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Abstract

enhance the model quality.

Background: Protein structures can be reliably predicted by template-based modeling (TBM) when experimental
structures of homologous proteins are available. However, it is challenging to obtain structures more accurate than
the single best templates by either combining information from multiple templates or by modeling regions that
vary among templates or are not covered by any templates.

Results: We introduce GalaxyTBM, a new TBM method in which the more reliable core region is modeled first from
multiple templates and less reliable, variable local regions, such as loops or termini, are then detected and
re-modeled by an ab initio method. This TBM method is based on “Seok-server,” which was tested in CASP9 and
assessed to be amongst the top TBM servers. The accuracy of the initial core modeling is enhanced by focusing on
more conserved regions in the multiple-template selection and multiple sequence alignment stages. Additional
improvement is achieved by ab initio modeling of up to 3 unreliable local regions in the fixed framework of the
core structure. Overall, GalaxyTBM reproduced the performance of Seok-server, with GalaxyTBM and Seok-server
resulting in average GDT-TS of 68.1 and 684, respectively, when tested on 68 single-domain CASP9 TBM targets. For
application to multi-domain proteins, GalaxyTBM must be combined with domain-splitting methods.

Conclusion: Application of GalaxyTBM to CASP9 targets demonstrates that accurate protein structure prediction is
possible by use of a multiple-template-based approach, and ab initio modeling of variable regions can further
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Background

Three-dimensional protein structures provide invaluable
insights into the molecular basis of protein functions,
and such insights are essential for rational design of
molecules regulating these functions. Nowadays, in an
increasing number of cases, it has become possible to
model protein structures with acceptable accuracy by
employing much less effort than that required in experi-
mental methods. Progress in computational protein
structure prediction has been boosted by methodological
improvements in the technique called template-based
modeling (TBM), which uses experimental structures of
homologous proteins as templates. As biological
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sequence and structure databases expand continuously,
TBM is expected to become an even more promising
tool for practical molecular biology, pharmaceutical
chemistry, and protein engineering problems [1].

Template-based modeling, also called homology mod-
eling or comparative modeling, generally consists of the
following steps [1,2]: (1) identification of homologous
proteins with known structures to be used as templates;
(2) alignment of the sequences of the target and tem-
plates; (3) creation of model structures from the align-
ment; and (4) refinement of the models. Contemporary
methods usually treat each stage separately, and the full
TBM procedure can therefore be established by combin-
ing methods for each of the above stages.

Despite recent progresses, there still remain challenges
for each stage mentioned above. One of the important
challenges is how to optimally combine information
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from multiple templates to build a single model when
experimental structures of multiple homologues are
available. Using multiple templates rather than a single
template offers several obvious benefits: the possibility of
including a better template increases, and the fraction
of the target sequence covered by templates is extended
[3-5]. In addition, different regions in template struc-
tures may be combined to produce a more accurate
model [3]. However, in practice, it is complicated to com-
bine information from multiple templates in an optimal
way [6]. Since the average quality of multiple templates is
bound to be worse than that of the single best template,
using multiple templates is associated with a rather large
risk of contaminating reliable information from the best
template. To overcome this problem, various approaches
have been proposed [1,7,8]. Most of them heavily rely on
a single top template while additional templates are used
to fill the gaps not covered by the top template [3,9].

Another challenge is to model structurally variable
regions among templates or those regions not covered
by any templates, which we call ULRs (unreliable local
regions). Unless the target sequence is quite similar to
those of the templates (for example, with sequence iden-
tity >30%), the expected quality of template-based
models could be limited by such regions. Moreover, such
ill-conserved regions where sequence insertion/deletion
occurs may not be the subject of typical TBM. Despite
previous efforts, progress in modeling such regions
seems to be rather limited [10]. Since high-resolution
models are required for practical applications, it is
doubtless that better ULR modeling is essential.

