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Abstract

Background: Regulation of gene expression, protein synthesis, replication and assembly of many viruses involve
RNA–protein interactions. Although some successful computational tools have been reported to recognize RNA
binding sites in proteins, the problem of specificity remains poorly investigated. After the nucleotide base
composition, the dinucleotide is the smallest unit of RNA sequence information and many RNA-binding proteins
simply bind to regions enriched in one dinucleotide. Interaction preferences of protein subsequences and
dinucleotides can be inferred from protein-RNA complex structures, enabling a training-based prediction approach.

Results: We analyzed basic statistics of amino acid-dinucleotide contacts in protein-RNA complexes and found
their pairing preferences could be identified. Using a standard approach to represent protein subsequences by
their evolutionary profile, we trained neural networks to predict multiclass target vectors corresponding to 16
possible contacting dinucleotide subsequences. In the cross-validation experiments, the accuracies of the optimum
network, measured as areas under the curve (AUC) of the receiver operating characteristic (ROC) graphs, were in
the range of 65-80%.

Conclusions: Dinucleotide-specific contact predictions have also been extended to the prediction of interacting
protein and RNA fragment pairs, which shows the applicability of this method to predict targets of RNA-binding
proteins. A web server predicting the 16-dimensional contact probability matrix directly from a user-defined
protein sequence was implemented and made available at: http://tardis.nibio.go.jp/netasa/srcpred.

Background
Protein-RNA interactions are involved in various regula-
tory and constitutional cellular functions. Role for RNA
in cellular defense and developmental regulation, which
involves its interaction with proteins, has also been
reported [1,2]. Most of these biological functions involve
an accurate identification of specific recognition sites in
proteins and RNA. Yet, protein-RNA interactions are far
less understood than protein–DNA and protein-protein
interactions, partly because fewer structures are available
and also likely because these interactions are more com-
plex than the others. In contrast to the intuitively simi-
lar protein-DNA interactions, nucleic acid structures in

protein-RNA complexes are diverse, resulting in a wider
range of mechanisms for protein-RNA interactions [3,4]
and hence their prediction is more difficult.
Several computational approaches have been devel-

oped to identify RNA-binding proteins and RNA-bind-
ing sites. Statistical potentials and docking scoring
functions derived from databases of complex crystal
structures effectively identified RNA-binding sites in
proteins [5-7]. Prediction of RNA-protein interactions
from sequences or structures using machine learning
methods have also been successfully attempted [8-15].
However, none of these methods addresses the crucial
issue of specific interactions i.e. the same protein inter-
acts with some RNA sequences and not others. Knowl-
edge of exact interaction partners and the mechanism of
recognition are essential for an understanding and
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ability to control RNA-level regulatory processes. Hence,
an extension of machine learning methods to address
this problem is of crucial significance.
We recently addressed the issue of specific recognition

of protein and nucleotide subsequences for protein-
DNA interactions by looking at the dinucleotide specific
contact preferences of amino acids in proteins, using
sequence and evolutionary contexts, and applied this
information to predict specific contacts from sequence
[16]. As a natural extension of this approach to RNA-
binding proteins, and also because some RNA-binding
proteins are shown to bind regions largely characterized
by enrichment in one dinucleotide [17], we explored the
possibility of predicting amino acid dinucleotide con-
tacts. We start with a statistical analysis of protein-RNA
contacts and identify patterns of contact preferences
that contrast or resemble protein-DNA contacts. The
prediction model takes a matrix of sequence- and evolu-
tionary profile-derived features and simulates the RNA-
interacting state of every amino acid residue in a given
sequence. The resulting 16-dimensional multi-class out-
put neural network was optimized by an early-stopping
algorithm and five-fold-out cross-validation. Results
indicate that specific RNA-binding contacts can be pre-
dicted with accuracy levels similar to those achieved in
DNA-binding proteins. We applied dinucleotide-specific
contact predictions to identify full-length RNA sequence
targets of proteins, with promising success.
In summary, the proposed method can be used in two

ways: (1) to improve the performance of RNA-binding
sites on proteins, as prediction scores will be modulated
by the dinucleotide composition of target RNA
sequences and one can look for prediction scores that
correspond to the dinucleotide enriched in a known tar-
get and (2) predicted binding sites in proteins can be
converted to a 16-dimensional dinucleotide score, which
works like a pseudo dinucleotide composition itself and
candidate target RNA sequences can thereby be scored
by comparing observed dinucleotide compositions in
candidate target sequences and thereby use them to pre-
dict targets of RNA-binding proteins.

