
RESEARCH ARTICLE Open Access

Microarray-based cancer prediction using single
genes
Xiaosheng Wang and Richard Simon*

Abstract

Background: Although numerous methods of using microarray data analysis for cancer classification have been
proposed, most utilize many genes to achieve accurate classification. This can hamper interpretability of the
models and ease of translation to other assay platforms. We explored the use of single genes to construct
classification models. We first identified the genes with the most powerful univariate class discrimination ability and
then constructed simple classification rules for class prediction using the single genes.

Results: We applied our model development algorithm to eleven cancer gene expression datasets and compared
classification accuracy to that for standard methods including Diagonal Linear Discriminant Analysis, k-Nearest
Neighbor, Support Vector Machine and Random Forest. The single gene classifiers provided classification accuracy
comparable to or better than those obtained by existing methods in most cases. We analyzed the factors that
determined when simple single gene classification is effective and when more complex modeling is warranted.

Conclusions: For most of the datasets examined, the single-gene classification methods appear to work as well as
more standard methods, suggesting that simple models could perform well in microarray-based cancer prediction.

Background
Recent advances in microarray technology have made it
feasible to rapidly measure the expression levels of tens
of thousands of genes in a single experiment at a rea-
sonable expense [1]. This technology has facilitated the
molecular exploration of cancer [2-9]. For medical appli-
cations, gene expression profiling can be used to
develop classifiers of prognosis or sensitivity to particu-
lar treatments. A large literature on the development
and validation of predictive classifiers has emerged [10].
Most of the classifiers developed have involved complex
models containing numerous genes [5,11-16]. This has
limited the interpretability of the classifiers and lack of
interpretability hampers the acceptance of such diagnos-
tic tools. Classification models based on numerous
genes can also be more difficult to transfer to other
assay platforms which may be more suitable for clinical
application. Several authors have suggested that simple
models could perform well in some cases of microarray-
based cancer prediction [17-23].

The development of a molecular classifier includes
gene selection and classification rule generation. A vari-
ety of gene selection strategies have been used. These
include univariate gene selection and more complex
multivariate methods. In [3], [17] and [24], the authors
investigated classification based on a small number of
selected gene pairs. In [20], the authors explored the use
of one or two genes to perform tumor classifications.
These investigations indicated that for the data exam-
ined, classifiers could be developed containing few genes
that provided classification accuracy comparable to that
achieved by more complex models. Some more complex
algorithms have been used to select few genes for classi-
fication, but often overfit the data [15,25-29].
Many different classification rules have been proposed

for high dimensional predictive classification including
Support Vector Machines (SVM), Diagonal Linear Dis-
criminant Analysis (DLDA), Artificial Neural Network
(ANN), Prediction Analysis of Microarrays (PAM),
Naïve Bayes (NB), k-Nearest Neighbor (k-NN), Nearest
Centroid (NC), Decision Tree (DT), Random Forest
(RF), Rough Set (RS) [30], Emerging Pattern (EP) [31]
etc. Most of these methods produce “black-box” models,* Correspondence: rsimon@mail.nih.gov
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in which class predication is based on mathematical for-
mulae which are difficult to interpret.
In this study, we explored the usefulness of very sim-

ple single gene classification models for molecular clas-
sification of cancer. Although in [20], the authors have
investigated the use of single genes for classification of
cancer, the applicability of that method was limited in
that the authors identified multiple single genes poten-
tially having good classification performance instead of
determining one which would be validated and used for
cancer prediction.
We compared the performance of the single gene

models to that of a wide variety of more standard mod-
els using eleven publicly available gene expression data-
sets (http://linus.nci.nih.gov/~brb/DataArchive_New.
html) [32]. We also compared the performance of single
gene classifiers to a wide range of standard classifiers on
the datasets evaluated in [33].

