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Abstract

Background: Signal transduction is the major mechanism through which cells transmit external stimuli to evoke
intracellular biochemical responses. Understanding relationship between external stimuli and corresponding cellular
responses, as well as the subsequent effects on downstream genes, is a major challenge in systems biology. Thus,
a systematic approach to integrate experimental data and qualitative knowledge to identify the physiological
consequences of environmental stimuli is needed.

Results: In present study, we employed a genetic algorithm-based Boolean model to represent NF-�B signaling
pathway. We were able to capture feedback and crosstalk characteristics to enhance our understanding on the
acute and chronic inflammatory response. Key network components affecting the response dynamics were
identified.

Conclusions: We designed an effective algorithm to elucidate the process of immune response using
comprehensive knowledge about network structure and limited experimental data on dynamic responses. This
approach can potentially be implemented for large-scale analysis on cellular processes and organism behaviors.

Background
Resolving the complex cellular signal transduction is a
grand challenge in systems biology. Signal transduction
involves cascade of protein-protein interaction and com-
plex feedback loops [1] across proteomic and genomic
levels. Models of the dynamics of the combined regula-
tory networks provide in-depth analysis temporal char-
acteristics of targeted biological process. Furthermore, in
silico knockout experiments by these models could help
biologists to prioritize target genes of interest and
reduce time and cost of real experiments.

Types of dynamic network models include kinetic
models [2,3], hidden Markov models [4], and logic-
based models [5,6]. Kinetic models based on differential
equations have been used to elaborate dynamics on
numerous systems [7]. However, they need detailed
information about network structure, reaction mechan-
ism and the respective kinetic parameters; which, unfor-
tunately, are not easily obtainable. Hidden Markov
model (HMM) is a statistical model in acyclic pathway
[8]. The state is hidden, but the outcome dependent on
the state is visible. Hence, HMMs are usually used to
model known results with unknown process mechanism.
Boolean network is a qualitative logic-based model that
was introduced in the 1960s [9]. In the past few decades,
scientists have frequently used Boolean network to
model gene regulatory networks (GRN), apoptosis,
metabolic network, immune response and signaling
pathways [5,10-12]. Since logic-based or qualitative
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knowledge of interaction is abundant, the network
structure can be easily established. Moreover, only mini-
mal information is required to describe the dynamics of
Boolean transfer function, they can be obtained using
limited experimental data. Therefore Boolean model is
an effective and extendable way of modeling the
dynamics of signal transduction.
The transcription factor NF-�B controls various

inflammation mediators to orchestra interwoven cellular
responses to inflammatory stimuli such as TNF, IL-1
and TLR4 etc. In this study, Boolean model with time-
delay was used to described the NF-�B signaling. The
objective is to integrate qualitative information on net-
work interactions from published datasets and dynamic
response data in literatures to reveal the regulatory
mechanism of infection and inflammation.

Results and discussion
Model
Figure 1 shows the workflow of building our Boolean
model with time delay. First, we generated the Boolean
transfer function of our model. Oda et al [16] provided
a comprehensive intracellular molecular interaction
map. The information was integrated with pathways
from KEGG database to obtain a comprehensive net-
work. We focus on the network between three recep-
tors: Interleukin 1 (IL-1), Toll-like receptor 4 (TLR4)
and Tumor necrosis factor (TNF) and observable out-
puts are IKK, IkBa, TNFa. External stimuli considered
are TNF and LPS. The network contains a lot of
sequential relations which can be compressed using the
method shown in Figure 2. In the compression, an
intermediate node with only one input and one output
is removed; Any branching or meeting nodes are pre-
served. Figure 3 illustrates the simplified cascade and
feedback of signals. There are three feedback routes
involving TNF, A20, and IL1. A kernel pathway invol-
ving IKK, IkBa and TNFa can be identified through
which all the signals have to go through.
Boolean transfer functions were used for each edge.

