination approach which achieves high
(greater than 80%) annotation comparison and
determination rates for the genome of Arcobacter
butzleri ED-1. The performance is consistent across
six phylogenetically different genomes (on average
73% and 86% with respect to annotation comparison
and determination rates). The evaluation results
show that our approach is able to improve the
annotation quality and only 9% of the annotations
are different from EcoCyc result with respect to the
E. coli genome.

2) We constructed a biological stop word list which
can be used in genome annotation comparison
research.

There is no need of specific biological knowledge in
the annotation comparison and determination processes,
therefore our approach can be readily applied to other
genome re-annotation/comparison projects.

Additional files

Additional file 1: The code and datasets: file contains the python
code and related datasets used in our research. We used two
datasets in our research. (1). ‘pfam_mapped_dic.csv’ file contains the
Pfam IDs obtained from Pfam database; (2) ‘gene_info_dic.csv’ file
contains the gene symbol data obtained from Entrez gene database;
(3) ‘database data’ folder contains the automated annotation results
and the OMA data to run the program.
Additional file 2: Stop word list: file contains a genome annotation
relevant stop word list constructed in this research. This stop word list
can be easily applied to other genome annotation comparison research.

Additional file 3: Discrepant annotations: file contains the
discrepant annotations between four annotations and the
consensus annotation. The bioinformatic evidence is presented as well.

Additional file 4: Comparison between consensus annotation and
EcoCyc annotation: file contains the annotation comparison results
between the E.coli consensus annotation and EcoCyc annotation.
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