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Abstract

Background: Reverse docking approaches have been explored in previous studies on drug discovery to overcome
some problems in traditional virtual screening. However, current reverse docking approaches are problematic in
that the target spaces of those studies were rather small, and their applications were limited to identifying new
drug targets. In this study, we expanded the scope of target space to a set of all protein structures currently
available and developed several new applications of reverse docking method.

Results: We generated 2D Matrix of docking scores among all the possible protein structures in yeast and human
and 35 famous drugs. By clustering the docking profile data and then comparing them with fingerprint-based
clustering of drugs, we first showed that our data contained accurate information on their chemical properties.
Next, we showed that our method could be used to predict the druggability of target proteins. We also showed
that a combination of sequence similarity and docking profile similarity could predict the enzyme EC numbers
more accurately than sequence similarity alone. In two case studies, 5-flurouracil and cycloheximide, we showed
that our method can successfully find identifying target proteins.

Conclusions: By using a large number of protein structures, we improved the sensitivity of reverse docking and
showed that using as many protein structure as possible was important in finding real binding targets.

Background
Identifying disease genes and target proteins of drugs is a
critical step in drug discovery. Once the disease genes are
identified, designing lead compounds which can modu-
late those genes or the protein products may lead to a
successful new drug. The growth of the number of avail-
able 3D structures of proteins and computing power has
enabled high-throughput computational screening of
lead compounds, which is known as virtual screening.
Conventionally, these virtual screening methods have
focused on searching chemical space for chemicals that
can specifically bind to a protein target [1].

Complication in this structure-based drug discovery
strategy is that there may exist unknown off-target
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proteins that can bind to the lead compounds unexpect-
edly, which undoubtedly poses some difficulty such as
severe side effect, but also provides a new opportunity.
Upon discovering novel drug targets for existing drugs,
we can expand indications of the drugs by drug reposi-
tioning. Motivated by this, reverse (or inverse) docking
approaches have received increasing interest to find
unknown targets of natural products and existing old
drugs [2-4]. In reverse docking, one tries to find the
protein targets which can bind to a particular ligand.

In previous researches, based on an assumption that
the number of predicted potential protein targets [5] is
quite low compared to the number of genes, they tried to
find new drug targets among a relatively small number of
potential target proteins. For example, a reverse docking
study by Gao et al. used ~1,100 targets [6], and that by
Hui-fang et al., used 1,714 targets and 8 compounds [7].
However, this may cause poor coverage of the protein
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structure space in reverse docking. Moreover, their only
intended application of their reverse docking methods is
to find the targets of drugs. On the other hand, various
approaches including statistical method using sequence
and structure similarity [8], calculating binding site simi-
larity [9,10], and prediction of druggability by descriptors
[11] have been developed.

Here, we present a large-scale reverse docking study.
The main difference from previous studies is that we used
all available protein structures in human and yeast. To our
best knowledge, our docking profile contains the largest
number of protein structures. The reverse docking profile
was merged into a matrix which can be easily interpreta-
ble. We showed the some properties of the large-scale
docking profile and demonstrated usefulness of these
docking profile data. We also developed several new appli-
cations such as predicting druggability of protein targets
and protein function prediction based on docking profile
similarity. We discussed two interesting case studies,
5-flurouracil and cycloheximide. Especially, we successfully
demonstrated that using as many protein structures as
possible was important in improving the sensitivity of
reverse docking and finding real binding targets.

Results and discussion

Data structure

All docking scores of ligand-biding site pairs were
merged into a matrix form. In total, yeast profiles and
human profiles are composed of 1,165 and 10,886 bind-
ing sites, respectively with thirty-five ligands (Table 1).
The numeric data are available in Additional files 1, 2.
The resulting docking profiles were hierarchically clus-
tered in both directions for the further analysis. The
clustering results are shown in Figure 1.