We recognize that the above 2 challenges are not inde-
pendent of each other. For example, the performance of
ULR modeling can be limited by the quality of the
framework structure constructed from multiple tem-
plates [10,11]. We therefore propose a strategy by which
both initial TBM and subsequent ULR modeling can
benefit from each other. In the initial TBM, we focus on
accurate modeling of more conserved regions among
multiple templates, without the need to consider poten-
tially unreliable regions since such regions are taken care
of in the ULR modeling stage. In the ULR modeling
stage, we fix the more reliable core structure so as not
to deteriorate the overall model quality by potentially
less reliable ab initio ULR modeling. Therefore, ULRs
can be modeled in a more accurate framework structure,
and the conformational search space for ULR modeling
is also effectively reduced to the local regions. Related
approaches that construct a reliable core and refine un-
reliable regions have been proposed previously [12,13].
The difference between our approach and these is that
we put more stress on the “accuracy” (rather than the
“coverage”) of the core structure in the initial TBM stage
(See METHODS for details).

Page 2 of 8

We call this new method GalaxyIBM, as it is
based on the GALAXY molecular modeling package
[11,14-16]. GalaxyTBM employs a multiple-template
method designed to produce reliable core structures by
rescoring HHsearch [17] results for multiple-template
selection and by core sequence alignment using
PROMALS3D [18]. Model building from the align-
ment and subsequent ULR modeling is performed
using optimization modules in GALAXY [11,16].

All components of the prediction pipeline were tested
in the 9th critical assessment of techniques for protein
structure prediction (CASP9) as a predictor named
“Seok-server.” According to the official results of CASP9,
Seok-server is recognized as one of the top 6 servers
[19]. Since the prediction strategy for Seok-server had to
be modified a few times during CASP9, as the method
was immature at the beginning, the most recent version,
GalaxyTBM, is presented here. When GalaxyTBM was
tested on 68 single-domain CASP9 TBM targets, fixing
the structure database at the version with which Seok-
server was used during CASP9, it reproduced the per-
formance of Seok-server (average GDT-TS of 68.1,
compared to 68.4 for Seok-server). Performance of the
TBM pipeline was evaluated by analyzing the improve-
ments achieved at each stage. Merits of the new compo-
nents in the pipeline over other TBM methods are also
discussed.

Results and discussion
Rescoring of HHsearch results improves the template
quality
We used a simple but effective rescoring strategy to se-
lect multiple templates from the homologues detected by
HHsearch [17], as described in the METHODS section.
Here, we analyzed the performance of the rescoring
method in terms of the quality of the top ranker com-
pared to that of the HHsearch top ranker. Template qual-
ity was measured by a similarity score called TM-score
calculated using the TM-align tool [20], which ranges
from 0 (no similarity) to 1 (same as the native structure).
Improvement achieved by the selection scheme of “mul-
tiple” templates is discussed in the next subsection.
Overall, top rankers obtained by the rescoring scheme
were closer to the native structures of the target proteins
than the HHsearch top rankers, when tested on the 68
single-domain CASP9 TBM targets. Different proteins
ranked as top by rescoring in 19 out of the 68 cases,
with an average improvement of 0.046 in TM-score.
TM-score increased for 15 out of the 19 targets and
decreased for the remaining 4 targets, with average
increases of 0.072 and -0.033, respectively. A paired t-
test for the TM-score changes for the 19 targets showed
that the improvement is statistically significant, with a
P-value of 0.0072.



Ko et al. BMC Bioinformatics 2012, 13:198
http://www.biomedcentral.com/1471-2105/13/198

As can be seen from Figure 1, the improvement did
not strongly correlate with target difficulty. It is also not-
able that outstanding improvement was obtained in
some cases. For example, the top ranker in the
HHsearch for T0564 had a low TM-score of 0.317, but
the rescoring scheme ranked a protein with a TM-score
of 0.590 as the first, although this protein ranked very
low (2524th) in the original HHsearch. These improve-
ments could be primarily attributed to the greater con-
sideration of the secondary structure score when scoring
more difficult targets (i.e., targets with more distant
homologues). In other words, when sequence conserva-
tion between target protein and homologues is low, in-
formation on secondary structure conservation can be
more helpful in selecting closer homologues.

