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Abstract

Background: Co-expression measures are often used to define networks among genes. Mutual information (MI) is
often used as a generalized correlation measure. It is not clear howmuchMI adds beyond standard (robust) correlation
measures or regression model based association measures. Further, it is important to assess what transformations of
these and other co-expression measures lead to biologically meaningful modules (clusters of genes).

Results: We provide a comprehensive comparison between mutual information and several correlation measures in
8 empirical data sets and in simulations. We also study different approaches for transforming an adjacency matrix, e.g.
using the topological overlap measure. Overall, we confirm close relationships between MI and correlation in all data
sets which reflects the fact that most gene pairs satisfy linear or monotonic relationships. We discuss rare situations
when the two measures disagree. We also compare correlation and MI based approaches when it comes to defining
co-expression network modules. We show that a robust measure of correlation (the biweight midcorrelation
transformed via the topological overlap transformation) leads to modules that are superior to MI based modules and
maximal information coefficient (MIC) based modules in terms of gene ontology enrichment. We present a function
that relates correlation to mutual information which can be used to approximate the mutual information from the
corresponding correlation coefficient. We propose the use of polynomial or spline regression models as an alternative
to MI for capturing non-linear relationships between quantitative variables.

Conclusion: The biweight midcorrelation outperforms MI in terms of elucidating gene pairwise relationships.
Coupled with the topological overlap matrix transformation, it often leads to more significantly enriched
co-expression modules. Spline and polynomial networks form attractive alternatives to MI in case of non-linear
relationships. Our results indicate that MI networks can safely be replaced by correlation networks when it comes to
measuring co-expression relationships in stationary data.

Background
Co-expression methods are widely used for analyzing
gene expression data and other high dimensional “omics”
data. Most co-expression measures fall into one of two
categories: correlation coefficients or mutual informa-
tion measures. MI measures have attractive information-
theoretic interpretations and can be used to measure
non-linear associations. Although MI is well defined
for discrete or categorical variables, it is non-trivial
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to estimate the mutual information between quanti-
tative variables, and corresponding permutation tests
can be computationally intensive. In contrast, the cor-
relation coefficient and other model based association
measures are ideally suited for relating quantitative
variables. Model based association measures have obvi-
ous statistical advantages including ease of calculation,
straightforward statistical testing procedures, and the
ability to include additional covariates into the analy-
sis. Researchers trained in statistics often measure gene
co-expression by the correlation coefficient. Computer
scientists, trained in information theory, tend to use a
mutual information (MI) based measure. Thus far, the
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majority of published articles use the correlation coef-
ficient as co-expression measure [1-5] but hundreds of
articles have used the mutual information (MI) measure
[6-12].
Several articles have used simulations and real data to

compare the two co-expression measures when cluster-
ing gene expression data. Allen et al. have found that
correlation based network inference method WGCNA
[5] and mutual information based method ARACNE
[9] both perform well in constructing global network
structure [13]; Steuer et al. show that mutual informa-
tion and the Pearson correlation have an almost one-
to-one correspondence when measuring gene pairwise
relationships within their investigated data set, justify-
ing the application of Pearson correlation as a mea-
sure of similarity for gene-expression measurements
[14]. In simulations, no evidence could be found that
mutual information performs better than correlation
for constructing co-expression networks [15]. How-
ever, MI continues to be used in recent publications.
Some authors have argued that MI is more robust
than Pearson correlation in terms of distinguishing var-
ious clustering solutions [10]. Given the debates, it
remains an open question whether mutual information
could be supplanted by standard model based associ-
ation measures. We affirmatively answer this question
by i) reviewing the close relationship between mutual
information and likelihood ratio test statistic in the
case of categorical variables, ii) finding a close rela-
tionship between mutual information and correlation
in simulations and empirical studies, and iii) propos-
ing polynomial and spline regression models as alter-
natives to mutual information for modeling non-linear
relationships.
While previous comparisons involved the Pearson cor-

relation, we provide a more comprehensive comparison
that considers i) different types of correlation coefficients,
e.g. the biweight midcorrelation (bicor), ii) different
approaches for constructing MI based and correlation
based networks, iii) different ways of transforming a
network adjacency matrix (e.g. the topological overlap
reviewed below [4,16-18]), and iv) 8 diverse gene expres-
sion data from yeast, mouse and humans. Our unbiased
comparison evaluates co-expression measures at the level
of gene pair relationships and at the level of forming
co-expression modules (clusters of genes).
This article presents the following results. First, prob-

ably the most comprehensive empirical comparison to
date is used to evaluate which pairwise association mea-
sure leads to the biologically most meaningful network
modules (clusters) when it comes to functional enrich-
ment with GO ontologies. Second, polynomial regres-
sion and spline regression methods are evaluated when
it comes to defining non-linear association measures

between gene pairs. Third, simulation studies are used
to validate a functional relationship (cor-MI function)
between correlation and mutual information in case that
the two variables satisfy a linear relationship. Our com-
prehensive empirical studies illustrate that the cor-MI
function can be used to approximate the relationship
between mutual information and correlation in case of
real data sets which indicates that in many situations
the MI measure is not worth the trouble. Gene pairs
where the two association measures disagree are inves-
tigated to determine whether technical artifacts lead to
the incongruence.
Overall, we find that bicor based co-expressionmeasure

is an attractive co-expression measure, particularly when
limited sample size does not permit the detection of non-
linear relationships. Our theoretical results, simulations,
and 8 different gene expression data sets show that MI is
often inferior to correlation based approaches in terms of
elucidating gene pairwise relationships and identifying co-
expression modules. A signed correlation network trans-
formed via the topological overlap matrix transformation
often leads to the most significant functional enrichment
ofmodules. Polynomial and spline regressionmodel based
statistical approaches are promising alternatives to MI for
measuring non-linear relationships.

Associationmeasure and network adjacency
An association measure is used to estimate the relation-
ships between two random variables. For example, cor-
relation is a commonly used association measure. There
are different types of correlations. While the Pearson
correlation, which measures the extent of a linear rela-
tionship, is the most widely used correlation measure,
the following two more robust correlation measures are
often used. First, the Spearman correlation is based on
ranks, and measures the extent of a monotonic relation-
ship between x and y . Second, “bicor” (refer to Materials
and Methods for definition and details) is a median based
correlation measure, and is more robust than the Pearson
correlation but often more powerful than the Spearman
correlation [19,20]. All correlation coefficients take on val-
ues between −1 and 1 where negative values indicate an
inverse relationship. A correlation coefficient is an attrac-
tive associationmeasure since i) it can be easily calculated,
ii) it affords several asymptotic statistical tests (regres-
sion models, Fisher transformation) for calculating sig-
nificance levels (p-values), and iii) the sign of correlation
allows one to distinguish between positive and negative
relationships. Other association measures, such as mutual
information, will be introduced in the next sections.
Association measures can be transformed into net-

work adjacencies. For n variables v1, . . . , vn , an adja-
cency matrix A = (Aij) is an n × n matrix quantify-
ing the pairwise connection strength between variables.
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An (undirected) network adjacency satisfies the following
conditions:

0 ≤ Aij ≤ 1,
Aij = Aji,
Aii = 1.