Table 1 The list of ligands used to generate reverse
docking profiles

Index Ligand PubChem CID
1 5-FC 3366

2 5-FU 3385

3 Brefeldin A 5287620
4 Camptothecin 24360

5 Chlorpromazine 2726

6 Cimetidine 2756

7 Clotrimazole 2812

8 Cycloheximide 6197

9 Dipyridamole 3108

10 Doxorubicin 31703
1 Dyclonine 3180

12 Fluvastatin 446155
13 Gemfibrozil 3463

14 Haloperidol 3559

15 Hydrocortisone 5754
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Table 1 The list of ligands used to generate reverse
docking profiles (Continued)

16 Indomethacin 3715

17 Methotrexate 126941
18 Minoxidil 4201

19 Mitomycin C 5746

20 Morphine 5288826
21 Nifedipine 4485

22 Nitrofurantoin 6604200
23 Omeprazole 4594
24 Phenylbutazone 4781

25 Pravastatin 54687
26 Procaine 1548986
27 Progesterone 5994

28 Radicicol 6323491
29 Sulfamethoxazole 5329

30 Sulfinpyrazone 5342

31 Tamoxifen 2733526
32 Terbinafine 1549008
33 Theophylline 2153

34 Tunicamycin 6433557
35 Valproic acid 3121

The dendrograms along the column (chemical space) in
both species are very similar to each other. We compared
these dendrograms with two dendrograms from Pub-
Chem Structure Clustering [12] based on a measure
recently developed for comparing two hierarchical clus-
tering [13]. PubChem provides two kinds of clustering
based on 2D structure fingerprint and 3D shape/feature
similarity. Our two dendrograms are more similar with
the clustering based on 3D similarity than that based on
2D similarity (Table 2). The reason may be that 3D con-
formations of ligands are more relevant for the protein-
ligand docking fitness than 2D information. We also sug-
gest that the topology of ligand clusters can be used as a
new similarity measure between two small molecules.
Nevertheless, relatively high similarity scores indicate that
our docking profile data convey accurate information on
their chemical properties.

Druggablity analysis

The “druggability” of a certain target protein represents
how probable the protein is in fact a real target of
drugs, and it has been investigated in many previous
studies [14-16]. In one such method, the druggability of
a protein was inferred from its homologous proteins
whose druggabilities were already known [17]. The
weakness of this method is that the number of targets
with known druggability is limited. Other approaches
attempted to define “druggable” as “highly likely to bind
to putative drugs”, i.e., “bindability” [18,19].
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Figure 1 Color mapped docking fitness profile matrix in (a) yeast and (b) human. The elements represent corresponding docking fitness.
The numbers in horizontal axis corresponds to ligands in Table 1. Each row presents a protein binding site. There are (a) 1,165 and (b) 10,886

rows. The dendrograms in both axes were constructed by hierarchical clustering.
\ J

In the context of bindability, the docking profiles in  set of druggable and less druggable (NRDLD) set con-
this study can provide good large scale simulated data. tains 71 druggable and 44 less-druggable targets. Since
We first checked whether our data were in accord with  not all the entries are human proteins, the numbers of
predefined druggability dataset [20]. The non-redundant  overlapped targets are 43 druggable and 8 less-druggable.
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Table 2 The similarities among hierarchical clusterings in
ligand space.

Human Yeast PC 2D PC 3D
Human 1 0.939 0513 0.708
Yeast 0.939 1 0.504 0.712
PC 2D 0513 0.504 1 0.565
PC 3D 0.708 0.712 0.565 1

Rows and columns “Human” and “Yeast” represent clustering based on
docking profile similarity in human and yeast, respectively. “PC 2D" and
“PC 3D" represents clustering from PubChem based on 2D structure
fingerprint and 3D conformation similarity.

Figure 2 shows the average docking fitness values of the
sets of those overlapped targets, along with the averages
of 10,886 binding sites’ docking scores in human data set.
Except for the case of cimetidine (Ligand 6), all averages
of our docking scores of druggable set are greater than
those of less-druggable set. One can observe that overall
average values are placed between druggable and less-
druggable sets in nearly all cases. This result suggests
that without serious training it may be possible to classify
all protein targets whose docking profiles are available
into druggable or less-druggable target.

Next, by simply comparing docking fitness scores of
each protein target against 35 ligands with the average
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fitness scores of those ligands (see Methods), we predicted
539 putative druggable binding sites and 289 less-
druggable binding sites (Additional file 3). The predicted
druggable and less-druggable binding sites were classified
into 6 enzyme classes according to the first digit of their
EC numbers [21] (Figure 3). Oxidoreductases occur more
frequently in the druggable. Hydrolase, lyases and iso-
merases occur more frequently in the less-druggable set.
Except for the case of ligase in which all relative frequen-
cies are less than 0.1, the enzyme class distribution trends
are similar in both the predicted set and NRDLD set.