Methods
Data set (PRNA160)
The dataset and annotations have been adopted from
our previous work on predicting RNA-binding proteins
from their electric moments [18]. The data preparation
procedure is summarized here as follows.
All protein-RNA complexes in the Protein Data Bank

(PDB) [19], which have an annotations in SCOR data-
base were selected [20]. We eliminated redundancy
using BLASTCLUST [21] by obtaining clusters at a 25%
sequence identity and selecting the chain with the high-
est number of RNA contacts from each of the 160

clusters obtained at this threshold. A final list of 160
protein chains and their structural classes, was used to
generate and evaluate the models, and is provided as a
supplementary Table S1 (Additional file 1).

Contact profiles
The contact profiles for the protein sequences were
computed from protein-RNA complex structures in the
compiled data set. We defined a contact when the dis-
tance between any atom in the protein and any atom of
the RNA dinucleotide is less than 3.5Å. The contact
class of all 16 dinucleotide sequence elements is written
in alphabetically order viz. AA, AC, AG, AU, CA, CC,
CG, CU, GA, GC, GG, GU, UA, UC, UG and UU.

Contact statistics and random docking
The statistical significance of contact preferences was
evaluated using a Chi-squared test with one degree of
freedom. This requires a background contact frequency,
which is computed using a random docking procedure,
as has been previously used for DNA-binding proteins
[16,22]. In this procedure, all observed contacts in each
protein-RNA complex were divided into unique amino
acid-dinucleotide pairs (20x16 combinations) in accor-
dance with the products of accessible surface area
(ASA) of the residue and the dinucleotide in question
and the expected number of contacts (Eij) is given by:
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Where i, and j refer to 20 unique residues and dinu-
cleotides and ASA refers to the absolute accessible sur-
face area, computed by the NACCESS program [23].
Coordinates for each protein chain were isolated from
the complex structure before computing the ASAs of
amino acid residues. RNA-chains were isolated similarly
for dinucleotide ASAs. ASA(i) refers to the total accessi-
ble surface area of all residues of a giventype in a given
data set and N is the total number of observed contacts
of all residue-dinucleotide pairs.
Both observed and expected numbers of contacts were

computed for each complex and data were pooled to get
the overall chi-squared values for each dinucleotide-
amino acid pair as follows:
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Where i and j have the same meaning as in equation (1)
i.e. they take values from 1 to 20 and 1 to 16 respectively.
Eij is computed as in (1) and Oij is the corresponding
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number of contacts in all complexes (note that (1) is
for one complex but (2) refers to all complexes taken
together). Chi-squared values from observed and expected
number of contacts are converted to p-values using stan-
dard look-up tables. Chi-squared values computed above
denote statistical significance of both positive and negative
deviations from expected numbers of counts. To indicate
the exclusion or enrichment of a residue-dinucleotide pair
in the interface, signed chi-squared values were obtained
by multiplying these values by -1 if the observed number
of contacts was less than the expected counts.

Sequence features
Two types of encoding schemes of single protein
sequences are widely prevalent and have been adopted for
this work. A first scheme represented an amino acid resi-
due and its neighbours by 21-bit-sparse-encoded binary
vectors i.e. by taking all the 21 components to be zero
except for the one identifying a given residue, which is set
as 1. The first 20 components resemble the amino acid
type and the last one is labelling terminal positions, with-
out neighbours. A second scheme represented each resi-
due by its evolutionary profile. As previously described
by us and others [24,25], the evolutionary profile of a
residue, represented as Position-Specific Scoring Matrices
(PSSMs), was computed by using the PSI-BLAST program
and against NCBI’s NR database for each protein seq-
uence. PSSMs were generated by three iterations of PSI-
BLAST with default parameters of blastpgp. Prior to
neural network training, a vector representing global
amino acid composition (GAC) of each protein sequence
was concatenated to the feature vector of each residue.
Sliding windows of sizes ranging from 1 to 8 sequence
neighbours were centred on each residue. Different combi-
nations of feature matrices were tested and the best per-
forming combination was retained.