Each transfer function has two dynamic parameters. The
delayed activation θ denotes the duration that the input
to a node must turned on before the reception node is
turned on. The sustained response r is the time that the
output of a node can be sustained once it is turned on.
These parameters were obtained by fitting a training
data set published in [2,17,18] using GA.
Even with a simplified network and limited number of

dynamic parameters, convergence to a set of reasonable
parameters was not easy. In order to improve the model-
ing process, we trained model parameters in kernel path-
way first with parameters of the rest of the edges set
equal to 1, using wild type data containing measurements
of both IKK and NFkB measurements. When kernel’s

parameters were decided, the parameters of the remain-
ing edges were determined by adding additional data
involving A20 knockout, stimulus of various strengths
and measurements of either IKK or NFkB only.
Figure 4 shows the comparison between our model

outcome and the experimental data in the learning sets.
The upper boxes are each active pattern with specific
treatment (the description was written on the graph)
and compared with real data (the western blot data
under corresponded box). The MSE value between our
model and data is 0.0919.

Dynamics implications
The parameters obtained for the Boolean model were
shown in Table 1. The delay of transcription factor
NFkB induced components, such as A20, IkBa, IL1 and
TNF are longer than other reactions in Table 1. It
reveals transcription costs more time than phosphoryla-
tion. TNF related pathways will response immediately in
our model. In contrast, LPS costs longer delay time to
start immune response. The activation of IKK by LPS
through TAB1/TAB2/TAK1 is much slower than activa-
tion through NIK by TNF.

Negative regulator
Because NFkB regulates pro-inflammatory cytokines,
such as IL1, TNF, and negative regulator A20 [19],
these effectors can generate positive and negative feed-
back control. In our model, IL1 and TNF were positive
feedback. Excessive cytokine production is harmful to
the host due to its effects on blood circulation system.
Thus, “Endotoxin tolerance” is a critical negative feed-
back mechanism to protect host from endotoxic shock
[20]. In our model, negative regulator A20 and IkBa
could suppress NFkB’s activity. Specifically, NFkB
induced IkBa (nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor, alpha) will supress
NFkB activity in a self-regulatory cycle. As shown in
Figure 5, inflammation response will be prolonged by
IkBa deletion in TNF and LPS stimulation.
Zinc finger protein A20, also called TNFAIT3 (Tumor

necrosis factor, alpha-induced protein 3), can also pro-
duce RIP- or TRAF2- mediated signal to indirectly
block the NFkB activity. We have learned from the lit-
eratures that the negative regulator A20 blocked the
NFkB activation while protecting the host cell from
TNF-mediated apoptosis. To mimic an A20 knockout
assay done in the wet-bench experiments, we set the
output of the A20 nod to 0 and keep it in off state dur-
ing simulation as the deletion. The resulting signaling
pattern of wild type and A20 mutation in our model
were shown in Figure 4. TNF induced IKK(left side of
Figure 4.A) active from 5 min to 60 min in wild type
and persist with A20 deletion. NF-�B(right side of
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Figure 4.A) caused secondary activation when A20 is
knocked out. For LPS-induced IKK (left side of Figure 4.B)
and NFkB (right side of Figure 4.B), there is no differ-
ence between active patterns obtained with wild-type
and A20 deletion. This is because in a LPS induced
response, the secondary TNF response will be triggered
after the transcription of NFkB. Hence A20 is appar-
ently a key component in TNF-induced pathway but
with no significant influence in LPS-induced pathway.

Clinical implication
Figure 4.A and Figure 6 can help us understand acute and
chronic inflammatory response. In acute infection, IKK
will active for short span of time to initiate the immune
response and return the system to steady state quickly. On
the other hand, under chronic inflammatory response

Figure 1 The workflow of our strategy. The flowchart of developing our model: First collect network structure information and experimental
time profile data. Simplify the network, identify the kernel and create Boolean transfer functions for the simplified network. Experimental data
are normalized, filter and converted to binary form. The parameters of the kernel pathways are trained first using genetic algorithm. Parameters
of remainin pathway are then determined.