Protein function prediction based on docking profile
similarity

An advantage of the present study is that docking profiles
are available for both human and yeast proteomes. Yeast
is the best characterized eukaryotic model organism.
A variety of related resources such as chemical genomic
profile [22], whole genome knock-out library [23], pro-
tein-protein interaction and genetic interaction data [24]
are available. We expect that docking scores generated in
this study can be combined with these resources to infer
novel protein targets. In addition, it is valuable to check
whether orthologous protein pairs of human and yeast
share similar docking profiles. In Figure 4, we plot two
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Figure 2 Average docking scores of NRDLD druggable and less druggable set and those of overall docking fitness. The numbers in
horizontal axis represents the corresponding ligands in Table 1. The subplot represents difference between NRDLD druggable and less
druggable (druggable minus less druggable). The values in subplot always show positive values except for small negative values (-0.13) in Ligand

6 (cimetidine).
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Figure 3 Distributions of the enzyme classes. Distributions of the enzyme classes in the NR Putative druggable and less druggable set
(assigned in this study; red bars), and NRDLD druggable and less druggable set (green bars). Note that the enzyme class distribution trends are
similar in both sets.
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Figure 4 Frequency distributions of distances. The dashed line shows distribution of Euclidean distances of docking fitness between
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distributions of Euclidean distances of docking scores of
both species; one for the orthologous pairs and the other
for all human-yeast pairs. It is observed that sequence
similarity is generally reflected in the similarity of dock-
ing profile across the two species.

The results shown in Figure 4 suggest that we can uti-
lize our docking method to infer the function of proteins,
especially the proteins that have no apparent orthologs
with known function. To show that docking profiles con-
tain the information which can be utilized to predict the
function of proteins, we carried out a large-scale function
prediction of enzymes. For 3,874,883 pairs of 5,989
human proteins and 647 yeast proteins, we collected all
pairs for which EC numbers were available. We used
BLAST e-value [25] as the sequence similarity measure,
and Euclidean distance between the two docking profiles
as the docking profile similarity measure. The perfor-
mances are shown in Figure 5 as receiver operating char-
acteristic (ROC) curve. In low false positive rate (FDR)
region, using e-value yielded better performance, while
docking profile similarity scores performed better in high
FDR region. This limitation is due to substantial overlap
between distance distributions of positive and negative
pairs as shown in Figure 4. Although the average and
median of distances of positive pairs are quite less than
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those of negative pairs, any single non-parametric Eucli-
dean distance value cannot divide two groups perfectly.
Relationship between docking fitness distance and
enzyme function is more complex than a single thresh-
old. However, it is observed that docking profile similar-
ity contain positive information for function prediction
which is not overlapped with the sequence information.
Thus, this information would be used as a useful feature
with combination of other features such as sequence
similarity, structural similarity, and binding site
similarity.

Here, for example, simple implementation of combina-
tion of sequence and docking profile information was
tested. To cover low sensitivity of docking fitness in low
FDR, a new distance was defined as follows: if BLAST
e-value of a pair is less than le-5, e-value is used as the
distance; if otherwise, Euclidean distance is used. The
performance of this metric is shown in Figure 5 (red).
Note that this simple metric is never based on any ser-
ious training, feature extraction, or machine learning
technique. Not considering which elements in 35-
dimentional docking profile are important, and simply
adding information of docking profile exhibits better
performances in all area. In summary, this implies that
using docking profile information together with other
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Figure 5 ROC curve for assigning EC numbers (up to fourth digit) of proteins using those of nearest proteins in the other species.
Distances are based on BLAST e-value (sequence similarity), Euclidean distance of docking profiles (docking profile similarity), and hybrid of both.
False positive rate is FP/(FP+TN), and true positive rate is TP/(TP+FN) where FP, TN, TP, FN are the numbers of false positives, true negatives, true
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useful measures as features of state-of-the-art machine
learning technique and increasing the size of docking
profile, i.e., appending the reverse docking results of
additional ligands would get close to more precise func-
tion prediction of proteins.

Case studies

The docking profile data generated in this study can be
applied in a variety of ways. As discussed in the previous
section, it can be utilized to infer protein function. On
the other hand, more common application that has been
explored in several previous studies is to infer new bind-
ing targets for known drugs. Here, we present two case
studies.