Artificial neural networks
Three layered (one hidden layer) fully connected neural
networks trained by back propagation were simulated
using the SNNS software package [26]. The number of
input nodes was equal to the number of training features
and 16 output nodes represented all possible 16 RNA
dinucleotide contacts. Different network architectures
were optimized for every feature matrix varying the num-
ber of nodes in the hidden layer. Optimum networks
were chosen by a five-fold cross-validation scheme
according to an early stopping criterion. The data was
divided into five sets of proteins and for each training
cycle, three subsets were combined to form the training
data. Out of the two subsets left out, one was used to
determine the stopping point of training. All the reported
performance scores were computed on the third (left
out) sets. Shuffling the training and test data sets during

five cycles of cross-validation ensured that each protein
had been used for evaluating performance. Numerical
values between 0 and 1 returned by the neural network
were transformed into a binary state of binding or non-
binding by varying cut-off values during receiver operat-
ing characteristic (ROC) analysis. For the purpose of
constructing a web server, a precision score (for each of
the 16 contact classes) was computed for a prediction
score at a given position used as a cut-off. This score cor-
responds to the true positive probability of that contact
class.

Applicability to scanning interacting protein-RNA
fragments
From the protein-RNA complexes in the PRNA160 data-
set, pairs of protein and RNA sequence fragments of
fixed lengths were generated by using a sliding window
on both. Subsequently, all combinations of protein-RNA
fragment pairs in a given complex were generated by
matching each protein fragment to all RNA fragments.
Fragment pairs were assigned a binary class according to
the contacting information from each complex structure
(0 or 1). A fragment pair was labelled as 1 if any of the
atoms from the protein fragment was in contact with any
of the atoms of the RNA fragment at a threshold of 3.5Å
atom-atom distance; otherwise it was labeled as 0. A sec-
ond neural network model was built to identify the posi-
tive class (label=1) from the negative class (label=0). The
protein fragments were encoded in fragment feature vec-
tors built by concatenation of the predicted 16 dinucleo-
tide scores of each residue in a given fragment, while the
RNA sequence fragments were encoded using dinucleo-
tide compositions. The protein and RNA feature vectors
for each fragment pair in a given complex were concate-
nated forming a fragment-pair feature matrix per com-
plex that was used to train a new neural network. We
used the same training algorithm described above but in
this case the neural networks predict a one-dimensional
binary vector encoding the “paired” or “non-paired” state
of the protein-RNA fragment pairs.

Performance evaluation
Neural networks are trained to return a vector of 16
dinucleotide-binding prediction scores for a protein resi-
due between 0 and 1, which are transformed to binary
states of binding or non-binding by choosing a cut-off
(for the fragment-pair prediction, only one score is
obtained instead of 16, and is treated in an obviously
similar way). For each dinucletide type, the occurrence of
a contact is considered positive (P) and negative (N)
otherwise. True (T) indicates that the states of predicted
and observed contact are identical and false (F) other-
wise. The notation TP, TN, FP, FN combines these labels
to return the number of data points (residues) in that
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category. These values correspond to a cut-off at which
the neural network outputs are transformed into binary
predictions. The predicted binding scores are trans-
formed into binary predictions by using different cut-offs
yielding sensitivity and specificity over the entire score
range. ROC graphs for “1-specificity” (false positive rate)
values versus corresponding sensitivity (true positive
rate) values are plotted. This graph depicts the variations
of the increment in false positive rate with an increase in
the true positive rate. Throughout this work, the perfor-
mance of the models was measured by the total AUC for
the ROC.

Results and discussion
Dinucleotide contact statistics
A simple look at the number of contacts with RNA
revealed that on an average 1.7% of the residues in the
RNA-binding proteins are in contact with a given dinu-
cleotide in the complexes (data not shown). This result
differs from our previous report on DNA-binding pro-
teins, which bind to DNA with an average of 1% of the
residues, reflecting a larger contact surface in protein-
RNA complexes. In contrast to the protein-DNA com-
plexes, in which residues have remarkable preferences
for particular dinucleotides such as AG/CT, AC/GT and
AT/AT, the contacts in protein-RNA complexes are
more homogeneously distributed among all dinucleo-
tides (detailed data not shown). However, contacts with
CG (2.2%), GA (2.2%), GG (2.2%), CC (2.1%) and AG
(2.0%) were slightly more abundant than dinucleotides
UA (1.5%), AU (1.2%) and UU (1.0%). This result illus-
trates the greater complexity of RNA recognition in
comparison to DNA. This is expected, because Protein-
RNA interactions involve the matching of a variety of
conformational arrangements rather than recognition of
canonical helix configurations, as in the case of protein-
DNA complexes [27].
The binding preferences of the 20 amino acids