(1)

An association network is defined as a network whose
nodes correspond to random variables and whose adja-
cency matrix is based on the associationmeasure between
pairs of variables [21]. Association networks describe the
pair wise associations between variables (interpreted as
nodes). For a given set of nodes, there is a one-to one
relationship between the association network and the
adjacency matrix. In order to build an association net-
work for n variables v = (v1, . . . , vn) , we start by defining
an association measure AssocMeasure(x, y) as a real val-
ued function of two vectors x , y . We then apply this
function on the set of N = n2 variable pairs {Pair1 =
(v1, v1), Pair2 = (v1, v2), . . . , PairN = (vN , vN)}, resulting
in an n × n dimensional matrix

S = (AssocMeasure(vi , vj)). (2)

Then, one needs to specify how the association matrix
S is transformed into an adjacency matrix. This involves
three steps: 1) symmetrize S ; 2) transform (and/or thresh-
old) S to [ 0, 1] ; 3) set diagonal values to 1. As for step
1, many methods can be used to symmetrize S if it is
non-symmetric, such as the following three ways:

Smin
ij = min(Sij, Sji) (3)

Saveij = Sij + Sji
2

(4)

Smax
ij = max(Sij, Sji). (5)

As for step 2, if LowerBounds(S) and UpperBounds(S)
denote symmetric matrices of element-wise lower and
upper bounds for S , then a simple transformation can be
defined as:

A =
(

S − LowersBound(S)
UpperBounds(S) − LowerBound(S)

)β

, (6)

where the power β is constant and denotes a soft thresh-
old. As an example, assume that the association measure
is given by a correlation coefficient, i.e. S = (cor(xi, xj)).
Since each correlation has the lower bound −1 and upper
bound +1 , Eq. 6 reduces to the case of a signed weighted
correlation network given by [4,22]:

Aij =
(1 + cor(xi, xj)

2

)β

. (7)

Additional details of correlation based adjacencies
(unweighted or weighted, unsigned or signed) are
described in Materials and Methods .

Network adjacency based on co-expressionmeasures
When dealing with gene expression data, xi denotes the
expression levels of the i-th gene (or probe) across mul-
tiple samples. In this article, we assume that the m
components of xi correspond to random independent
samples. Co-expression measures can be used to define
co-expression networks in which the nodes correspond to
genes. The adjacencies Aij encode the similarity between
the expression profiles of genes i and j . In practice,
transformations such as the topological overlap measure
(TOM) [4,16-18] are often used to turn an original net-
work adjacency matrix into a new one. Details of TOM
transformation are reviewed in Materials and Methods .

Mutual information networks based on categorical
variables
Assume two random samples dx and dy of length m from
corresponding discrete or categorical random variables
DX and DY . Each entry of dx equals one of the follow-
ing R levels ldx1, . . . , ldxR . The mutual information (MI)
is defined as:

MI(dx, dy) =
Rx∑
r=1

Ry∑
c=1

p(ldxr , ldyc) log
(

p(ldxr , ldyc)
p(ldxr)p(ldyc)

)

(8)

where p(ldxr) is the frequency of level r of dx , and log
is the natural logarithm. Note that the following sim-
ple relationship exists between themutual information
(Eq. 8) and the likelihood ratio test statistic (described
in Additional file 1):

MI(dx, dy) = LRT .statistic(dx, dy)
2m

(9)

This relationship has many applications. First, it can
be used to prove that the mutual information takes on
non-negative values. Second, it can be used to calcu-
late an asymptotic p-value for the mutual information.
Third, it points to a way for defining a mutual infor-
mation measure that adjusts for additional conditioning
variables z1, z2, . . . Specifically, one can use a multivariate
multinomial regression model for regressing dy on dx and
the conditioning variables. Up to a scaling factor of 2m ,
the likelihood ratio test statistic can be interpreted as a
(non-symmetric) measure of mutual information between
dx and dy that adjusts for conditioning variables. More
detailed discussion of mutual information can be found
in [14,23,24]. In Additional file 1, we describe associ-
ation measures between categorical variables in detail,
including LRT statistic and MI.
As discussed below, numerous ways have been sug-

gested for construct an adjacency matrix based on
MI. Here we describe an approach that results in a
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weighted adjacency matrix. Consider n categorical vari-
ables dx1, dx2, . . . , dxn. Their mutual information matrix
MI(dxi, dxj) is a similarity matrix S whose entries are
bounded from below by 0. To arrive at an upper bound, we
review the relationship between mutual information and
entropy (the following equation is text book knowledge):

MI(dx, dy) = Entropy(dx)+Entropy(dy)−Entropy(dx, dy)
(10)

where Entropy(dx) denotes the entropy of dx and
Entropy(dx, dy) denotes the joint entropy (refer to
Additional file 1). Using Eq. 10, one can prove that the
mutual information has the following 3 upper bounds:

MI(dx, dy) ≤ min(Entropy(dx), Entropy(dy)), (11)

MI(dx, dy) ≤ Entropy(dx) + Entropy(dy)
2

, (12)

MI(dx, dy) ≤ max(Entropy(dx), Entropy(dy)). (13)
Using Eq. 6 with β = 1 , lower bounds of 0

and UpperBoundsij = (Entropy(dxi) + Entropy(dxj))/2
(Eq. 12) results in the symmetric uncertainty basedmutual
information adjacency matrix:

AMI,SymmetricUncertainty
ij = 2MI(dxi , dxj)

Entropy(dxi) + Entropy(dxj)
.

(14)

A transformation of AMI,SymmetricUncertainty leads to the
universal mutual information based adjacency matrix ver-
sion 1 (denoted AUV1):

AMI,UniversalVersion1
ij = AMI,SymmetricUncertainty

ij

2 − AMI,SymmetricUncertainty
ij

(15)

One can easily prove that 0 ≤ AMI,UniversalVersion1
ij ≤

1. The term “universal” reflects the fact that the adja-
cency based dissimilarity dissMIUniveralVersion1ij = 1 −
AMI,UniversalVersion1 turns out to be a universal dis-
tance function [25]. Roughly speaking, the universal-
ity of dissMIUniveralVersion1ij implies that any other dis-
tance measure between dxi and dxj will be small if
dissMIUniveralVersion1ij is small. The term “distance” reflects
the fact that dissMIUniveralVersion1 satisfies the properties of
a distance including the triangle inequality.
Another adjacency matrix is based on the upper bound

implied by inequality 13. We define the universal mutual
information based adjacency matrix version 2, or AUV2,
as follows:

AMI,UniversalVersion2 = MI(dxi, dxj)
max(Entropy(dxi), Entropy(dxj))

.

(16)

The name reflects the fact that dissMIUniveralVersion2 = 1−
AMI ,UniversalVersion2 is also a universal distance measure [25].

While AMI,UniversalVersion1 and AMI,UniversalVersion2 are in
general different, we find very high Spearman correlations
(r > 0.9 ) between their vectorized versions.
Many alternative approaches exist for definingMI based

networks, e.g. ARACNE [9], CLR [26], MRNET [27] and
RELNET [6,28] are described in Materials and Methods .

Mutual information networks based on discretized
numeric variables
In its original inception, the mutual information mea-
sure was only defined for discrete or categorical variables,
see e.g. [23]. It is challenging to extend the definition to
quantitative variables. But, several strategies have been
proposed in the literature [7,28,29]. In this article, we
will only consider the following approach which is based
on discretizing the numeric vector x by using the equal
width discretization method. This method partitions the
interval [min(x),max(x)] into equal-width bins (sub-
intervals). The vector discretize(x) has the same length as
x but its l-th component reports the bin number in which
xl falls:

dxl = discretize(x)l = r ifxl ∈ binr. (17)

The number of bins, no.bins , is the only parameter of
the equal-width discretization method.
In our subsequent studies, we calculate an MI-based

adjacency matrix using the following three steps. First,
numeric vectors of gene expression profiles are dis-
cretized according to the equal-width discretization
method with the default number of bins given by
no.bins = √

m . Second, the mutual information MIij =
MI(discretize(xi), discretize(xj)) is calculated between the
discretized vectors based on Eq. 10 and theMiller Madow
entropy estimation method (detailed in Additional file 1).
Third, theMI matrix is transformed into one of three pos-
sible MI-based adjacency matrices: AMI,SymmetricUncertainty

(Eq. 14), AMI,UniversalVersion1 (Eq. 15), AMI,UniversalVersion2

(Eq. 16).

