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Abstract

Background: Spectral counting methods provide an easy means of identifying proteins with differing abundances
between complex mixtures using shotgun proteomics data. The crux spectral-counts command,
implemented as part of the Crux software toolkit, implements four previously reported spectral counting methods,
the spectral index (Sly), the exponentially modified protein abundance index (emPAl), the normalized spectral
abundance factor (NSAF), and the distributed normalized spectral abundance factor (ANSAF).

Results: We compared the reproducibility and the linearity relative to each protein’s abundance of the four spectral
counting metrics. Our analysis suggests that NSAF yields the most reproducible counts across technical and biological
replicates, and both Sly and NSAF achieve the best linearity.

spectral-counts.

Conclusions: With the crux spectral-counts command, Crux provides open-source modular methods to
analyze mass spectrometry data for identifying and now quantifying peptides and proteins. The C++ source code,
compiled binaries, spectra and sequence databases are available at http://noble.gs.washington.edu/proj/crux-

Background
Existing methods for differential proteomics (reviewed by
[1]) fall into two categories: spectral counting methods
that rely on counting the number of spectra that map to
a given protein across multiple experiments, and peptide
chromatographic peak intensity methods that use the area
under the peptide precursor ion peak as a measure of
peptide abundance. In principle, methods based on mass
spectrometry peak areas are potentially much more accu-
rate, but these methods require highly reproducible liquid
chromatography as well as accurate methods for chro-
matographic alignment and identification of peaks within
the profile spectra. In contrast, spectral counting meth-
ods are straightforward to employ and have been shown to
correctly detect known differences between samples [2],
which contributes to their wide use.

The command line tool crux spectral-counts
implements four popular spectral counting methods: the
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spectral index (SIy) [3], the exponentially modified pro-
tein abundance index (emPAl) [4], the normalized spectral
abundance factor (NSAF) [5], and the distributed normal-
ized spectral abundance factor (ANSAF) [6]. The crux
spectral-counts command is integrated within the
Crux software toolkit, which provides actively main-
tained open-source methods to identify and now quantify
peptides and proteins from shotgun mass spectrometry
datasets. Crux supports a variety of input spectra formats,
and the tools can easily be incorporated into proteomic
analysis pipelines, such as the Trans-Proteomic Pipeline
(TPP) [7]. Finally, the modular design of Crux allows
improvements to one part of the toolkit to be propagated
through downstream analyses.

Currently, several software packages offer spectral
counting protein quantification methods [8]. ProteolQ
(http://www.bioinquire.com) and Scaffold [9] are com-
mercial software products that post-process results from
a variety of database search programs. Freely available
tools such as APEX [10], emPAI calc [11], and PepC [12]
each offer a single spectral counting method. Table 1 com-
pares the features of six software spectral counting tools.
Crux offers more spectral counting methods than other
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Table 1 Spectral counting software

APEX emPAl PepC
Calc

Crux ProteoQ Scaffold

Metrics
Provided
Sly
emPAl
NSAF
dNSAF

< X X X X

Raw
Other X X X

Other

Features

Parsimony X X X
Analysis

Peptide- X

Level

Counting

Free X X X X

Open X
source

Web X X
Interface

Graphical X X X
user
interface

Scriptable X X X

This table summarizes the features of various spectral counting software
methods.

tools and is the only method to provide peptide-level in
addition to protein-level counts.

Using crux spectral-counts, we compared and
contrasted the reproducibility and linearity of the four
spectral counting methods. Our experiments suggest that
the NSAF metric provides the most reproducible protein
quantification. In contrast, our linearity experiments show
that SIy and NSAF provide the best performance, with
dNSAF providing intermediate performance and emPAI
yielding the worst linearity.

The contributions of this paper are thus two-fold: we
describe a performance comparison of the reproducibil-
ity and linearity of the SIy, emPAI, NSAF, and dNSAF
protein quantification methods, and we provide to the
proteomics community a flexible, open source spectral
counting software tool.