Multiple-template information improves the model
quality

In addition to selecting top rankers successfully, the
template rescoring method is also effective in providing
candidates for multiple templates. Multiple templates
were selected by filtering out structural outliers from the
candidates after core structure alignment (see METH-
ODS for detail). To assess the improvement achieved by
using multiple templates, model structures built from
the multiple templates were compared with those built
from the single top template (after rescoring)
(Figure 2A) and those from a naive multiple template se-
lection method that considers all proteins with
HHsearch e-values < 10™'° (Figure 2B). The average num-
ber of templates selected by GalaxyTBM and the naive
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Figure 1 Comparison of the template quality (measured by
TM-score) of the top ranker assessed by HHsearch and by
rescoring. The rescoring strategy placed better templates as top in
14 cases (squares) and worse templates as top in 5 cases (triangles)
out of the 68 test cases.
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Figure 2 Quality of models (measured by average GDT-TS
scores of 100 models) obtained from the multiple-template
approach compared to those from A) a single-template
approach and B) a naive multiple template selection method
for the whole domain (squares) and only for the core residues
(triangles) aligned to the top-ranking template.

method was 3.04 and 8.85, respectively. For each target
and for each method, 100 models were generated by
MODELLER [21], and GDT-TS score (a measure of
similarity to the native structure [22,23], ranging from 0
for no similarity to 100 for the native structure) averaged
over them is reported. Although TM-score is used for
measuring the quality of a “template” which has a differ-
ent sequence from the native protein, the GDT-TS
measure is used for assessing the quality of a “model”
with the same sequence.

By using the current multiple template approach,
GDT-TS improved when compared to the values
obtained using the single-template approach (the sum
over 68 domains increased by 3.4% from 4429.3 to
4580.9 with an average improvement of 2.23 per do-
main) and the naive multiple-template method (the sum
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increased by 3.8% from 4412.7 to 4580.9 with an average
improvement of 2.47 per domain). The GDT-TS im-
provement is statistically significant, with P-values of
0.006 and 0.02, respectively. Improvement over the naive
method was prominent when high-ranking proteins by
HHsearch have diverse structures, implying that the
current multiple-template selection scheme that
excludes dissimilar structures is fairly successful. For ex-
ample, for T0539, mean GDT-TS of generated models is
75.59 and 59.14 by the current approach and by the
naive approach, respectively. Similar type of large GDT-
TS improvement of >5 was also found in T0532, T0552,
T0559, T0614, and T0643.

To determine whether the model improvement by the
multiple-template approach is a consequence of covering
more residues by additional templates, we checked
whether a similar improvement was found for core
regions (Figure 2). The core region is defined here as the
target residues aligned with the single top template by
PROMALS3D [18]. The core region covers 31% to 100%
of the whole protein, with an average coverage of 85%.
As shown in Figure 2A, GDT-TS of the core region was
also improved by the current multiple-template method
compared to the single-template method. Average GDT-
TS improvement was 2.08%, with a P-value of 0.0106.

In conclusion, the current multiple template selection
method contributes to improving the core structure by
utilizing useful information from additional templates
selected by the current pipeline.

Better optimization during model-building further
improves the model quality

In GalaxyTBM, model building is performed by the
MODELLER-CSA [24] module implemented in GAL-
AXY. It was previously reported that more thorough
optimization of the target restraint function derived by
MODELLER is possible with the method, generating
model structures more consistent with the restraints
[24]. To evaluate the performance of model building in
the current pipeline, we compared the structures gener-
ated in this stage with the model structures generated
simply by using MODELLER [21]. The 2 methods,
MODELLER and MODELLER-CSA, use the same se-
quence alignments, template lists, and therefore the
same spatial restraints, and differ only in the
optimization method.