Binding target of 5-FC and 5-FU

5-fluorocytosine (5-FC) and 5-flurouracil (5-FU) are
both fluorinated analogues of pyrimidine [26]. The
structures of the two ligands are quite similar. There-
fore, not surprisingly, the docking profiles are quite
similar as well. Moreover, the top-ranking binding site
of both ligands is the structure of yeast exosome com-
ponent, the protein product of gene rrp6 (PDB id:
2hbm) [27]. The structure was identified relatively
recently, so 2hbm has never been annotated as putative
target, not to mention druggable. Previously known
mechanism of action of 5-FU is inhibition of thymidy-
late synthetase [28]. Thus, the top-ranking structure,
2hbm, might be considered as a false positive. Fortu-
nately, however, genome-wide study using tagged het-
erozygotes yeast mutants provided a strong evidence
that rrp6 related rRNA processing exosome is a target
of 5-FU [29]. The direct binding target of 5-FU was not
identified in the previous study, but the result of that
research and the docking scores strongly suggest that
the protein product of rrp6 is the direct binding target
of 5-FU in yeast.

Protein structures from the same sequence

Similarly to the case of 5-FU, we also investigated the
high-ranking targets in docking profile of cycloheximide
(CHX). The top-ranking structure is the PDB structure
1q17 which is the protein structure of yeast gene Hst2,
homologous to eukaryotic SIR2 [30]. Interestingly,
among three protein products (1q17, 1q14, 1qla) of hst2
whose structures were identified by the same researchers
[31,32], 1q17 and 1qla exhibited high binding fitness (1st
and 6th ranked) while 1q14 showed poor binding affinity.
We tried to find what caused these differences. It is
known that 1q17 and 1qla lack the 64 residue C-terminal
tails of hst2 sequence in common while 1q14 is the struc-
ture of intact Hst2 (Figure 6a). We also found that there
was the comparison study between yeast mutant strains,
which lack corresponding C-terminal tail regions and
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wild type treating CHX [33] (Figure 6b). In that study,
expression of HST2-298A which corresponds to PDB
1q17 or 1qla led to increased sensitivity to CHX. This
phenotype is surprisingly well characterized in docking
profile in our study as the top-ranked docking fitness
value.

Are such a large number of protein structures necessary
for reverse docking?

Compared to the protein sets used in previous studies,
the set used in this study is quite large and has some
redundancy. One may question whether all these struc-
tures contribute to the sensitivity of reverse docking. It
is an important issue because docking still costs high
computing power and is time-consuming.

In our dataset of human, 8,717 structures out of 10,886
structures have the hits sharing the same UniProt ID
with 1,339 unique UniProt IDs. In other words, those
8,717 structures could be reduced into 1,339 structures
by removing at most 7,378 structures if we filter the set
with respect to only sequence redundancy. However,
there are many cases where docking fitness profiles for
similar sequences are quite different.

To show this property, we first carried out hierarchical
clustering of docking profile of proteins. For each sub-
cluster, if all the members were derivatives of the same
UniProt ID, the members were merged into one. This
procedure was repeated until there were no sub-clusters
in which members shared the same UniProt ID. As a
result, 1,710 structures were filtered out eventually, i.e.,
only about 20% of sequence-redundant protein structures
exhibited the redundancy in docking profile. This is due
to heterogeneity in PDB. There are many modified struc-
tures such as oxidized, reduced, multimeric, metal con-
taining, and truncated forms for even a one protein
sequence. Thus, we concluded that the sets of protein
structures which were used in previous reverse docking
studies are insufficient. For example, the interesting
results from the docking of cycloheximide, which was
discussed in the previous section, would have not been
obtained.

Another interesting example is the main binding target
of hydrocortisone, the glucocorticoid receptor (GCR).
There are nine structures of the GCR in PDB. However,
datasets used for reverse docking such as potential drug
target database (PDTD) [6] included only two of them
(PDB 1nhz and 1p93). The result of reverse docking of
hydrocortisone by others [7] using PDTD could not
detect the GCR as the target. In our docking profile, PDB
3bqd was the top-ranking protein target, which is
another structure of the GCR. If we had removed redun-
dancy based on sequence similarity, we could have not
detected the real target of the GCR. Therefore, our
reverse docking experiment suggests that using as many
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Figure 6 Sequence variation among derivatives of yeast gene Hst2. (a) C-termial sequences of intact Hst2 (uniprot ID: P53686) and those of
its three structures. 117 and 1g1a are the structure of the 64 residue C-terminal deletion construct. (b) HST2-298A mutant strain only contains
amino acids 1-298, with the deletion of C-terminal end. Regenerated from the previous work by others [33].

as possible protein structures in reverse docking is
worthwhile in finding unknown drug targets or unex-
pected mode-of-action even though it costs high compu-
tation cost.