Results
An equation relatingMI(discretize(x), discretize(y)) to
cor(x, y)
As described previously, the mutual information
MI(discretize(x), discretize(y)) between the discretized
vectors can be used as an association measure. Note
thatMI(discretize(x), discretize(y)) is quite different from
cor(x, y) in the following aspects. First, the estimated
mutual information depends on parameter choices, e.g.
the number of bins used in the equal-width discretiza-
tion step for defining dx = discretize(x) . Second, the
mutual information aims to measure general dependence-
relationships while the correlation only measures linear or
monotonic relationships. Third, the equations for the two
measures are very different. Given these differences, it is
surprising that a simple approximate relationship holds
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between the two association measures if x, y are samples
from a bivariate normal distribution and the equal-width
discretization method is used with no.bins = √

m. Under
these assumptions, we will show that AMI,UniversalVersion2

can be accurately approximated as follows:

AMI ,UniversalVersion2(dx,dy) = MI(dx,dy)
max(Entropy(dx),Entropy(dy))

≈ Fcor−MI(cor(x, y)), (18)

where the “cor-MI” function [21]

Fcor−MI(s) = log(1 + ε − s2)
log(ε)

(1 − ω) + ω (19)

depends on the following two parameters

ω = 0.43m−0.30

ε = ω2.2 .
(20)

In general, one can easily show that Fcor−MI(s) is a
monotonically increasing function that maps the unit
interval [0,1] to [0,1] if the two parameters ω and ε satisfy
the following relationship

0 < ε ≤ ω < 1 . (21)

Eq. 18 was stated in terms of the Pearson correlation, but
it also applies for bicor as can be seen from our simulation
studies.

Simulations where x and y represent samples from a
bivariate normal distribution
Here we use simulation studies to illustrate that Fcor−MI

(Eq. 19) can be used for predicting or approximating
AMI,UniversalVersion2 from the corresponding correlation
coefficients (Eq. 18). Specifically, we simulate 2000 pairs
of sample vectors x and y from a bivariate normal dis-
tribution. Each pair of vectors x and y is simulated to
exhibit different pairwise correlations. Figure 1 shows the
relationships of the MI-based adjacency measures with
the (observed) Pearson correlation (cor) or biweight mid-
correlation (bicor) when each of the vectors contains
m = 1000 components but the relationship has been con-
firmed for m ranging from 20 to 10000. As can be seen
from Figures (1A, B), the cor-MI function (Eq. 18) with
parameters specified in Eq. 20 provides a highly accurate
prediction of AMI,UniversalVersion2 (Eq. 16) on the basis of
cor(x, y) and m . Since x and y are normally distributed,
the Pearson correlation and bicor are practically indis-
tinguishable (Figure 1C). Thus, replacing cor by bicor
leads to equally good predictions of AMI,UniversalVersion2

(Figure 1D). Figure (1E) shows that AMI,UniversalVersion2 is
practically indistinguishable from AMI,SymmetricUncertainty .
This suggests that cor-MI function can also be used to
predict AMI,SymmetricUncertainty on the basis of the correla-
tionmeasure. Figure (1F) indicates thatAMI,UniversalVersion1

and AMI,UniversalVersion2 are different from each other but
satisfy a monotonically increasing relationship.

Empirical studies involving 8 gene expression data sets
Our simulation results show that both the robust biweight
midcorrelation and the Pearson correlation can be used
as input of Fcor−MI for predictingAMI,UniversalVersion2 when
the underlying variables satisfy pairwise bivariate normal
relationships. However, it is not clear whether Fcor−MI can
also be used to relate correlation and mutual informa-
tion in real data applications. In this section, we report
8 empirical studies to study the relationship between MI
and the robust correlation measure bicor. To focus the
analysis on genes that are likely to reflect biological varia-
tion and to reduce computational burden, we selected the
3000 genes with highest variance across the microarray
samples for each data set. Description of data sets can be
found in Materials and Methods .
We first calculate bicor and AMI,UniversalVersion2 for all

gene pairs in each data set. The two co-expression mea-
sures show strong monotonic relationships in most data
sets (Figure 2). Then, we predict AMI,UniversalVersion2 from
bicor based on Fcor−MI (Eq. 18). Our predictions are
closely related to true AMI,UniversalVersion2 values (Figure 3).
These results indicate that most gene pairs satisfy lin-
ear relationships in real data applications. Among the 8
data sets, SAFHS shows the strongest association between
bicor and AMI,UniversalVersion2 (Spearman correlation 0.72 )
and also gives the most accurate AMI,UniversalVersion2 pre-
diction (Pearson correlation 0.92 ). A possible reason is
that the large samples size (m = 1084 ) leads to more
accurate estimation of mutual information, thus enhanc-
ing the association with bicor and the performance of
the prediction function. In contrast, the small sample size
(m = 44 ) of the yeast data set adversely affects the cal-
culation of mutual information and hence the prediction
performance of Fcor−MI . In summary, our examples indi-
cate that for most gene pairs, AMI,UniversalVersion2 (Eq. 16)
is a monotonic function (cor-MI) of the absolute value
of bicor. This finding likely reflects the fact that the vast
majority of gene pairs satisfy straight line relationships.
This approximation improves with increasing sample size
m , possibly reflecting more accurate estimation of mutual
information.
Although Fcor−MI reveals a close relationship between

bicor and AMI,UniversalVersion2 for most gene pairs, there
are cases where the two association measures strongly
disagree. In the following, we present scatter plots to
visualize the relationships between pairs of genes where
MI found a significant relationship while bicor did not
and vice versa. To facilitate a comparison between bicor
and MI, we standardized each association measure across
pairs, which resulted in the Z scores denoted by Z.MIij =
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Figure 1 Relating mutual information based adjacencies to the Pearson correlation and biweight midcorrelation in simulation. Each point
corresponds to a pair of numeric vectors x and y with lengthm = 1000 . These pairs of vectors were simulated to exhibit different correlations.
AUV1, AUV2, cor, bicor are abbreviations for AMI,UniversalVersion1 , AMI,UniversalVersion2 , Pearson correlation and biweight midcorrelation, respectively.
(A)MI-based adjacency AMI,UniversalVersion2 versus absolute Pearson correlation. Spearman correlation of the two measures and the corresponding
p-value are shown at the top, implying a strong monotonic relationship. The red line shows the predicted AMI,UniversalVersion2 according to Fcor−MI

(Eq. 18). Note that the prediction function is highly accurate in simulation. (B) Observed AMI,UniversalVersion2 versus its predicted value. The straight line
has slope 1 and intercept 0. (C) Observed Pearson correlation (x-axis) and the corresponding bicor values (y-axis). The straight line has slope 1 and
intercept 0. These 2 measurements are practically indistinguishable when x and y are normally distributed. (D) AMI,UniversalVersion2 versus bicor.
Spearman correlation and p-value of the 2 measurements are presented at the top, and predicted AMI,UniversalVersion2 are shown as the red line.
(E) AMI,UniversalVersion2 versus AMI.SymmetricUncertainty . (F) AMI,UniversalVersion2 versus AMI,UniversalVersion1 .

(MIij−mean(MI))/
√

(var(MI)) and Z.bicorij = (bicorij−
mean(bicor))/

√
(var(bicor)). Next we selected gene pairs

whose value of Z.MIij was large but Z.bicorij was low and
vice versa. The resulting pairs correspond to the blue and
red circles in Figures 2 and 3. To see what dependence
patterns drives the discordant behavior of MI and bicor,

we used scatter plots to visualize the relationship between
the pairs of variables (Figure 4). Gene pairs in Figure (4A)
have extreme AMI,UniversalVersion2 but insignificant bicor
values. Note that the resulting dependencies seem hap-
hazard and may not reflect real biological dependencies.
For example, the gene pair in the brain cancer data set
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Figure 2 Comparison of correlation andmutual information based co-expressionmeasures in 8 empirical data sets. Absolute value of bicor
versus AMI,UniversalVersion2 for all probe pairs in each data set. The Spearman correlation and corresponding p-value between the two measures are
shown at the top. The two measures show different levels of monotonic relationships in data sets. The red curve predicts AMI,UniversalVersion2 from
bicor based on Eq. 18. The blue circle highlights the probe pair with the highest AMI,UniversalVersion2 z-score among those with insignificant bicor
z-scores (less than 1.9 ); the red circle highlights the probe pair with the highest bicor z-score among those with insignificant AMI,UniversalVersion2

z-scores (less than 1.9 ).