As in the previous subsection, 100 model structures
were generated for each target. Overall, model building
by MODELLER-CSA improved the sum of GDT-TS by
0.6% (from 4580.9 to 4622.2) compared to MODELLER,
with a P-value of 0.002. Average GDT-TS improvement
was 0.13 for the 25 targets for which single templates
were used and 0.87 for the 43 targets for which multiple
templates were used. The better GDT-TS improvement
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in the multiple-template cases can be explained by the
fact that the more complex target restraint functions for
the multiple-template problems can be better optimized
with the more rigorous optimization method [24].

In addition to the backbone structure quality, the side-
chain structure quality was also improved by the better
optimization during model building. The x1 accuracy
(percentage of the cases in which x1 is within 30° from
the native value) was improved in 65 out of 68 targets,
with an average improvement of 5.9%. The x1+x2 ac-
curacy (percentage of the cases in which both x1 and x2
are within 30° from the native values) was also improved
(improved in 63 out of 68 cases, with an average im-
provement of 4.5%). This improvement is consistent
with the findings of the previous report by Joo et al
[24].

Positive effects of the overall multiple-template strategy

To illustrate the effects of the overall multiple-template
strategy in more detail, the relationship between the
model quality improvement and the template quality im-
provement achieved by the use of multiple templates is
demonstrated in Figure 3. In this figure, model qualities
were measured for the core region, instead of the whole
structure, to clarify the impact of using multiple tem-
plates. The points in the upper right corner of Figure 3
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Figure 3 Model quality improvement achieved by the use of
multiple templates (relative to the single-template method,
measured by GDT-TS) against average template quality
improvement (relative to that of top ranker, measured by
TM-score) for the 43 targets for which multiple templates are
used. Only core residues were considered in this comparison.
Overall, as the average quality of multiple templates decreased,
model quality improvement achieved by the use of multiple
templates tended to decrease for both model-building methods,
MODELLER (empty dots) and MODELLER-CSA (filled dots). Targets for
which the top ranking template was the best-quality template are
shown in green and others in blue.
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represent the cases in which templates of higher quality
than the top ranker contribute to improving the model
quality. This is one of the expected positive effects of
using multiple templates. It is particularly intriguing that
in a non-negligible number of cases (23 out of 43),
model quality was improved even when the average tem-
plate quality decreased from that of the top single tem-
plate (upper left corner of the figure), particularly in
those where no additional templates had better quality
than the top ranker (green dots in the upper left corner).
This effect may be attributed in part to the success of
the multiple-template selection method, which can pick
out additional complementary templates without intro-
ducing large negative effects of contaminating good in-
formation from the top ranker. Improvement by more
thorough optimization in the model-building stage (filled
dots compared to open dots) is more pronounced in the
left side of the figure, where the average template quality
was worse than that of the top ranker.

The above analysis indicates that the positive effects of
using multiple templates can be maximized by the
current template selection strategy that considers core
structure consensus and the more rigorous optimization
during model-building, and the common adverse effects
caused by including inconsistent templates in typical
multiple-template methods can be minimized by use of
such a combination.

ULR refinement also contributes to improvement of the
model quality

Here we present the results of the final stage of the pipe-
line, i.e., refinement of ULRs. A total of 204 ULRs (56
termini and 148 loops) were detected in the initial stage,
and 132 ULRs were finally subject to reconstruction fol-
lowing the selection rule described in METHODS. These
reconstructed ULRs consisted not only of the regions
that were not aligned to any template residues but also
of the regions that were structurally inconsistent among
templates.