Figure 2 The network simplification procedure. In A, the orange
node, which has only one input and one output is removed. In B,
C, The green nodes, which has more than one input or more than
one output are preserved.
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(shown in Figure 6), IKK has an oscillatory profile that can
generate greater cytokines production to protect the host
cell. With our model, it is hence possible to separate the
time course into two phases: the pro-inflammatory and
anti-inflammatory phases. As mentioned before, NFkB is a
key regulator for inflammation. It up-regulates pro-

Figure 3 LPS/IL1/TNF ® NF-�B network after simplification.
LPS/IL1/TNF induced network after simplification. In the network,
TNF, IL-1 and LPS are inputs. A-20, IL-1 and TNF are three key
feedbacks. NF-�B, IKK and I�Ba are observable outputs which can
be detect from experiment. An edge between nodes indicates
interaction. Arrow implies activation blunted line denotes inhibition.
Within the red box is the kernel pathway of between IKK, IkBa and
NFkB.

Figure 4 The pattern of model simulation compare with experimental data. Simulations profile of our model (Upper boxes) and
coresponding original data [2,17,18]. Blue bars represent on and white space means off, respectively. X-axis is the time course (minutes) and y-
axis means the activities of target in our model in distinct conditions: (A) IKK (left) and NFkB’s (right) activities induced by TNF 45 minutes
treatment with wild type and A20 mutant. (B) IKK (left) and NFkB’s (right) activities with wild type and A20 knockout condition of LPS 45 minutes
treatment. (C) NFkB’s activities induced by transient 15 minutes IL-1 in wild type and I�Ba mutant. (D) IkBa’s activities with TNF (left) and LPS
(right) 45 minutes stimuli.

Table 1 The model obtained by our approach

Component Boolean transfer function

IRAK1(t) = 5*IL1(t-1) OR 3*LPS(t-87)

TAB1/TAB2/TAK1(t) = IRAK1(t-13) OR LPS(t-125)

NIK(t) = TAB1/TAB2/TAK1(t-25) OR TNFR1(t-1)

IKK(t) = TAB1/TAB2/TAK1(t-100) OR NIK(t-1)

IkBa(t) = NOT 2* IKK(t-3) OR -62* NFkB(t-96)

NFkB(t) = NOT IkBa(t-1)

A20(t) = 7*NFkB(t-107)

IL1(t) = -62*NFkB(t-373)

TNF(t) = -62*NFkB(t-69)

TNFR1(t) = 4*TNF(t-1) AND NOT A20(t-10)

Each component has a Boolean transfer function that contains logic gates and
two type of parameters: delay activation (inside bracket) and sustained
response (before * sign). Each time step corresponds to 30 second in real
time.
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inflammatory cytokines such as TNF and IL-1 as well as
trigger negative regulator such as A20 and IkBa to sup-
press the IKK activities. Over a short span of 60 minutes,
IKK’s activity will decrease by the repression of IkBa, this
process can thus be defined as the anti-inflammatory
phase. Further, the time profile of TNF-induced IKK can
cause secondary activation around 6 hour.

Conclusions
In this work, a dynamic Boolean model was generated
by integrating and comprehensive qualitative knowledge
about network structure and fitting a minimal amount
of dynamic response data. The model is capable of cap-
turing feedback and crosstalk dynamics between diverse
signaling pathways. Using this model, mechanisms of
and factors affecting periodic pro-inflammatory and
anti-inflammatory responses can be elucidated.
The proposed approach integrated intracellular and

intercellular process. Hence it is possible for us to use
this approach to develop system models for host defense
against the shock from environmental or pathogen sti-
muli and predict the inflammatory response. Such a
model will potentially be able to provide insight to a
feedback treatment scheme for clinical therapy.