Figure 3 Comparison of predicted and observedAMI,UniversalVersion2 in 8 empirical data sets. In all data sets, prediction from bicor based on
Eq. 18 and observed AMI,UniversalVersion2 are highly correlated (the Pearson correlation and corresponding p-value shown at top). Line y=x is added.
Blue and red circles have the same meaning as in Figure 2.
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Figure 4 Gene expression of example probe pairs for which the correlation and mutual information basedmeasures disagree. (A) Gene
expression of probe pairs highlighted by blue circles in Figure 2. (B) Gene expression of probe pairs highlighted by red circles in Figure 2. The
Pearson correlation, bicor, AMI,UniversalVersion2 values and z-scores of the latter two measures are shown at the top. Mutual information is susceptible
to outliers, sometimes detects unusual patterns that are hard to explain, and often misses linear relations that are captured by bicor.

exhibits no clear relationships as correctly implied by
bicor, while the significant MI value is driven by an array
outlier with extremely high expression for both genes. In
the SAFHS data, the gene pair exhibits an unusual pat-
tern that is more likely to be the result of batch effects
rather than biological signals. The mouse liver data set
displays a pairwise pattern that is neither commonly seen
nor easily explained. The ND data set shows no obvious
patterns at all, making mutual information less trustwor-
thy. On the contrary, gene pairs with significant value of

Z.bicor but insignificant Z.MI values show approximate
linear relationships in all data sets (Figure 4B). Thus, bicor
captures gene pairwise relationships more accurately and
sensitively than the mutual information based adjacency
AMI,UniversalVersion2.
In summary, bicor usually detects linear relationships

between gene pairs accurately while mutual information
is susceptible to outliers, and sometimes identifies pairs
that exhibit patterns unlikely to be of biological origin or
that exhibit no clear dependency at all. We note that MI
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results tend to be more meaningful when dealing with a
large number of observations (say m > 300 ). Although
we only consider 3000 genes with highest variances, our
results are highly robust with respect to the number of
genes. For example, in Additional file 2, we report results
when considering all 23568 genes in the mouse adipose
data set or considering 10000 randomly selected genes
(rather than with high variance) in the ND data set. These
results demonstrate that our findings do not depend on
the number of genes.

Gene ontology enrichment analysis of co-expression
modules defined by different networks
Gene co-expression networks typically exhibit modular
structure in the sense that genes can be grouped intomod-
ules (clusters) comprised of highly interconnected genes
(i.e., within-module adjacencies are high). The network
modules often have a biological interpretation in the sense
that the modules are highly enriched in genes with a com-
mon functional annotation (gene ontology categories, cell
typemarkers, etc) [3,30,31]. In this section, we assess asso-
ciation measures (and network construction methods) by
the gene ontology (GO) enrichment of their resulting
modules in the 8 empirical data sets.
In order to provide an unbiased comparison, we use the

same clustering algorithm for module assignment for all
networks. Toward this end, we use a module detection
approach that has been used in hundreds of publica-
tions: modules are defined as branches of the hierarchical
tree that results from using 1 − Adjacency as dissim-
ilarity measure, average linkage, and the dynamic tree
cutting method [32]. An example of the module detection
approach is illustrated in Figure 5. To provide an unbiased
evaluation of GO enrichment of each module, we used
the GOenrichmentAnalysis R function to test enrichment
with respect to all GO terms [33,34] and retained the 5
most significant p-values for each module.
The 10 different adjacencies considered here are

described in the last 2 columns of Table 1. We first
compare modules based on AMI,UniversalVersion2 with those
resulting from 3 bicor based networks: unsigned adja-
cency (unsignedA, Eq. 29) , signed adjacency (signedA,
Eq. 28) and Topological Overlap Matrix (TOM, Eq. 30)
based on signed adjacency. GO enrichment p-values of
modules in the 8 real data applications are summarized as
barplots in Figure 6. Figure 6 indicates that, in terms of
gene ontology enrichment, TOM is the best bicor based
gene co-expression network construction method, and it
is superior to AMI,UniversalVersion2 . Note that signed corre-
lation network coupled with the topological overlap trans-
formation exhibit the most significant GO enrichment
p-values in all data sets, and the difference is statistically
significant (p < 0.05 ) in 6 out of 8 comparisons. The effect
of module size is discussed below. An obvious question

is whether the performance of MI can be improved when
using an alternative MI based network inference method.
To address this, we compared the performance of the
signed correlation network (with TOM) versus 4 com-
monly usedmutual information: ARACNE, CLR,MRNET
and RELNET (described in Materials and Methods ).
ARACNE allows one to choose a tolerance threshold
ε ranging from 0 to 1. As ε increases, more edges of
the ARACNE network will be preserved. We evaluated
ARACNE (ε = 0 ), ARACNE (ε = 0.2 ) and ARACNE
(ε = 0.5 ) into our comparison. Similarly to Figures 6
and 7 summarizes the GO enrichment p-values of mod-
ules in the 8 real data applications. TOM leads to the
highest enrichment p-values in 5 cases, and the difference
is statistically significant in 4 of them. In two applica-
tions, ARACNE (ε = 0 ) performs best, and MRNET
performs best in one application. We need to point out
that another mutual information based method, maximal
information coefficient (MIC) [35], has been proposed
recently. Although computational intensive, the MIC has
clear theoretical advantages when it comes to capturing
general dependence patterns. Additional file 3 compares
the performance of MIC with that of TOMwhen it comes
to GO ontology enrichment. TOM clearly outperforms
MIC to identify GO enriched modules in 6 out of 7 data
sets which may suggest that MIC tends to overfit the
data in these applications. SAFHS data set is not included
because the computation of MIC was time-consuming on
this large data set.
Overall, these unbiased comparisons show that

signed correlation networks coupled with the topolog-
ical overlap transformation outperform the commonly
used mutual information based algorithms when it
comes to GO enrichment of modules.

Polynomial and spline regressionmodels as alternatives to
mutual information
A widely noted advantage of mutual information is that
it can detect general, possibly non-linear, dependence
relationships. However, estimation of mutual information
poses multiple challenges ranging from computational
complexity to dependency on parameters and difficulties
with small sample sizes. Standard polynomial and spline
regressionmodels can also detect non-linear relationships
between variables. While perhaps less general than MI,
relatively simple polynomial and spline regression mod-
els avoid many of the challenges of estimating MI while
adequately modeling a broad range of non-linear relation-
ships. In addition to being computationally simpler and
faster, regressionmodels also make available standard sta-
tistical tests andmodel fitting indices. Thus, in this section
we examine polynomial and spline regression as alterna-
tives toMI for capturing non-linear relationships between
gene expression profiles. We define association measures
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Figure 5Module identification based on various network inference methods in simulation with non-linear gene-gene relationships. The
data set is composed of 200 genes across 200 samples. 3 true modules are designed. Two of them, labeled with colors turquoise and blue, contain
linear and non-linear (quadratic) gene-gene relationships. For each adjacency, the clustering tree and module colors are shown. True simulated
module assignment is shown by the first color band underneath each tree. On top of each panel is the Rand index between inferred and simulated
module assignments.

based on polynomial and spline regression models and
study their performance.