Results
Table 1 lists the LOOCV results for single gene classifi-
cation using the t-test and the WMW test for gene
selection. For comparison, LOOCV results obtained by
using the DLDA, k-NN, SVM and RF methods are also
listed in Table 1. The classification results based on
split-sample rather than LOOCV evaluation are pre-
sented in Table S1 and Table S2 (Additional file 1).
From Table 1, we can see that the Melanoma is an

easily-classified dataset for which all the methods exhibit
very high classification accuracy. In contrast, Breast
Cancer 1 is a difficult dataset for which the standard
methods show relatively low classification accuracy,
whereas the single gene classifiers based on WMW and

t-test show the best and second best results, respec-
tively. In the Brain Cancer dataset, the t-test and the
WMW single gene classifiers achieved the highest and
second highest classification accuracy, respectively. In
the Breast Cancer 2 dataset, the WMW and the t-test
single gene classifiers show poorer accuracy than other
methods. In the Gastric Tumor dataset, the WMW and
the t-test classifiers show poorer accuracy than the k-
NN, SVM and RF classifiers but are comparable to the
DLDA classifier. In the Lung Cancer 1, Lung Cancer 2,
Myeloma and Prostate Cancer datasets, the classification
results obtained by the WMW and the t-test single gene
classifiers are close to those obtained by the other four
methods. Surprisingly, in the Lymphoma and the Pan-
creatic Cancer datasets, the classification results
obtained by the WMW and the t-test single gene classi-
fiers are much better than those obtained by the other
four methods. For the evaluations based on separating
each dataset into training and test sets, we obtained
similar conclusions (see Table S1 and Table S2 of Addi-
tional file 1).
The number of genes used for building the classifiers

averaged across the loops of the cross validation is listed
in Table 2 for each method. From this table, we can see
that the DLDA, k-NN, SVM and RF have used a large
number of genes for constructing the classifiers in most
of the eleven datasets. The number of genes in the clas-
sifiers constructed in the cases of separating samples
into one training set and one test set is presented in
Table S3 and Table S4 (Additional file 1).
Generally speaking, in the datasets with small sample

sizes such as those for Melanoma, Brain Cancer, Lung
Cancer 1, Lymphoma and Pancreatic Cancer, the single
gene classifiers showed better or comparable classifica-
tion results compared with the standard methods. In the
datasets with relatively large sample sizes like the Lung
Cancer 2, Gastric Tumor and Myeloma, the single gene

Table 1 The LOOCV classification accuracy (%)

Method
Dataset

SGC-t SGC-W DLDA k-NN SVM RF

Melanoma 97* 96** 97* 97* 97* 97*

Breast Cancer 1 63** 69* 61 53 52 43

Brain Cancer 80* 77** 65 73 60 70

Breast Cancer 2 58 50 73* 67** 73* 67**

Gastric Tumor 89 80 81 96** 97* 95

Lung Cancer 1 98* 95** 95** 98* 98* 98*

Lung Cancer 2 93** 93** 99* 99* 99* 99*

Lymphoma 74* 71** 66 52 59 57

Myeloma 68 67 75 78** 74 79*

Pancreatic Cancer 69** 90* 63 61 65 55

Prostate Cancer 89** 89** 78 93* 93* 93*

Note:

1 SGC-t: Single Gene Classifier with the t-test gene selection method.

2 SGC-W: Single Gene Classifier with the WMW gene selection method.

3 for each dataset, the highest classification accuracy is highlighted with a
single asterisk and the second highest is highlighted with a double asterisk.