Implementation

Software

The crux spectral-counts command is imple-
mented as part of the Crux proteomics software toolkit
[13]. The toolkit is implemented in C++ as a single binary
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that supports commands for database searching and a
variety of downstream analyses [14-18].

The crux spectral-counts command takes as
input a protein database in FASTA format and a collec-
tion of peptide-spectrum matches (PSMs) produced by a
database search procedure. The PSMs may be in Crux’s
tab-delimited text format, PeptideProphet’s PepXML or
mzldentML [19]. To compute the SIy score, a set of spec-
tra must also be provided as input in MS2, mzXML, or
mgf format. By default, crux spectral-counts will
select the PSMs in the input by a user modifiable threshold
of g-value < 0.01.

For each protein with at least one spectral count, the
program then computes the NSAF, ANSAF, emPA], or the
SIy score. The NSAF metric is defined as

SN/Ln
Z?=1 (si/Ly)

where N is the protein index, sy is the number of spectra
matched to protein N, Ly is the length of protein N, and n
is the total number of proteins in the input database.

The dANSAF metric is given by

NSAFN =

SK["'Z/]'(:J NS, N
Ln

UK dyist
YL
where s% is the spectral count for the peptides uniquely
mapping to protein N, S]S.,N is the spectral count of degen-
erate peptide j (out of the protein’s k degenerate peptides)
mapped to protein N, and 4}y is the distribution factor of
peptide shared counts, defined by the equation

dNSAFN =

U
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The metric emPAI is defined as
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where p{/ is the number of unique peptides observ-

able for protein N and p%’se’ ved
peptides observed for protein N.

Finally, the SIy score is calculated using
s
f§1 (Zklzl lk)
Ln (Z;I:I SI/)

where py is number of unique peptides in protein N, s;
is the number of spectra assigned to peptide j, and iy is

is the number of unique

SIy =
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the total fragment ion intensity of spectrum k. Analogous
scores can also be computed for each peptide, rather than
for each protein. A detailed description of the peptide-
level scoring metrics is available in the on-line documen-
tation. As output, crux spectral-counts produces
a tab-delimited file listing proteins and their correspond-
ing counts, in reverse sorted order.

The crux spectral-counts command also com-
putes a parsimonious set of proteins, using the greedy set
cover approach used by IDPicker [20]. Users thus have
the option of considering spectral counts only for proteins
within the parsimonious set.

Data Collection

For the reproducibility experiments, proteins were
extracted from the cochlear nucleus of the developing
mouse brain at postnatal day 7 and postnatal day 21. Two
biological replicates were generated for each age by dis-
secting out the cochlear nuclei from two separate mice at
each age. One of the 21-day mice was used to generate two
samples, thereby providing a technical replicate in addi-
tion to a biological replicate. The samples prepared from
the chicken brain were derived from nucleus laminaris,
an auditory region in the brain stem. Samples were taken
from the dorsal (D) and ventral (V) regions of this area.
For each region, two biological replicates were generated,
and one of those replicates was also subjected to techni-
cal replication. Each sample was digested with trypsin and
subjected to liquid chromatography followed by tandem
mass spectrometry.

For the linearity experiments, we used eight samples
that represent a dilution curve of 48 known proteins
synthesized by Sigma (UPS1, http://www.sigmaaldrich.
com). These data sets are mixtures (Std1-Std8) of the
C. elegans lysate at equal concentrations and the 48 pro-
teins, diluted by a two-fold in each successive standard.
Std 8 has the lowest concentration of the known pro-
teins (6 fmol) and Std 1 has the highest concentration
(870 fmol).

All three data sets are publicly available at http://noble.
gs.washington.edu/proj/crux-spectral-counts.