Of the 132 reconstructed ULRs, 45 ULRs corre-
sponded to the regions in which more than half of the
residues are disordered in experimental structures and
thus were neglected in the following analysis. In Figure 4,
RMSDs of the ULR structures (distances from the native
structures after superimposing the whole structures, not
just the ULR regions) before and after refinement are
compared for each ULR. The average improvement in
RMSD achieved by refinement was 0.80 A. The RMSD
improvement was statistically significant, with a P-value
of 0.0015. Since the current refinement changes only
local regions, improvement in the overall structure mea-
sured by GDT-TS was rather small. The sum of GDT-TS
over 52 domains containing refined ULRs increased by
0.47% (from 3392.8 to 3408.7), with an average increase
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Figure 4 Comparison of ULR RMSDs (in A) from the native
structure before and after ULR refinement. RMSD for each ULR
was calculated after superimposing the whole structures (native and
model), not just the ULRs. Results for ULRs with RMSD < 10 A are

magnified in the inset.

of 0.31 per domain. Although the improvement was
small, it is statistically significant, with a P-value of
0.0083. More accurate prediction of ULR regions is in-
valuable for functional or design studies that involve
such protein-specific local regions. It is also notable that
the current refinement result is comparable to the
results obtained by Seok-server in CASP9 [19], even
though a lighter ULR optimization strategy has been
employed.

Computational cost

Template selection and multiple sequence alignment
take a few minutes on a single core. The median time
required for model building with MODELLER-CSA and
refinement was 6.2 and 1.1 hours, respectively, when 32
cores were used in parallel.

Conclusions

In this article, we report a new TBM method—
GalaxyTBM—that builds reliable core structure from
multiple templates and reconstructs unreliable
regions by ab initio loop or terminus modeling in
the fixed framework of the core structure. The
current multiple-template strategy maximizes the
positive effects of using multiple templates by select-
ing complementary multiple templates that do not
contaminate the information from the best template
significantly and by thorough optimization of possibly
conflicting template restraints during model building.
When model refinement by detection and re-building
of unreliable loop or terminus regions is applied,
additional improvement in model quality is observed.
Several sound elements of the current strategy, such
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as template rescoring, multiple-template selection
based on core-structure alignment, and multiple se-
quence alignment of core sequences could be easily
incorporated into other TBM methods to enhance
their performance.

Methods

The overall modeling procedure by the GalaxyITBM
pipeline is shown in Figure 5, and each stage is explained
below.

Multiple-template selection

Multiple templates were selected by rescoring the results
of HHsearch (version 1.5.0) [17], one of the best
homologue detection methods available. The protein
structure database pdb70, with maximum mutual se-
quence identity of 70%, was used. The proteins ranked
by HHsearch run in the local alignment mode with the
Viterbi algorithm were first re-ranked by the rescoring
function S expressed as a weighted sum of the Z-score
of the sequence similarity score, Zsq, and that of the
secondary structure similarity score, Zg,

S = Zgeq + Wi

where the raw sequence and secondary structure similar-
ity scores were taken from HHsearch results. The weight
factor w depends on the target difficulty estimated by
the HHsearch probability for the top ranker, p, as

1.0(p=90)
1.5(80<p < 90)
2.0(60<sp < 80)

2.6(p < 60)

w =

The probability bins and the corresponding weight fac-
tors for rescoring were determined by maximizing the
qualities of the top templates for the CASP8 TBM tar-
gets using a grid search in pre-set ranges of the
parameters.
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Figure 5 Schematic flowchart of the overall Galaxy TBM
process, which flows from left to right. Major stages are indicated
at the top, and the components of each stage are listed below.
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Multiple templates were then selected from the 20
top-ranked proteins as follows. First, the top 20 proteins
were divided into high-rankers (those with the score S
within 95% of the top ranker’s score) and low-rankers
(the remaining ones). Second, those proteins that had
dissimilar structures from a “background pool” of struc-
tures were removed. The background pool consisted of
either the high-rankers or top 3 rankers, whichever was
the greatest. The similarity of a protein structure to the
background pool was measured by the mean TM-score
from the pool structures, and the proteins that had
lower similarity than the cut-off value, 1,001 — @0pool 5
were removed, where m1,,,1 and o001 are the average
and standard deviation of the similarity within the pool,
respectively. The parameter a was set to 1 for the high-
rankers and to the ratio of the protein’s S score to that
of the top ranker for the low-rankers. When calculating
TM-score between 2 protein structures, only the resi-
dues aligned to the target sequence by HHalign were
considered, and the target sequence length was used as
the reference length. Finally, proteins dissimilar from the
top ranker, with TM-score <0.5, were removed [25],
where the sequence length of the top ranker was used as
the reference length for TM-score calculation.