Networks based on polynomial and spline regressionmodels
Consider two random variables x and y and the following
polynomial regression model of degree 3:

E(y|x) = β0 + β1x + β2x2 + β3x3. (22)

The model fitting index R2(x, y) (described in Materials
and Methods ) can be used to evaluate the fit of the
model. One can then reverse the roles of x and y to arrive
at a model fitting index R2(y, x) . In general, R2(x, y) �=
R2(y, x).
Now consider a set of n variables x1, . . . , xn . One

can then calculate pairwise model fitting indices R2
ij =

R2(xi, xj) which can be interpreted as the elements of an

n × n association matrix (R2
ij). This matrix is in general

non-symmetric and takes on values in [ 0, 1] , with diag-
onal values equal to 1. A large value indicates a close
relationship between variables xi and xj . To define an
adjacency matrix, we symmetrize (R2

ij) through Eqs. 3, 4
or 5.
Spline regression models are also known as local poly-

nomial regression models [36]. Local refers to the fact
that these models amount to fitting models on subinter-
vals of the range of x . The boundaries of subintervals are
referred to as knots. In analogy to polynomial models, we
build natural cubic spline model for all pairs of xi, xj. We
use the following rule of thumb for the number of knots:
if m > 100 use 5 knots, if m < 30 use 3 knots, other-
wise use 4 knots. We then calculate model fitting indices
and create corresponding network adjacencies. (Details of
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Table 1 Types of networks and characteristics

Network type Used here Examples Variable Ease of estimation Utility for modeling Adjacencies Used in GO

types discussed enrichment

this article analysis

GRN Reduce Direct Time Nonlin. Sign

Correlation network Yes WGCNA [5] Numeric Easy Yes Yes No Maybe No Yes unsignedA Yes

signedA Yes

TOM Yes

Polynomial or Yes WGCNA [5] Numeric Moderate Yes Yes No Maybe Yes No polyR2 No

Spline regression splineR2 No

network

Mutual information network Yes ARACNE Discretized Moderate Yes Not clear No Maybe Yes No ASU No

[9], RELNET numeric, AUV1 No

[6,28], CLR categorical AUV2 Yes

[26], MRNET ARACNE Yes

[27], MIC [35] ARACNE0.2 Yes

ARACNE0.5 Yes

CLR Yes

MRNET Yes

RELNET Yes

MIC Yes

Boolean network No Boolean net-
work [71]

Dichoto-
mized
numeric

Moderate Yes Not clear Yes Yes NA NA No No

Probabilistic network No Bayesian net-
work [72,73]

Any Hard Yes Not clear Yes Yes Yes Yes No No

For each network method, the table reports what kinds of biological insights can be gained and what kind of data can be analyzed. Column “GRN” indicates whether the network has been (or can be) used for studying gene
regulatory networks. Column “Reduce” indicates whether the method has been used for reducing high dimensional data (e.g. via modules and their representatives). Column “Direct” indicates whether the the network can
encode directional information. Column “time” indicates whether the network method is suited for studying time series data. Column “Nonlin. ” indicates whether the network can capture non-linear relationships between
pairs of variables (represented as nodes). Column “Sign” indicates whether the network adjacency provides information on the sign of the relationship between two variables, e.g. a correlation coefficient can take on positive
and negative values. The table entry ”NA” stands for not applicable. Adjacencies discussed in this article: unsignedA: unsigned bicor; signedA: signed bicor; TOM: TOM transformed signed bicor; ASU: AMI,SymmetricUncertainty ;
AUV1: AMI,UniversalVersion1 ; AUV2: AMI,UniversalVersion2 ; ARACNE: ARACNE, ε = 0 ; ARACNE0.2: ARACNE, ε = 0.2 ; ARACNE0.5: ARACNE, ε = 0.5 .
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Figure 6 Gene ontology enrichment analysis comparingAMI,UniversalVersion2 with bicor based adjacencies in 8 empirical data sets. 5 best
GO enrichment p-values from all modules identified using each adjacency are log transformed, pooled together and shown as barplots. Error bars
stand for 95% confidence intervals. On top of each panel is a p-value based on multi-group comparison test. TOM outperforms the others in all 8
data sets.

spline model construction can be found in Materials and
Methods .)
Compared to spline regression, polynomial regression

models have a potential shortcoming: the model fit can
be adversely affected by outlying observations. A single
outlying observation (xu, yu) can ”bend” the fitting curve
into the wrong direction, i.e. adversely affect the esti-
mates of the β coefficients. Spline regression alleviates this
problem by fitting model on sub-intervals of the range
of x.
Figure 8 (A-B) illustrates the use of regression mod-

els for measuring non-linear relationships. In simulation,
polynomial and cubic spline regression can correctly cap-
ture non-linear trends.

Relationship between regression andMI based networks
Previously, we discussed the relationship between corre-
lation and mutual information based adjacencies in simu-
lations where x and y represent samples from a bivariate
normal distribution. Here, we consider the performance
of polynomial and spline association measure in the same
scenario (Additional file 4). With all x, y pairs follow-
ing linear relationships, both regression models reduce
to simple linear models, and perform almost identically
to correlation based measures (panel (A) and (C)). We
find that the cor-MI function introduced previously also
allows us to relate spline and polynomial regression based
networks to the MI based network (panel (B) and (D)),

e.g. AUV2ij ≈ Fcor−MI(
√
max(R2(xi, xj),R2(xj, xi))). Note

that different symmetrization methods (Eq. 3) applied R2

result in similar adjacencies in our applications (refer to
Additional file 5), thus it’s valid to use any of them.
In addition, our empirical data show that regres-

sion models and mutual information adjacency
AMI,UniversalVersion2 are highly correlated, and the rela-
tionship is stronger than that between bicor and
AMI,UniversalVersion2 (Figure 8 C-F). This indicates that
AMI,UniversalVersion2 and regression models discover some
common gene pairwise non-linear relations that can not
be identified by correlations. The Neurological Disease
(ND) and mouse muscle sets are shown in Figure 8 as
representatives. A detailed analysis of all data sets can be
found in Additional file 5.

Simulations formodule identification in datawith non-linear
relationships
Our empirical studies show that most gene pairs sat-
isfy linear relationships, which implies that correlation
based network methods perform well in practice. But one
can of course simulate data where non-linear association
measures (such as MI, spline R2 ) outperform correla-
tion measures when it comes to module detection. To
illustrate this point, we simulated data with non-linear
gene-gene relationships. Here we simulated 200 genes
in 3 network modules across 200 samples. Two of the
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Figure 7 Gene ontology enrichment analysis comparing TOMwith MI based adjacencies in 8 empirical data sets. 5 best GO enrichment
p-values from all modules identified using each adjacency are log transformed, pooled together and shown as barplots. Error bars stand for 95%
confidence intervals. On top of each panel is a p-value based on multi-group comparison test. TOM outperforms the others in 5 data sets.
ARACNE(ε = 0 ) wins in two data sets, making it the second best.

simulated modules, labeled for convenience by the col-
ors turquoise and blue, contain linear and non-linear
(quadratic) gene-gene relationships (Figure 5). We then
use several different network inference methods to con-
struct networks and define modules. To evaluate how
well each network inference method recovers the sim-
ulated modules, we use the Rand index between the
inferred and simulated module assignment. In this case,
non-linear association measures, i.e. AUV2, polynomial
and spline regression, identify modules more accurately
than correlation based measures (Figure 5). In networks
based on correlations, the simulated turquoise and blue
modules are clearly divided into two separate ones, indi-
cating that they miss the non-linear relationships within
these twomodules. In contrast, regressionmodels capture
non-linear gene pairwise relations and correctly assign
these genes into the same modules. To study the effect
of the number of observations, we repeated the analysis
for m ranging from 10 to 500. Figure 9 shows that non-
linear association measures, especially regression models,
outperform correlation based measures as data sample
size increases. Note that polynomial and spline regres-
sion based co-expression measures perform as well as
MI based networks in this situation. Overall, our results
validate the usage of polynomial and spline regression
models as alternatives tomutual information for detecting
non-linear relationships.