towards the 16 dinucleotides and their comparison with
DNA-binding proteins are shown in Figure 1 (see Table
S2 in Additional file 2 for details). Similar to DNA-bind-
ing proteins (Figure 1(b)), amino acids Glu and Asp are
excluded from the interface as expected. On the other
hand positively charged residues i.e. Arg, Lys and His
are enriched for most dinucleotide contacts with few
exceptions. Interestingly, Phe and aromatic amino acids
Trp and Tyr showed a significant enrichment for most
dinucleotides. With regard to the specificity, we observe
clear preferences for several cases. For example Lys has
high positive scores only for purine dinucleotides AA
and GA and low or statistically insignificant preferences
for other nucleotides. On the other hand Arg has high
scores for most but not for GC and GG dinucleotides.
Figure 1(c) reveals the similarity and differences between

RBPs and DBPs. As expected, most of the data are
observed in the first and third quadrant, implying that
the same residue-dinucleotide pairs are enriched in
DBPs and RBPs. However, there are some exceptions.
First, some pairs like Arg-AG, Arg-CG, and Arg-GA are
enriched in DBPs but not in RBPs. On the other hand
RBPs employ a larger set of residues as many hydropho-
bic residues pair with dinucleotides (e.g. Tyr-UU, Trp-
GA, Tyr-AU and Phe-AU) whereas their pairing with
corresponding DNA dinucleotides is much less signifi-
cant. Thus, we conclude that a larger set of residues is
employed for interactions in RBPs compared to DBPs
and hydrophobic interactions are particularly important
for conferring specificity in RBPs. This can be explained
in view of the fact that nucleotide side chains (base
atoms) are more exposed in RBPs due to single-stranded
nature and hence more stacking interactions can occur
than in DNA, where most interaction must occur with
the phosphate backbone and hence interactions are
more electrostatic in nature. The consistency of these
preferences and the role of neighbours can also be
revealed by estimating the prediction performance of
models trained using this information.

Prediction performance using sequence neighbours
Sequence and evolutionary information was used to
model the dinucleotide contacting states of all protein
residues in the PRNA160 data. Neural networks were
trained with different feature matrices combining 21-bit
sparse-encoded binary vectors, PSSM scores at differ-
ently sized neighbour windows and GAC scores of the
whole protein sequence. Neural networks yielded an
optimum model with 10 hidden nodes trained with a
feature matrix of 320 input vectors. The combination of
evolutionary information of the predicted residue and
two neighbours with GAC values of the whole sequence
yielded the optimum feature matrix. Figure 2 depicts
ROC graphs of the “best” neural network with AUC
scores of ~67-79%. The lowest accuracies <70% corre-
spond to contacts with UU dinucleotides, whereas the
contacts with AA, CU, GA and UG dinucleotides were
predicted with the highest accuracies of about 80%.
Notably, the optimum contribution of sequence neigh-
bours to the dinucleotide-specific binding extends only
up to 2 residues, representing a 5-residue fragment in
the protein sequence. No further improvement in per-
formance could be obtained by increasing the window
size beyond 5 residues, apparently because the distant
neighbour information is too complex to be captured by
the amount of data we have. Performance levels are gen-
erally lower than but remain comparable to the reported
accuracies for general RNA-binding site prediction from
sequence, which are in the range of 80-85% [8-11], high-
lighting the difficulties in the prediction of specific
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(a) 

(b) 

(c) 