Conclusions

In this study, we generated large-scale reverse docking
profiles for all X-ray protein structures in human and
yeast. These data can be the reference for future binding
assays and used to find unexpected binding targets of
drugs. Furthermore, it would be useful to find unknown
therapeutic uses in drug repositioning. In some case stu-
dies, targets not annotated as druggable or not stored in
target database previously exhibit high binding fitness
and they are highly likely to be real binding targets con-
sidering previous functional experiments. By using a
large number of protein structures, we improved the
sensitivity of reverse docking and showed that using as
many protein structure as possible was important in
finding real binding targets. Although we used as small
as 35 ligands in docking, we were able to demonstrate
some usefulness of our data. Generating this kind of
reverse docking profile of a large number of ligands
would be valuable in the future study.

Methods

Data preparation

All available X-ray protein structures in human and
budding yeast Saccharomyces cerevisiae were retrieved
from RCSB Protein Data Bank (PDB) [34,35]. The best
putative binding sites of each PDB structure were gener-
ated by using the program Fpocket [36,37]. To make
pockets appropriate inputs for the docking, Open Babel
[38] was used to protonate all the pockets. Thirty-five
well-known ligands (Table 1) were manually selected
from previous high-throughput experimental studies
[29,39] to perform high-throughput reverse docking

after excluding some ligands that were too large or
small for molecular docking study. The 3D structures of
the ligands were retrieved from PubChem [40] and con-
verted from sdf file [41] into Tripos mol2 file format.

Docking

All the protonated pockets were docked against the
ligand set using GOLD [42]. We used a ‘flexible ligand-
rigid protein’ mode. All other options involved in
GOLD’s search algorithm and termination factor were
set to the default options. Given several putative docking
conformations, we only chose the highest-ranking bind-
ing pose for each ligand-biding site pair. The GOLD fit-
ness value [43] was used as a measure of the binding
fitness. As a result, 10,886 x 35 matrix and 1,165 x 35
matrix of docking fitness scores for human and yeast,
respectively, were made and used in this study (Addi-
tional files 1, 2).

Druggability analysis

Predefined the non-redundant set of druggable and less
druggable binding sites (NRDLD set) was retrieved from
the study by Krasowski et al. [20]. Among 71 druggable
binding sites and 44 less-druggable ones in NRDLD set,
43 druggable and 8 less-druggable binding sites are
overlapped with human protein structures used in this
study. These 51 binding sites were used for druggability
analysis.

Putative druggable and less-druggable protein binding
sites were assigned by the following rules: a binding site
is druggable when all 35 docking values of the binding
site are always larger than corresponding overall average
values, and less-druggable when all 35 docking values of
a binding site are always less than corresponding aver-
age values.

To get EC number composition of assigned druggable
and less-druggable sets, non-redundant (NR) putative
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druggable and less druggable sets were defined. In this
study, NR set means that the set do not contain any
pairs of proteins sharing the same UniProt ID [44].
Note that we did not use any sequence identity measure
to remove redundancy.

Ortholog mapping

Although there are several ortholog databases, none of
those provides PDB-based mapping table. Therefore, we
obtained the ortholog mapping between human and
yeast protein structures by the following procedure.
First, we retrieved human-yeast ortholog table from
InParanoid [45,46]. In this table, human proteins and
yeast proteins were annotated by Ensembl’s id (ENSP)
[47] and yeast ORF name [48], respectively. These terms
were transferred into PDB id by PICR [49] to complete
PDB-based mapping.

Additional material

Additional file 1: Docking profiles for human protein structures. A
csv document containing all docking scores of human protein structures
with ligands used in this study. This file can be viewed with Microsoft
Excel or any text editor.

Additional file 2: Docking profiles for yeast protein structures. A csv
document containing all docking scores of yeast protein structures with
ligands used in this study. This file can be viewed with Microsoft Excel or
any text editor.

Additional file 3: The list of putative drugggable and less
druggable targets based on docking profile. The list of putative
drugggable and less druggable targets based on docking profile. The file
contains PDB ID, corresponding EC number, and assigned druggability.
This file can be viewed with Microsoft Excel or any text editor.
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