Overview of network methods and alternatives
A thorough review of network methods is beyond our
scope and we point the reader to the many many review
articles [37-40]. But Table 1 describes not only the meth-
ods used in this article but also alternative approaches.
Table 1 also describes the kind of biological insights
that can be gained from these network methods. As a
rule, association networks (based on correlation or MI)
are ill suited for causal analysis and for encoding direc-
tional information. While association networks such as
WGCNA or ARACNE have been been successfully used
for gene regulatory networks (GRNs) [13], a host of
alternatives are available. For example, the DREAM (Dia-
logue for Reverse Engineering Assessments and Methods)
project has repeatedly tackled this problem [41-43]. A
limitation of our study is that we are focusing on undi-
rected (as opposed to directed, causal models). Structural
equation models, Bayesian networks, and other proba-
bilistic graphical models are widely used for studying
causal relationships. Many authors have proposed to use
Bayesian networks for analyzing gene expression data
[44-47] and for generating causal networks from observa-
tional data [48] or genetic data [49,50].
While it is beyond our scope to evaluate network infer-

ence methods for time series data (reviewed in [51]),
we briefly mention several approaches. A (probabilistic)
Boolean network [52] is a special case of a discrete
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Figure 8 Fitting polynomial and spline regressionmodels to measure non-linear relationships. (A-B) A pair of simulated data x, y (black dots)
with the black curve illustrating the true expected value E(y) given x, where E(y|x) = cos(x2)2. The red curve shows the fit of a polynomial
regression model with degree d = 4 . The blue curve shows the fit of a cubic spline regression model with 2 knots. Fitting indices of the twomodels
are shown at the top. In simulation, polynomial and cubic spline regression models can properly discover non-linear relations. (C-D) Comparisons of
regression models and mutual information based co-expression measures in the ND data set. Co-expression of probe pairs is measured with
polynomial (d=3)/cubic spline regressions (x-axis) and mutual information AMI,UniversalVersion2 (y-axis). The Spearman correlation and p-value of the
twomeasures are shown at the top. (E-F) Comparisons in the mouse muscle data set. AMI,UniversalVersion2 has a stronger correlation with regression
models than with bicor, indicating that the first two measures can capture certain common non-linear patterns.

state space model that characterizes a system using
dichotomized data. A Bayesian network is a graph-based
model of joint multivariate probability distributions that
captures properties of conditional independence between
variables [45]. Such models are attractive for their abil-
ity to describe complex stochastic processes and for
modeling causal relationships. Several articles describe
the relationship between Boolean networks and dynamic
Bayesian networks when it comes to models of gene reg-
ulatory relationships [47,53]. Finally, we mention that cor-
relation network methodology can be adapted to model

time series data, e.g. many authors have proposed to
use a time-lagged correlation measure for inferring gene
regulatory networks [54].
A large part of GRN research focuses on the accurate

assessment of individual network edges, e.g. [55-58] so
many of these methods are not designed as data reduc-
tion methods. In contrast, correlation network methods,
such as WGCNA, are highly effective at reducing high
dimensional genomic data since modules can be repre-
sented by their first singular vector (referred to as module
eigengene) [21,59].
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Figure 9 Rand indices in simulations with various number of
observations. Simulation sample size versus Rand indices between
inferred and simulated module assignments from different network
inference methods. increase as the simulation data set contains more
samples. Non-linear measures, especially polynomial and spline
regression models, outperform other measures as sample size
increases.

Discussion
This article presents the following theoretical and
methodological results: i) it reviews the relationship
between the MI and a likelihood ratio test statistic in case
of two categorical variables, ii) it presents a novel empir-
ical formula for relating correlation to MI when the two
variables satisfy a linear relationship, and iii) it describes
how to use polynomial and spline regression models for
defining pairwise co-expression measures that can detect
non-linear relationships.
Mutual information has several appealing information

theoretic properties. A widely recognized advantage of
mutual information over correlation is that it allows one
to detect non-linear relationships. This can be attractive
in particular when dealing with time series data [60]. But
mutual information is not unique in being able to detect
non-linear relationships. Standard regressionmodels such
as polynomial and spline models can also capture non-
linear relationships. An advantage of these models is that
well established likelihood based statistical estimation and
testing procedures are available. Regression models allow
one to calculate model fitting indices that can be used to
define network adjacencies as well as flag possible outlying
observations by analyzing residuals.
For categorical variables, mutual information is (asymp-

totically) equivalent to other widely used statistical associ-
ation measures such as the likelihood ratio statistic or the
Pearson chi-square test. In this case, all of these measures
(includingMI) are arguably optimal association measures.

InterpretingMI as a likelihood ratio test statistic facilitates
a straightforward approach for adjusting the association
measure for additional covariates.
We and others [14] have found close relationships

between mutual information and correlation based co-
expression networks. Our comprehensive empirical stud-
ies show that mutual information is often highly related
to the absolute value of the correlation coefficient. We
observe that when robust correlation and mutual infor-
mation disagree, the robust correlation findings appear
to be more plausible statistically and biologically. We
found that network modules defined using robust cor-
relation exhibit on average higher enrichment in GO
categories than modules defined using mutual informa-
tion. Since our empirical studies involved expression data
measured on a variety of platforms and normalized in
different ways, we expect that our findings are broadly
applicable.
The correlation coefficient is an attractive alternative

to the MI for the following reasons. First, the correlation
can be accurately estimated with relatively few obser-
vations and it does not require the estimation of the
(joint) frequency distribution. Estimating the joint den-
sity needed for calculating MI typically requires larger
sample sizes. Second, the correlation does not depend
on hidden parameter choices. In contrast, MI estima-
tion methods involve (hidden) parameter choices, e.g. the
number of bins when a discretization method is being
used. Third, the correlation allows one to quickly calcu-
late p-values and false discovery rates since asymptotic
tests are available (Additional file 1). In contrast, it is
computationally challenging to calculate a permutation
test p-value for the mutual information between two
discretized vectors. Fourth, the sign of the correlation
allows one to distinguish positive from negative rela-
tionships. Signed correlation networks have been found
useful in biological applications [22] and our results show
that the resulting modules tend to be more significantly
enriched with GO terms that those of networks that
ignore the sign information. Fifth, modules comprised
of highly correlated vectors can be effectively summa-
rized by the module eigennode (the first principal com-
ponent of scaled vectors). Sixth, the correlation allows
for a straightforward angular interpretation, which facil-
itates a geometric interpretation of network methods
and concepts [59]. For example, intramodular connec-
tivity can be interpreted as module eigennode based
connectivity.
Our empirical studies show that a signed weighted cor-

relation network transformed via the topological overlap
matrix transformation often leads to the most significant
functional enrichment of modules. The recently devel-
oped maximal information coefficient [35] has clear the-
oretical advantages when it comes to measuring general
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dependence patterns between variables but our results
show that the biweight midcorrelation coupled with the
topological overlap measure outperforms the MIC when
it comes to the GO ontology enrichment of resulting
coexpression modules.
While defining mutual information for categorical vari-

ables is relatively straightforward, no consensus seems
to exist in the literature on how to define mutual infor-
mation for continuous variables. A major limitation of
our study is that we only studied MI measures based on
discretized continuous variables. For example, the cor-
MI function for relating correlation to MI only applies
when an equal width discretization method is used with
no.bins = √

m.
A second limitation concerns our gene ontology anal-

ysis of modules identified in networks based on various
association measures in which we found that the corre-
lation based topological overlap measure (TOM) leads to
co-expressionmodules that aremore highly enriched with
GO terms than those of alternative approaches. A poten-
tial problem with our approach is that the enrichment
p-values often strongly depend on (increase with) mod-
ule sizes, and TOM tends to lead to larger modules. To
address this concern, in Additional file 6 we show the
enrichment p-values as a function ofmodule size formod-
ules identified by TOM and by AUV2. It turns out that in
most studies, the enrichment of modules defined by TOM
is better than that of comparably sized modules defined by
AUV2.
A third limitation concerns our use of the bicor corre-

lation measure as opposed to alternatives (e.g. Pearson or
Spearman correlation). In our study we find that all 3 cor-
relation measures lead to very similar findings (Additional
file 7).

Conclusions
Our simulation and empirical studies suggest that mutual
information can safely be replaced by linear regression
based association measures (e.g. bicor) in case of sta-
tionary gene expression measures (which are represented
by quantitative variables). To capture general mono-
tonic relationships between such variables, one can use
the Spearman correlation. To capture more complicated
dependencies, one can use symmetrized model fitting
statistics from a polynomial or spline regression model.
Regression based association measures have the advan-
tage of allowing one to include covariates (conditioning
variables). In case of categorical variables, mutual infor-
mation is an appropriate choice since it is equivalent to
an association measure (likelihood ratio test statistic) of a
generalized linear regression model but categorical vari-
ables rarely occur in the context of modeling relationships
between gene products.