Data analysis

The fragmentation spectra from the experiments were
searched against their respective mouse, chicken, or
the C. elegans+UPS1 protein database using crux
sequest -search followed by crux g-ranker, with
the default parameters. crux spectral-counts was
applied to the peptide-spectrum matches (PSMs) that
received g-values < 0.01. The resulting data sets for the
mouse and chicken replicates are summarized in Addi-
tional file 1: Table S1, and the UPS1 dilution curve data
sets are summarized in Additional file 1: Table S2.
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Results

Testing reproducibility between replicates

To investigate the reproducibility of the four spectral
count methods, we analyzed mass spectrometry data
from technical and biological replicates from chicken and
mouse samples. We then produced a scatter plot for each
pair of biological or technical replicates and computed the
corresponding Spearman correlation. For these compar-
isons, proteins identified in only one of the two datasets
were ignored. Figure 1 shows sixteen such plots, corre-
sponding to one biological and one technical replicate
for chicken and mouse, respectively. The complete collec-
tion of 76 plots is provided as Additional file 1: Figures
S1-S2. From these analyses, as summarized in Table 2,
we draw two primary conclusions. First, the spectral
counts are generally reproducible: the mean correlation
value across all 76 pairs is 0.867, and the minimum
correlation is 0.719. Second, reassuringly, the technical
replicates produce higher correlations than the biological
replicates: the mean correlation among 24 pairs of tech-
nical replicates is 0.885, whereas the corresponding value
for the 52 pairs of biological replicates is 0.859 (two-tailed
Wilcoxon rank-sum test p-value=0.026).

To test whether the observed differences in correla-
tions among the four metrics are significant, we applied a
Wilcoxon signed-rank test to paired sets of correlations.
With four metrics, there are six possible paired compar-
isons. Figure 2 shows the results of this analysis, where
one metric attaining a significant increase (using a Bon-
ferroni p-value of 0.05/6 = 0.008333) over another is
indicated by a directed edge. From this graph we conclude
that, for the biological and technical replicates, NSAF
yields significantly more reproducible quantification val-
ues than SIy, ANSAF and emPAI Our reproducibility
results agree with Colaert et al., who claim that NSAF
is more reproducible than SIy and emPAI [21]. How-
ever, in contrast to our results, Griffen et al. report bet-
ter reproducibility across replicates for SIy compared to
NSAF [3].

Testing linear response for protein abundance across
samples

To determine the linear response of each of the spectral
count metrics, we analyzed mass spectra from a dataset of
samples that form a dilution curve of forty-eight proteins
with known amounts spiked into a C. elegans lysate. We
performed linear regression between each protein spec-
tral count and the associated amounts across the dilution
curve samples. For this analysis, we only included pro-
teins that obtain a positive spectral count in three or more
of the data sets, which results in a comparison of forty-
two proteins across the four metrics. We then carried
out a Wilcoxon signed rank test analysis separately on
the average correlation, R?, and the mean percent error
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Figure 1 Reproducibility of spectral counts across biological and technical replicate experiments. Each plot compares either the Sly, emPAl,
NSAF or dNSAF measure for proteins that were reproducibly identified across two replicate experiments. For visualization purposes, the counts are
plotted on a logarithmic scale. The number in the lower right corner of each panel is the corresponding Spearman correlation and the number in
the upper left is the number of datapoints compared.

(MPE). The results of these tests (Figure 3) are fairly con-
sistent with one another: NSAF significantly outperforms
dNSAF, and dNSAF and SIy significantly outperform
emPAL

Colaert et al. (2011) claim that SIy is more accurate than
both NSAF and emPAI [21], but we find evidence only to
support the former claim, even though our experiments
employ a wider dynamic range of protein abundance
(6.7-20 fmol versus 6—870 fmol) and more data sets (two
versus eight). Based on our experiments, we conclude that
NSAF or Sly are the methods of choice for ensuring an
accurate linear response between a protein’s change in
abundance across different samples.

It is worth noting that Griffin et al. (2010) observe a
good linear fit between SIy and protein quantification.