Multiple sequence alignment

Alignment between the target sequence and the tem-
plate sequences was generated using PROMALS3D [18],
one of the best multiple sequence alignment (MSA)
tools available. PSI-BLAST [26] 2.1.14 was used with de-
fault parameters (number of iterations =3, e-value cut =
0.001) for sequence profile generation. TM-align [20]
and DaliLite [27] were used as structure-alignment tools
to provide the 3D structure information required for
PROMALS3D. Default values were used for all the other
parameters of PROMALS3D. Less meaningful terminus
regions were temporarily neglected in the initial MSA
and attached afterwards. The less meaningful regions
were defined as the termini of query sequence not
aligned to any templates by the global alignment using
HHsearch. We did not take those termini into consider-
ation at this point because we assumed that they could
be modeled reliably in the later ab initio refinement
stage. By neglecting those regions, the alignment effort
was focused on the more reliable core region, increasing
the possibility of generating a more reliable model struc-
ture for the core.

Model construction and optimization

Using the template structures and the MSA as input, a
template-based model was constructed with the
MODELLER-CSA [24] module, newly implemented in
the GALAXY program package [11,14-16]. MODELLER-
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CSA is a template-based model-building procedure that
carries out global optimization of the MODELLER re-
straint function [21] using conformational space anneal-
ing (CSA) [28-30]. In the new implementation in
GALAXY, the MODELLER restraints are interpreted in
the source code level and local minimization in the CSA
procedure is performed by a quasi-Newton minimizer
[31]. Both of these aspects are more advanced than the
original implementation by Joo and coworkers [24]. A
typical run of model building generated 100 structures
that maximally satisfy the restraints. Among the 100
structures, the structure nearest to the largest cluster
center was selected as a representative model.

ULR detection and reconstruction

In the final stage, the single best template-based model
structure was extensively refined by GalaxyREFINE [11],
a high-resolution refinement method that employs
advanced loop and terminus modeling algorithms
[14,32,33]. Details of the refinement method can be
found in Ref. 11, and here we describe it only briefly.
ULRs were detected by a model-consensus quality as-
sessment method [16]. The conformational space of
ULR was then searched using a global optimization
procedure that combines triaxial loop closure [32,33]
and CSA on a newly introduced free energy surface
composed of molecular mechanics force field [34],
atomic-resolution statistical potential terms [35,36], and
additional supporting terms. Information from templates
was not used for scoring in the refinement procedure.
All the energy components and the sampling algorithms
were implemented in the GALAXY program.

In the current application of GalaxyREFINE to the
model refinement in GalaxyIBM, a few modifications
were made to enhance the computational efficiency over
that of the original version used in CASP9. First, ULRs
detected by the model consensus method [16] were sub-
ject to a filtering scheme that eliminates ULRs with less
than 6 or more than 20 residues. Out of the remaining
ULRs, up to 3 ULRs with lowest reliability (largest fluc-
tuations among generated models) were subjected to ac-
tual reconstruction. Another change was that multiple
ULRs were refined simultaneously in a single
optimization procedure, while separate optimization for
each ULR was performed and the results were merged
into a single structure in CASP9. Finally, the initial loop
structures for CSA were generated by a slightly different
method from that used in CASP9. While all 30 starting
loop structures were generated de novo by FALC [14] in
CASP9, 5 loops were taken from initial template-based
models and 25 loops were generated by FALC in the
current implementation. This modification indirectly
accounts for template information, which can be helpful
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when regions with reliable templates are assigned as
ULRs.