Figure 5 Effect of I�Ba deletion. Simulated IKK’s active pattern
obtained by 45 min stimuli of TNF and LPS and IkBa knockout.

Figure 6 Pro-inflammatory and anti-inflammatory period.
Simulated IKK’s active pattern obtained by continuous TNF
stimulation. The time profile can be separated as pro-inflammation
and anti-inflammation period. Due to continuous TNF infection, it
will cause secondary activation.

Figure 7 Logical gates to biological processes. Boolean network include combinations of logic operator (AND, OR, NOT) were developed
from the knowledge of components directly upstream of each target node in the network. The logic gate also called transfer function which
modified with information from the literature. We use OR operator when either of upstream nodes could activate the target component. AND
operator is for synergy, which means two or more upstream nodes are necessary to activate the target component. In the other case, the NOT
operator represents inhibition or competition.
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Methods
Boolean transfer function
The Boolean model with time delay can be described
mathematically by the graph G={V,E}, in which V = {x1 ...
xN} is a set of nodes and E={eij} is a set of edges, with
eij equals 1 if there is an linking edge starting from the jth

to the ith node and eij equals 0 otherwise [21-23]. The
transfer function that determine activation of the node xi
at time t is given by:

x t f e g h x t r e g h x t ri i i i i i iN N iN( ) = ( ){ }( )( ) ( ){ }( )1 1 1 1 1 1 1, , , , ,  iiN( )⎡
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In other words, the activation of the ith node by jth

node is on only if the jth node has been on continuously
for a period of θij. The effect of sustained and delayed
response can be described by the following pseudocode:
when h({x1(t)}, θi1) = 1
if rij ≥ 1
τij = τij + rij - 1
gij = 1
else
τij = τij + 1
if τij ≥ |rij|
gij = 1

Figure 8 Experimental data processing normalization. The data
processing by ImageJ software. The original data is from [2]. We
subtracted background and separated profile bipartitely by Max
entropy threshold approach. The binary data profile comes after
data processing.

Figure 9 Flowchart of the Genetic algorithm workflow. The first population was generated randomly. The fitness criterion is defined as
minimizing mean squared error (MSE) between model predictions and experimental results. Roulette wheel selection is used to select
candidates for parents in crossover. A fixed mutation rate of 2% was used to prevent premature convergence. The Elitism algorithm was used to
determine the survival of parents and children in the new generation.
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τij = τij - 1
end
end
Thus if rij ≥ 1, the activation of xi by xj will be sus-

tained; alternatively the activation of xi by xj will be
delayed.
The function f1 is a series of logical gates connecting

input nodes to output nodes. The relations of these logi-
cal gates to biological processes are shown in figure 7.

Data processing
To generate on-off response of the observed nodes, we
collected the Western blot experimental data in
[2,17,18] and employed processing steps in ImageJ as
shown in Figure 8. First the background is subtracted.
Then the maximum entropy threshold approach was
used to filter the data. Finally, a binary data profile is
obtained.

Model fitting by genetic algorithm
We implemented genetic algorithm to optimize model
by MATLAB. Figure 9 shows work flow of the genetic
algorithm utilized in this study. We generated first
population randomly. The fitness is defined as mean
squared error (MSE) between model predictions and
experimental results:

Fitness
M

x t x ti
el

i

i IKK IkBa NFkBt

= ( ) − ( )⎡
⎣

⎤
⎦

=
∑∑1 2mod exp

, ,

The solution will be achieved by minimizing the fit-
ness function through genetic operations. First the para-
meters in the Boolean transfer function θij and rij of the
active links are transformed into chromosomal represen-
tation. Roulette wheel selection is used to select candi-
dates for parents in crossover. A fixed mutation rate of
2% was used to prevent premature convergence. The
Elitism algorithm [24] was used to determine the survi-
val of parents and children in the new generation. A
population size of 1000 was used. The GA is terminated
at 800 generations. Parameter settings of the GA algo-
rithm were in Table 2.
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