Materials andMethods
Empirical gene expression data sets description
Brain cancer data set. This data set was composed of
55 microarray samples of glioblastoma (brain cancer)
patients. Gene expression profiling were performed with
Affymetrix high-density oligonucleotide microarrays. A
detailed description can be found in [61].
SAFHS data set. This data set [62] was derived from

blood lymphocytes of randomly ascertained participants
enrolled independent of phenotype in the San Antonio
Family Heart Study. Gene expression profiles of 1084 sam-
ples were measured by Illumina Sentrix Human Whole
Genome (WG-6) Series I BeadChips.
ND data set. This blood lymphocyte data set consisted

of 346 samples from patients with neurological diseases.
Illumina HumanRef-8 v3.0 Expression BeadChip were
used to measure their gene expression profiles.
Yeast data set. The yeast microarray data set was

composed of 44 samples from the Saccharomyces
Genome Database (http://db.yeastgenome.org/cgi-
bin/SGD/expression/expressionConnection.pl). Original
experiments were designed to study the cell cycle [63]. A
detailed description of the data set can be found in [64].
Tissue-specific mouse data sets. This study uses 4

tissue-specific gene expression data from a large F2 mouse
intercross (B × H) previously described in [65,66]. Specif-
ically, the surveyed tissues include adipose (239 samples),
whole brain (221 samples), liver (272 samples) and muscle
(252 samples).

Definition of Biweight Midcorrelation
Biweight midcorrelation (bicor) is considered to be a good
alternative to Pearson correlation since it is more robust
to outliers [67]. In order to define the biweight midcor-
relation of two numeric vectors x = (x1, . . . , xm) and
y = (y1, . . . , ym), one first defines ui, vi with i = 1, . . . ,m:

ui = xi − med(x)
9mad(x)

vi = yi − med(y)
9mad(y)

(23)

where med(x) is the median of x , and mad(x) is the
median absolute deviation of x . This leads us to the
definition of weight wi for xi , which is,

w(x)
i = (1 − u2i )

2I(1 − |ui|) (24)

where the indicator I(1−|ui|) takes on value 1 if 1−|ui| >

0 and 0 otherwise. Therefore, w(x)
i ranges from 0 to 1. It

decreases as xi gets away frommed(x) , and stays at 0 when
xi differs from med(x) by more than 9mad(x) . An analo-
gous weight w(y)

i can be defined for yi . Given the weights,
we can define biweight midcorrelation of x and y as:
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bicor(x, y) =
∑m

i=1 (xi − med(x))w(x)
i (yi − med(y))w(y)

i√∑m
j=1

[
(xj − med(x))w(x)

j

]2√∑m
k=1

[
(yk − med(y))w(y)

k

]2 . (25)

A modified version of biweight midcorrelation is imple-
mented as function bicor in the WGCNA R package
[5,20]. One major argument of the function is “max-
POutliers”, which caps the maximum proportion of out-
liers with weight wi = 0 . Practically, we find that
maxPOutliers = 0.02 detects outliers efficiently while
preserving most data. Therefore, 0.02 is the value we
utilize in this study.

Types of correlation based gene co-expression networks
Given the expression profile x ,the co-expression similarity
sij between genes i and j can be defined as:

sij = |cor(xi, xj)|.
An unweighted network adjacency Aij between gene

expression profiles xi and xj can be defined by hard thresh-
olding the co-expression similarity sij as follows

Aij =
{
1 if sij ≥ τ

0 otherwise,
(26)

where τ is the ‘hard’ threshold parameter. Hard thresh-
olding of the correlation leads to simple network concepts
(e.g., the gene connectivity equals the number of direct
neighbors) but it may lead to a loss of information.
To preserve the continuous nature of the co-expression

information, we define the weighted network adjacency
between 2 genes as a power of the absolute value of the
correlation coefficient [4,61]:

Aij = sβij , (27)

with β ≥ 1 . This soft thresholding approach emphasizes

strong correlations, punishes weak correlations, and leads
to a weighted gene co-expression network.
An important choice in the construction of a correlation

network concerns the treatment of strong negative corre-
lations. In signed networks negatively correlated nodes
are considered unconnected. In contrast, in unsigned
networks nodes with high negative correlations are con-
sidered connected (with the same strength as nodes with
high positive correlations). As detailed in [4,22], a signed
weighted adjacency matrix can be defined as follows

Aij = (0.5 + 0.5cor(xi, xj))β (28)

and an unsigned adjacency by

Aij = |cor(xi, xj)|β . (29)

β is default to 6 for unsigned adjacency and 12 for signed
adjacency. The choice of signed vs. unsigned networks
depends on the application; both signed [22] and unsigned
[30,61,65] weighted gene networks have been successfully
used in gene expression analysis.

Adjacency function based on topological overlap
The topological overlap matrix (TOM) based adjacency
function ATOM maps an original adjacencymatrixAoriginal

to the corresponding topological overlap matrix, i.e.

ATOM(Aoriginal)ij =
∑

l �=i,j A
original
il Aoriginal

l,j +Aoriginal
ij

min(
∑

l �=i A
original
il ,

∑
l �=j A

original
jl )−Aoriginal

ij +1
. (30)

The TOM based adjacency function ATOM is particu-
larly useful when the entries of Aoriginal are sparse (many
zeroes) or susceptible to noise. This replaces the original
adjacencies by a measure of interconnected that is based
on shared neighbors. The topological overlapmeasure can
serve as a filter that decreases the effect of spurious or
weak connections and it can lead tomore robust networks
[17,18,68].

Mutual-information based network inferencemethods
There are 4 commonly used mutual-information based
network inference methods: RELNET, CLR, MRNET
and ARACNE. In order to identify pairwise interactions
between numeric variables xi, xj, all methods start by
estimating mutual informationMI(xi, xj).

RELNET
The relevance network (RELNET) approach [6,28] thresh-
olds the pairwise measures of mutual information by a
threshold τ . However, this method suffers from a sig-
nificant limitation that vectors separated by one or more
intermediaries (indirect relationships) may have high
mutual information without implying a direct interaction.

CLR
The CLR algorithm [26] is based on the empirical distri-
bution of MI. It first defines a score zi given the mutual
information MI(xi, xj) and the sample mean μi and stan-
dard deviation σi of the empirical distribution of mutual
informationMI(xi, xk), k = 1, . . . , n:

zi = max
(
0,

MI(xi, xj) − μi

σi

)
. (31)
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zj can be defined analogously. In terms of zi, zj, the score
used in CLR algorithm can be expressed as zij =

√
z2i + z2j .

MRNET
MRNET [27] infers a network by repeating the maximum
relevance/minimum redundancy (MRMR) feature selec-
tion method for all variables. The MRMR method starts
by selecting the variable xi having the highest mutual
information with target y. Next, given a set S of selected
variables, the criterion updates S by choosing the variable
xk that maximizes uj − rj where uj is a relevance term and
rj is a redundancy term. In particular,

uj =MI(xk , y) (32)

rj = 1
|S|

∑
xi∈S

MI(xk , xi) (33)

The score of each pair xi and xj will be the maximum
score of the one computed when xi is the target and the
one computed when xj is the target.