Table 2 The mean number of genes in classifiers

Method
Dataset

SGC-t SGC-W DLDA k-NN SVM RF

Melanoma 1 1 7200 7200 7200 7200

Breast Cancer 1 1 1 17 17 17 15

Brain Cancer 1 1 14 14 14 14

Breast Cancer 2 1 1 176 176 176 176

Gastric Tumor 1 1 848 848 848 848

Lung Cancer 1 1 1 7472 7472 7472 7472

Lung Cancer 2 1 1 3207 3207 3207 3207

Lymphoma 1 1 2 2 2 2

Myeloma 1 1 169 169 169 169

Pancreatic Cancer 1 1 56 56 56 44

Prostate Cancer 1 1 798 798 798 798
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classifiers showed poorer results. One possible explana-
tion is that complex models require larger datasets for
training and in some cases may be overfit for smaller
datasets. The comparative results were not very related
to the number of genes in the dataset. All datasets
included many thousands of genes and as noted in [34],
a good classifier from high-dimensional microarray data
can involve a short gene list if there are many genes
with large differences in expression between the classes.
Clearly, in the Melanoma, Gastric Tumor, Lung Cancer
1, Lung Cancer 2 and Prostate Cancer dataset, there are
many genes with large differences in expression between
the classes so that it is not difficult to find a single gene
on which to base a good classifier. In such cases, it is
unnecessary for the standard algorithms to use so many
genes in constructing classifiers for these datasets (see
Table 2). Actually, the single gene classifiers achieve
near-optimal classification results in these datasets. In
contrast, if there are very few genes with large differ-
ences in expression between the classes, it will be diffi-
cult to build an effective single gene classifier because
the gene selected may be the noise-gene with the great-
est apparent degree of differential expression. In some
cases, however, it might be equally difficult for complex
algorithms to produce good classifiers for this sort of
dataset, particularly when the sample size is small and
overfitting is likely to occur. This might explain why the
single gene classifiers performed better than complex

classifiers in some difficult small sample datasets like
the Brain Cancer, Lymphoma and Pancreatic Cancer.
Single gene classifiers are more influenced by selection

of noise genes than standard methods. Some ‘’noise’’
genes could have good t-test or WMW test statistics in
the training set, and if such genes were selected for
building the single gene classifiers, the performance of
the classifiers would be poorer than the classifiers built
based on a longer gene list. In the Breast Cancer 2 and
Myeloma datasets, it was likely that the selection of
‘’noise’’ genes had contributed to the poor results of the
single gene classifiers. In fact, in the Breast Cancer 2
dataset, we found one gene in the list of five genes with
the smallest t-test p-value, which could result in 73%
classification accuracy, and in the Myeloma dataset, we
found one gene in the list of 10 genes with the smallest
t-test p-value, which could result in 92% classification
accuracy. Both results are much better than those
obtained by using the present gene selection methods
(see Table 1). Therefore, sometimes it might be better
to include a longer gene list in classifiers to prevent
from falling into the trap of noise genes.
Table 3 explores how the performance of the single

gene classifiers and the standard classifiers varies with
some characteristics of the datasets. We calculated the
smallest univariate t-test p-value and the corresponding
t-statistic, the largest mean gene expression fold change
between the classes, the total number of genes