Figure 1 Chi-squared values of amino-acid dinucleotide contacts (a negative sign means the observed number was less than the expected
value in that contact class). (a) Dinucleotide (x-axis) contact preferences with individual amino-acid residues (y-axis) in protein-RNA-complexes
are displayed (high positive score means contacts are preferred). (b) Same as (a) but protein-DNA complex preferences are shown instead. (c) A
scatter plot of contact preferences in protein-RNA versus protein-DNA complexes.
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contacts in comparison to general RNA-contact predic-
tion. Yet, the results are encouraging as they are likely
to improve in the future with more abundant data sets.
In particular, the proposed method is likely to enable us
to identify binding sites more accurately when provided
with known target RNA-sequences. Ability of dinucleo-
tide-contact prediction to fine-tune binding site predic-
tion on RBPs in reference to the dinucleotide sequence
on the RNA-target is demonstrated in Figure 3. Using
two publicly available web servers in [11,13], we show
that our proposed approach can enhance identification
of interacting regions. There are not many examples
forming contacts with only one dinucleotide type, which
makes the visual or statistical presentation of this result
more difficult, but the illustrated example is quite infor-
mative. The overall ability of the proposed model to
identify specific contacts is obvious, as general binding
site algorithms cannot distinguish between RNA-targets
at all and any progress in that direction is a clear advan-
tage over the general approach.

What leads to the predictability of specific contacts from
PSSMs?
PSSMs, as used in this work enumerate the residue sub-
stitution profiles during evolution at each alignment
position for a given protein sequence. The evolutionary
patterns of amino acid substitutions at given positions
of RBPs represent constrains imposed by the require-
ment of specific interactions. In our previous study on
dinucleotide-specific DNA binding-site prediction [16],

we also found that the amino acid substitution pattern
of a residue and its neighbours (encoded in the PSSM)
was well-defined during evolution and could be corre-
lated to the ability of the residue to interact with parti-
cular DNA dinucleotides. Our findings for protein-RNA
interactions suggest that, although more complex and
varied than protein-DNA interactions, the substitution
patterns of the functional residues in RNA-binding pro-
teins are also significantly constrained during evolution.

Predictability of specific contact across RNA functional
classes
Besides playing a broad range of roles in the cell, RNA
molecules might also mediate unknown biological func-
tions [28,29]. Two main RNA recognition classes have
been defined: groove binding, in which a protein second-
ary structure element is positioned into the groove of an
RNA helix; and beta-sheet binding, in which beta-sheet
surfaces create pockets to bind unpaired RNA bases [30].
The diversity of RNA-binding patterns has been previously
discussed in the context of functional groups in which
RNA binds different protein secondary elements [22].
However, it is not straightforward to separate groove-bind-
ing proteins from beta-sheet binding ones, as the two
modes of binding often occur together in complexes. It is
much more convenient to classify RNA-binding proteins
in terms of the target RNA function. Specifically, we evalu-
ated the performance of the optimum neural network
according to the functional class of the complexes. We
considered four functional classes of RNA: viral RNA,

Figure 2 Performance of predicting contacts with 16 unique dinucleotides. Area under the ROC curve, specificity and sensitivity at peak F-score
are plotted for the cross-validated models in terms of their ability to predict protein-RNA contacts corresponding to each of the possible 16
specific dinucleotides.
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mRNA (messenger RNA), tRNA (transfer RNA) and
rRNA (ribosomal RNA) representing about 9.9%, 15.1%,
31.1%, 32.1% of all contacts in the dataset, respectively.
Figure 4 depicts the prediction performance of our model
for proteins binding to different RNA classes. We find that
the optimum neural network performed quite homoge-
neously for all RNA functional classes except the viral
complexes (Figure 4) which resulted in low accuracies in
the AUC range of 62-77% in comparison to the accuracies
for mRNA, tRNA and rRNA complexes, which range
between 68-84%, 64-80% and 66-81%, respectively. These
results suggest that viral RNA-protein interaction patterns
are different from the rest of the complexes. In fact,
besides having the most polar and least well packed RNA
binding sites among all RNA-binding proteins [31], viral
protein-RNA complexes have been also reported to be the
least sequence-specific [31], which could explain their
poor performance on specificity prediction.