ARACNE
The ARACNE [9] (Algorithm for the Reconstruction of
Accurate Cellular Networks) developed by Andrea Cali-
fano’s group is an extension of RELNET. Given the limi-
tation of RELNET, ARACNE removes the vast majority of
indirect candidate interactions using a well-known infor-
mation theoretic property, the data processing inequal-
ity (DPI). The DPI applied to association networks states
that if variables xi and xj interact only through a third
variable xk , then

MI(xi, xj) ≤ min(MI(xi , xk),MI(xk , xj)) (34)

ARACNE starts with a network graph where each pair
of nodes with MIij > τ is connected by an edge. The
weakest edge of each triplet, e.g. the edge between i and
j , is interpreted as an indirect interaction and is removed
if the difference between min(MI(xi , xk),MI(xk , xj)) and
MI(xi, xj) lies above a threshold ε , i.e. the edge is removed
if

MI(xi, xj) ≤ min(MI(xi , xk),MI(xk , xj)) − ε. (35)

The tolerance threshold ε could be chosen to reflect the
variance of the MI estimator and should decrease with
increasing sample size m . Using a non-zero tolerance
ε > 0 can lead to the persistence of some 3-vector loops.
The outputs from RELNET, CLR, MRNET or ARACNE

are association matrices. They can be transformed into
corresponding adjacencies based on the algorithm dis-
cussed in Introduction.

MIC
Another mutual information based method is the recently
proposed the maximal information coefficient (MIC) [35].

The MIC is a type of maximal information-based non-
parametric exploration (MINE) statistics [35]. In our
empirical evaluations, we calculate the MIC using the
minerva R package [69].

Fitting indices of polynomial regressionmodels
While networks based on the Pearson correlation can only
capture linear co-expression patterns there is clear evi-
dence for non-linear co-expression relationships in tran-
scriptional regulatory networks [70]. The following clas-
sical regression based approaches can be used for study-
ing non-linear relationships. The polynomial regression
model:

E(y) = β01 + β1x + β2x2 . . . + βdxd

= Mβ ,
(36)

where

M =[ 1, x, . . . , xd] . (37)

One can show that the least squares estimate of the
parameter vector β̂ is

β̂ = (MτM)−Mτ y,

where- denotes the (pseudo) inverse, and τ denotes the
transpose of a matrix.
Given β̂ , we can calculate the fitting index R2 as:

R2 = cor(y, ŷ)2 = cor(y,Mβ̂)2 (38)

In the context of a regressionmodel, R2 is also known as
the proportion of variation of y explained by the model.

Spline regressionmodel construction
To investigate the relationship between variable x and y
, one can use another textbook method from the arsenal
of statisticians: spline regression models. Here knots are
used to decide boundaries of the sub-intervals. They are
typically pre-specified, e.g. based on quantiles of x . The
choice of the knots will affect the model fit. It turns out
that the values of the knots (i.e. their placement) is not as
important as the number of knots. We use the following
rule of thumb for the number of knots: if m > 100 use 5
knots, ifm < 30 use 3 knots, otherwise use 4 knots.
To ensure that fit between y and x satisfies a continuous

relationship, we review the hockey stick function ()+ to
transform x :

(s)+ =
{
s if s ≥ 0
0 if s < 0.

(39)

This function can also be applied to the components
of a vector, e.g. (x)+ denotes a vector whose negative
components have been set to zero. So (x − knot1)+ is
a vector whose u-th component equals x[ u]−knot1 if
x[ u]−knot1 ≥ 0 and 0 otherwise.
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We are now ready to describe cubic spline regression
model, which fits polynomial of degree 3 to sub-intervals.
The general form of a cubic spline with 2 knots is as
follows

E(y) =β01 + β1x + β2x2 + β3x3 + β4(x − knot1)3+
+ β5(x − knot2)3+. (40)

The knot parameters (numbers) knot1, knot2, . . . are
chosen before estimating the parameter values. Analo-
gous to polynomial regression, R2 can be calculated as the
association measure between x and y . This method guar-
antees the smoothness of the regression line and restrict
the influence of each observation to its local sub-interval.

Other networks
Boolean network [71] and Probabilistic network [72,73]
are briefly mentioned in Table 1.

Availability of software
Project name: Adjacency matrix for non-linear
relationships
Project home page: http://www.genetics.ucla.edu/
labs/horvath/CoexpressionNetwork/Rpackages/
WGCNA
Operating system(s): Platform independent
Programming language: R
Licence: GNU GPL 3

The following functions described in this arti-
cle have been implemented in the WGCNA R
package [5]. Function adjacency.polyReg and adja-
cency.splineReg calculate polynomial and spline regression
R2 based adjacencies. Users can specify the R2 sym-
metrization method. Function mutualInfoAdjacency
calculates the mutual information based adjacencies
AMI,SymmetricUncertainty (Eq. 14),AMI,UniversalVersion1 (Eq. 15)
and AMI,UniversalVersion2 (Eq. 16). Function AFcorMI imple-
ments the Fcor−MI prediction function 18 for relating
correlation with mutual information.

Additional files

Additional file 1: Detailed methods descriptions. In this document, we
provide detail information of entropy, mutual information, likelihood ratio
test statistics and p-value calculation of correlation coefficients.

Additional file 2: Empirical analysis using large number of genes in
the mouse adipose and ND data sets. Page one is an empirical analysis
using all 23568 genes without restricting to 3000 genes for the mouse
adipose data set. (A) Absolute value of bicor versus AMI,UniversalVersion2 . One
million randomly sampled gene pairs are plotted to reduce computational
burden. The two measures show good monotonic relationship. The red
curve predicts AMI,UniversalVersion2 from bicor. The blue circle highlights the
probe pair with the highest AMI,UniversalVersion2 z-score among those with
insignificant bicor z-scores (less than 1.9 ); the red circle highlights the

probe pair with the highest bicor z-score among those with insignificant
AMI,UniversalVersion2 z-scores (less than 1.9 ). Red and blue circles are selected
based on all gene pairs rather than sampled ones. (B) Prediction from bicor
based on Eq. 18 and observed AMI,UniversalVersion2 are highly correlated. As in
(A), one million randomly sampled gene pairs are plotted. Line y=x is
added. (C) Gene expression of probe pairs highlighted by blue circles. (D)
Gene expression of probe pairs highlighted by red circles.
Page two is the same analysis for ND data set using 10000 randomly
selected genes rather than 3000 genes with highest variance.

Additional file 3: Comparison of MIC and correlation based
co-expression measures. Comparison of MIC and correlation in our
empirical gene expression data sets except SAFHS. This is an extension of
Figure 6. 5 best GO enrichment p-values from all modules identified using
MIC and TOM are log transformed, pooled together and shown as barplots.
Error bars stand for 95% confidence intervals. On top of each panel is a
p-value based on multi-group comparison test. TOM outperforms MIC in
all data sets except the mouse brain data.

Additional file 4: Compare polynomial and spline regression models
to correlation or mutual information based co-expression measures
in simulation. Each point corresponds to a pair of numeric vectors x and y
with lengthm = 1000. Data is simulated as in Figure 1. (A) Square root of R2

from polynomial regression symmetrized by Eq. 5 versus absolute Pearson
correlation values. The two measures are indistinguishable since the data is
simulated to exhibit linear relationships. (B) R2 from polynomial regression
symmetrized by Eq. 5 versus AMI,UniversalVersion2. The red line predicts
AMI,UniversalVersion2 from R2. (C-D) Same plots for spline regression models.

Additional file 5: Polynomial and spline regression models for
estimating non-linear relationships in real data application. In this
document, we use polynomial and spline regression models to estimate
non-linear relationships in real data applications.

Additional file 6: The relationship betweenmodule size and gene
ontology enrichment p-values in 8 real data applications. In each
panel, module size (x-axis) is plotted against − log 10 GO enrichment
p-values (y-axis)in dots. Loess regression lines are provided to show the
trend. Red and black color represent network modules constructed using
TOM and AMI,UniversalVersion2 based measures, respectively. In most data sets,
the enrichment of modules defined by TOM is better than that of
comparably sized modules defined by AMI,UniversalVersion2 .

Additional file 7: Comparison of bicor, Pearson correlation and
Spearman correlation based signed adjacency in 8 empirical data
sets. Each panel show the − log 10 transformed 5 best gene ontology
enrichment p-values of all modules identified using each type of
adjacency. Error bars stand for 95% confidence intervals. On top of each
panel is a p-value based on multi-group comparison test. All three types of
correlation are similar in terms of GO enrichment.
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