P-value calculation
P-values were obtained from paired two-tailed Student’s
t-test.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

All authors conceived of the study together. JK developed the template-
based modelling method, wrote the scripts for the prediction pipeline, and
drafted the manuscript. HB developed the refinement method and helped
to draft the manuscript. CS participated in the design and coordination of
the study and helped to draft the manuscript. All authors read and approved
the final manuscript.

Acknowledgements

This work was supported by the KOSEF/MEST Grant No. 2011-0012456 and
the Center for Marine Natural Products and Drug Discovery (CMDD), one of
the MarineBio21 programs funded by the Ministry of Land, Transport, and
Maritime Affairs.

Received: 23 February 2012 Accepted: 7 August 2012
Published: 10 August 2012

References

1. Zhang Y: Progress and challenges in protein structure prediction. Curr
Opin Struct Biol 2008, 18:342-348.

2. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A: Comparative
protein structure modeling of genes and genomes. Annu Rev Biophys
Biomol Struct 2000, 29:291-325.

3. Cheng J: A multiple-template combination algorithm for protein
comparative modeling. BMC Struct Biol 2008, 8:18.

4. Larsson P, Wallner B, Lindahl E, Elofsson A: Using multiple templates to
improve quality of homology models in automated homology modeling.
Protein Sci 2008, 17(6):990-1002.

5. Venclovas C, Margelevicius M: Comparative modeling in CASP6 using
consensus approach to template selection, sequence-structure
alignment, and structure assessment. Proteins 2005, S7:99-105.

6. Fernandez-Fuentes N, Rai BK, Madrid-Aliste CJ, Eduardo Fajardo J, Fiser A:
Comparative protein structure modeling by combining multiple
templates and optimizing sequence-to-structure alignments.
Bioinformatics 2007, 19:2558-2565.

7. Peng J, Xu J: Boosting protein threading accuracy. In Research in
Computational Molecular Biology.; 2009:31-45.

8. Yang Y, Faraggi E, Zhao H, Zhou Y: Improving protein fold recognition
and template-based modeling by employing probabilistic-based
matching between predicted one-dimensional structural properties of
the query and corresponding native properties of templates.
Bioinformatics 2011, 27:2076-2082.

9. Hildebrand A, Remmert M, Biegert A, Soding J: Fast and accurate
automatic structure prediction with HHpred. Proteins 2009,
77(59):128-132.

10.  Lance BK, Deane CM, Wood GR: Exploring the potential of template-based
modelling. Bioinformatics 2010, 26(15):1849-1856.

11. Park H, Seok C: Refinement of Unreliable local regions in template-based
protein models. Proteins 2012, 80:1974-1986.

12. Cheng J, Eickholt J, Wang Z, Deng X: Recursive protein modeling: a divide
and conquer strategy for protein structure prediction and its case study
in CASP9. J Bioinform Comput Biol 2012, 10:1242003.

13. Zhang Y: I-TASSER server for protein 3D structure prediction. BMC
Bioinformatics 2008, 9:40-47.

14. Lee J, Lee D, Park H, Coutsias EA, Seok C: Protein loop modeling by using
fragment assembly and analytical loop closure. Proteins 2010,
78:3428-3436.

15. Shin W, Heo L, Lee J, Ko J, Seok C, Lee J: LigDockCSA: protein-ligand
docking using conformational space annealing. / Comput Chem 2011,
32:3226-3232.



Ko et al. BMC Bioinformatics 2012, 13:198
http://www.biomedcentral.com/1471-2105/13/198

16. Park H, Ko J, Joo K, Lee J, Seok C, Lee J: Refinement of protein termini in
template-based modeling using conformational space annealing. Proteins
2011, 79:2725-2734.

17. Soding J: Protein homology detection by HMM-HMM comparison.
Bioinformatics 2005, 21:951-960.

18. Pei J, Kim BH, Grishin N: PROMALS3D: a tool for multiple protein
sequence and structure alignments. Nucleic Acids Res 2008, 36:2295-2300.

19. Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T: Assessment of template
based protein structure predictions in CASP9. Proteins 2011, 79:37-58.