In order to improve the model performance for the
different RNA functional classes, we implemented
functional class-wise predictors of dinucleotide-specific
RNA binding sites in proteins. In this case, neural net-
works were trained independently with complexes from a
single functional class. After trying all combinations of
sequence and evolutionary features for each RNA class,
the prediction performance only partially improved for
proteins binding to viral RNA. Interestingly in this case,
the optimum neural network was trained with evolution-
ary information of the interacting residue and GAC of the
whole protein sequence without considering any contribu-
tion from neighbouring residues. Despite the low accuracy
(AUC<55%) yielded for AU dinucleotide (Figure S1 in
Additional file 3), the AUC values for the rest of the dinu-
cleotides ranged from 63-88%. It is noteworthy that CU,
GA, and UG dinucleotides exhibited improved accuracies
of about 85%, 81% and 88%. The data shortage on viral

Figure 3 Comparison of prediction results of traditional non-specific RNA-binding site prediction approaches [12,13] with the proposed
method. Figure shows that incorporating dinucleotide information improves resolution of RNA-binding surface and reduced the false
positive rate.
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protein-RNA crystal structures is likely another cause of
the underperformance observed for this RNA functional
class, which could be overcome when more crystal struc-
tures of viral RNA complexes become available.

Application to the prediction of binding protein-RNA
fragment pairs
A second neural network model was implemented to
evaluate the ability of the dinucleotide specific RNA-
binding scores to discriminate between “binding” and
“non-binding” protein-RNA fragments in a given com-
plex. By shifting one residue at a time, protein and RNA
sequences were scanned to obtain all protein and RNA
fragments of a given length per complex. All possible
combinations of protein-RNA fragment pairs were gener-
ated for a given complex. Fragment pairs were labeled as
“binding” if the fragment pair contains binding sites and
“non-binding” otherwise. Neural networks were trained
with fragment pair features obtained by concatenation of
the predicted 16 dinucleotide-binding scores of each resi-
due in a protein fragment and the dinucleotide composi-
tion of the corresponding RNA fragment of the pair.
Figure 5 shows ROC plots and AUC values for the opti-
mum models to predict protein and RNA fragments
binding at different lengths. The accuracy to recognize
binding fragment pairs varied with the fragment lengths.
Interestingly, binding fragment pairs of five residues,
which represent the same window size of the optimum

dinucleotide specific RNA-binding model, were recog-
nized with the highest accuracy of about 70%. According
to the recognition accuracy of RNA fragments binding to
specific protein sequence fragments, our methodology
seems very promising for the discovery of putative RNA
functional elements on a genomic scale.

SRC PRED web server
A web server which takes FASTA-formatted sequences as
input and predicts 16-dimensional vectors representing all
possible dinucleotides for each residue position has been
implemented and made available at http://tardis.nibio.go.
jp/netasa/srcpred. One of the problems in working with
this type of web servers is to interpret prediction scores. In
this regard, we developed a strategy by using the raw pre-
diction score at each position as a cutoff and determined
the corresponding precision in the benchmarking data
sets. Precision scores at this cutoff represents the probabil-
ity that the position being in the positive class i.e. binding
residue-dinucleotide pair. The web server automatically
returns these probability scores for all residue positions
and provides a graphical prediction highlighted according
to the range of these scores.

Conclusions
The paper shows that single amino-acid sequences and
evolutionary profiles can predict RNA dinucleotide-
specific contacts with accuracy somewhat lower than

Figure 4 Prediction performance for various RNA-binding protein classes. Protein-RNA complexes were grouped by their functional class and
the prediction performance of our models within each category were evaluated.

Fernandez et al. BMC Bioinformatics 2011, 12(Suppl 13):S5
http://www.biomedcentral.com/1471-2105/12/S13/S5

Page 8 of 10



the prediction of general RNA-binding sites. Specific
contacts in different RNA functional classes can be suc-
cessfully predicted from a single comprehensive model
but viral RNA complexes performance was slightly
poorer. The best prediction accuracies, measured by the
area under the ROC graphs, were ~80% for the general
model. In addition, we showed that the calculated resi-
due-wise prediction scores, used in combination with
dinucleotide compositions correctly identified about 70%
of protein-RNA fragment pairs at complex interfaces.
This study will provide us with a better understanding
and more accurate predictions of the specific base-
amino acid interactions in protein-RNA complexes.

Additional material

Additional file 1: Various RNA-binding proteins. Zipped file, which
contains lists of various RNA-binding proteins in text format (Table S1).

Additional file 2: Expected and observed contacts and chi- squared
statistics. Detailed values of expected and observed of contacts and chi-
squared statistics (Table S2).

Additional file 3: ROC plots of prediction performance per each
dinucleotide class. ROC plots of prediction performance per each
dinucleotide class (Figure S1).
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