However, their evaluation methodology fits a single line to
all of the SIy values from many proteins, whereas we have
fit a separate line for each protein. This difference reflects
our belief that spectral counting methods are most useful
as measures of the relative abundance of a single pro-
tein between two experiments. We did not test the claim
that Sl provides an accurate absolute protein abundance
metric.

Discussion

Overall, our experiments suggest a relative ordering of
spectral counting methods according to their repro-
ducibility and the linearity of their response, but we can
only speculate as to the reasons for the ranking that we
observe. For example, we note that NSAF outperforms
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Table 2 Spectral-counting reproducibility performance on
mouse and chicken replicates

Metric Technical Biological All Replicates
Siy 0.885 0.848 0.859
emPAl 0.870 0.858 0.862
NSAF 0.899 0.876 0.884
dNSAF 0.886 0.852 0.863
All Metrics 0.885 0.859 0.867

This table summarizes the average correlation of the spectral-counting metrics
across the technical and biological replicates.

the emPAI metric in both of our experiments. The emPAI
measure takes into account the least information—not
only does it ignore fragment ion intensities, but emPAI
also fails to account for the length of the protein. Appar-
ently, this relatively simple approach is insufficient to
accurately estimate protein abundance. The relative per-
formance of NSAF and SIy, on the other hand, is less
clear: NSAF yields more reproducible results than SIy but
the two methods are statistically indistinguishable with
respect to linearity. The main difference between SIy and
the other three metrics is that Sly is the only metric
that takes into account the intensities of the fragment ion
peaks. In this sense, Sy goes a bit beyond the strict def-
inition of “spectral counting” Our experiments do not
support the claim that such intensity information is valu-
able for quantification. However, the conflicting results of
our study and Collaert et al., on the one hand, versus Grif-
fin et al. on the other hand, suggests perhaps that further
comparison of these methods is warranted.

An additional direction for future work involves quan-
tifying the linearity and reproducibility of proteins in a
segregated fashion according to protein abundance. For
example, visual inspection of Figure 1 suggests that per-
haps the SIy measure yields more reproducible counts for
high abundance proteins, with a corresponding decrease
in reproducibility as the abundance drops. Arguably, in

Figure 2 Comparison of spectral counts across replicates. This
graph summarizes the statistical analysis of the reproducibility
measurements. An edge leading out from node A to node B indicates
a statistically significant improvement in reproducibility for method A
relative to method B.
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Figure 3 Comparison of spectral counts across UPS1 dilution
curve. This graph summarizes the statistical analysis of the linearity
measurements. Two types of analysis were performed, using the
linear regression correlation, R? and mean percent error (MPE) for the
C. elegans + UPST1 dilution curve dataset. An edge leading out from
node A to node B indicates a statistically significant improvement in
linearity for method A relative to method B.

many studies, such low abundance proteins are of the
greatest interest; hence, it may be worthwhile to investi-
gate in a systematic fashion the extent to which either the
linearity or the reproducibility of a given spectral counting
measure varies as a function of protein abundance.

Conclusions

Quantifying protein amounts in mass spectrometry by
spectral counting is a simple and robust method for
measuring the relative change of protein amounts across
different samples; however, many different algorithms
exist for assigning a score to each identified protein.
Using crux spectral-counts, we compared and
contrasted four spectral counting methods with respect
to their reproducibility across replicates and their linear
response relative to protein abundance. Crux provides
a flexible, easy to use open source tool for performing
protein quantification using spectral counting.

Availability and requirements

Project name: Crux tandem mass spectrometry analysis
software

Project home page: http://noble.gs.washington.edu/
proj/crux

Operating systems: Linux, MacOS, Windows + Cygwin
Programming language: C++

Other requirements: Crux has no requirements to install
the binary version under Linux or MacOS. On Windows,
Crux requires Cygwin. To compile Crux requires a c++
compiler, cmake, and Subversion.
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License: Apache
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplementary Information. Supplementary Tables 1
and 2 and Suplementary Figures 1 and 2 are provided as quantify-
supplement.pdf.
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