20. Zhang Y, Skolnick J: TM-align: A protein structure alignment algorithm
based on TM-score. Nucleic Acids Res 2005, 3:2302-23009.

21. Sali A, Blundell TL: Comparative protein modelling by satisfaction of
spatial restraints. J Mol Biol 1993, 234(3):779-815.

22. Zemla A: LGA: a method for finding 3D similarities in protein structures.
Nucleic Acids Res 2003, 31:3370-3374.

23. Zemla A, Venclovas C, Moult J, Fidelis K: Processing and analysis of CASP3
protein structure predictions. Proteins 1999, $3:22-29.

24. Joo K, Lee J, Lee K, Kim BG, Lee J: All-atom chain-building by optimizing
MODELLER energy function using conformational space annealing.
Proteins 2008, 75:1010-1023.

25. Xu J, Zhang Y: How significant is a protein structure similarity with TM-
score = 0.5? Bioinformatics 2010, 26:839-895.

26. Altchul SF, Madden TL, Scharffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ:
Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res 1997, 25:3389-3402.

27. Holm L, Park J: DaliLite workbench for protein structure comparison.
Bioinformatics 2000, 16:566-567.

28. Lee J, Liwo A, Scheraga HA: Energy-based de novo protein folding by
conformational space annealing and an off-lattice united-residue force
field: application to the 10-55 fragment of staphylococcal protein a and
to apo calbindin d9k. Proc Natl Aca Sci USA 1999, :2025-2030.

29. Lee J, Scheraga HA, Rackovsky S: New optimization method for
conformational energy calculations on polypeptides: Conformational
space annealing. J Comput Chem 1997, 18:1222-1232.

30. Lee J, Scheraga HA, Rackovsky S: Conformational analysis of the 20-
residue membrane-bound portion of melittin by conformational space
annealing. J Comput Chem 1998, 18:1222-1232.

31. Liu D, Nocedal J: On the limited memory BFGS method for large scale
optimization. Math Programming B 1989, 45:503-528.

32. Coutsias EA, Seok C, Jacobson MP, Dill K: A kinematic view of loop closure.
J Comput Chem 2004, 25:510-528.

33. Coutsias EA, Seok C, Wester MJ, Dill K: Resultants and loop closure. Int J
Quantum Chem 2006, 106:176-189.

34, MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field
MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K,
Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE I,
Roux B, Schienkrich M, Smith JC, Stote R, Straub J, Watanabe M,
Wiorkiewicz-Kuczera J, Yin D, Karplus M: All-atom empirical potential for
molecular modeling and dynamics studies of proteins. J Phys Chem B
2002, 102:3586-3616.

35. Zhou H, Zhou Y: Distance-scaled, finite ideal-gas reference state
improves structure-derived potentials of mean force for structure
selection and stability prediction. Protein Sci 2002, 11:2714-2726.

36. Yang Y, Zhou Y: Ab initio folding of terminal segments with secondary
structures reveals the fine difference between two closely-related all-
atom statistical energy functions. Protein Sci 2008, 17:1212-1219.

doi:10.1186/1471-2105-13-198

Cite this article as: Ko et al.: GalaxyTBM: template-based modeling by
building a reliable core and refining unreliable local regions. BMC
Bioinformatics 2012 13:198.

Page 8 of 8

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Rescoring of HHsearch results improves the template quality
	Multiple-template information improves the model quality

	link_Fig1
	link_Fig2
	Better optimization during &b_k;model-&e_k;&b_k;building&e_k; further improves the model quality
	Positive effects of the overall &b_k;multiple-&e_k;&b_k;template&e_k; strategy

	link_Fig3
	ULR refinement also contributes to improvement of the model quality
	Computational cost

	Conclusions
	link_Fig4
	Methods
	Multiple-template selection
	Multiple sequence alignment
	Model construction and optimization

	link_Fig5
	ULR detection and reconstruction
	P-value calculation

	Competing interests
	Authors´ contributions
	Acknowledgements
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36