Table 3 Comparison of single gene classifiers and standard classifiers

Parameter
Dataset

Smallest
p-valuea

t-test
statisticb

Fold
changec

# Significant
gened

Accuracy (%) of standard
classifierse

Accuracy (%) of single gene
classifiersf

Melanoma 1.37e-29 22.68 277.78 7263 97 96.5

Breast Cancer
1

8.10e-06 9.06 3.65 20 52.2 66

Brain Cancer 1.51e-04 4.06 21.73 15 67 78.5

Breast Cancer
2

3.10e-06 5.16 3.48 180 70 54

Gastric Tumor 7.34e-10 9.51 10 4798 92.2 84.5

Lung Cancer 1 2.51e-21 20.34 1923.48 7561 97.2 96.5

Lung Cancer 2 6.82e-35 24.72 505.16 3219 99 93

Lymphoma 1.50e-04 4.07 1.33 2 58.5 72.5

Myeloma 5.00e-07 5.23 4.49 172 76.5 67.5

Pancreatic
Cancer

1.30e-06 5.37 5.88 58 61 79.5

Prostate
Cancer

1.34e-21 12.53 12.82 812 89.3 89

Note:
aThe minimum univariate t-test p-value for the genes significantly different between the classes.
bThe absolute value of the t-test statistic corresponding to the left smallest p-value.
cThe maximum fold change in the geometry mean of gene expression between the classes,
dThe total number of genes significantly different between the classes at 0.001 significance level.
eThe mean classification accuracy of the four standard classifiers.
fThe mean classification accuracy of the two single gene classifiers.
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significantly different between the classes at 0.001 signif-
icance level, the average classification accuracy of the
standard classifiers and the average classification accu-
racy of the single gene classifiers for each dataset. From
this table, we can see that for the Melanoma, Gastric
Tumor, Lung Cancer 1, Lung Cancer 2 and Prostate
Cancer datasets, a large number of statistically signifi-
cant genes were identified and used for building the
classifiers by the standard algorithms, while for the
Breast Cancer 1, Brain Cancer, Lymphoma and Pancrea-
tic Cancer datasets, the number of statistically signifi-
cant genes was quite limited so that the standard
algorithms performed much more poorly on these data-
sets and the single gene classifiers had consistently
improved classification performance compared to the
standard classifiers in these datasets. This table also
indicates that the fold change is highly related to the
classification accuracy. In the Melanoma, Lung Cancer 1
and Lung Cancer 2 dataset, the fold changes are huge
and the classification accuracies are extremely high. In
the Gastric Tumor and Prostate Cancer datasets,
although the numbers of statistically significant genes
are also large, the fold changes are not as notable as
those in the aforementioned three datasets, and there-
fore the classification accuracies in the latter are inferior
to those in the three former datasets. Fold change
affects the classification accuracy more than the number
of significant genes. One evident example is that the sig-
nificant gene number in the Brain Cancer dataset is less
than those in the Breast Cancer 1 and Pancreatic Cancer
dataset, whereas the classification accuracy in this data-
set is higher than those in the former two as its fold
change is larger than theirs. This finding is consistent
with the conclusion proposed in [34]. For multivariate
normal data with mean vectors μ1 and μ2 for the two
classes, and common covariance matrix Σ, the optimal
classifier has misclassification rate exp{-(μ1 - μ2)’ Σ

-1(μ1 -
μ2)}/2. Thus, genes that are differentially expressed by a
small amount are not particularly useful for classifying
individual cases unless there are many uncorrelated
such genes and the sample size is large enough to detect
such genes without accepting numerous noise genes.
We also evaluated single gene classification on the

datasets studied in [33]. In [33], the authors compared
the classification results produced by some standard
classifiers including those used in this study. They built
classifiers based on selecting the 10, 50, 100, 500 and
1000 genes with the largest absolute t- and Wilcoxon
statistics as well as all genes to conduct four classifica-
tion experiments in two datasets [7,35]. Table S5 is a
summary of results for those two datasets (Additional
file 1).
We preprocessed the data as described in [33], and

then performed a complete LOOCV to obtain the

honest estimates of classification error. Table S6-9 list
classification results for the single gene classifiers as well
as part of the results presented in [33] for comparison
(Additional file 1). These tables show that for the two
datasets in [33], error rates for the single gene classifiers
are generally close to those produced by standard meth-
ods. The one exception was the high error rate for the
single gene classifier based on the Wilcoxon statistic in
the Breast tumor estrogen dataset (see Table S6 of
Additional file 1).
Two-gene classifiers have attracted a broad interest for

their simplicity and interpretability, among which the
top-scoring pair(s) (TSP) classifier was based on deci-
sion rules induced by comparing mRNA abundance in
gene pairs [17]. We applied the TSP classifier to the ele-
ven gene expression datasets and compared its perfor-
mance to that of our single gene models (see Table 4).
Table 4 demonstrates that the classification performance
of our single gene classifiers is comparable to that of the
TSP classifier. Our single gene classifiers have a substan-
tial advantage over the TSP classifier in time efficiency
for development and evaluation in cross validation.
The stability of the genes selected across the cross

validation (CV) loop is also an important criterion to
evaluate the usefulness of simple classifiers which
involve a small number of genes. Table 5 presents all
the genes selected and their occurrence percentages
across the CV loop by the single gene classifiers in every
dataset. Generally speaking, the genes selected across
the CV loop with our methods are relatively stable (see
Table 5).

Discussion
In contrast to most of the data investigated in tradi-
tional machine learning and data mining applications

Table 4 Comparison of classification accuracy (%) with
the TSP classifier

Method
Dataset

TSP SGC-t SGC-W

Melanoma 99 97 96

Breast Cancer 1 75 63 69

Brain Cancer 77 80 77

Breast Cancer 2 47 58 50

Gastric Tumor 91 89 80

Lung Cancer 1 95 98 95

Lung Cancer 2 97 93 93

Lymphoma 57 74 71

Myeloma 71 68 67

Pancreatic Cancer 90 69 90

Prostate Cancer 81 89 89

Note: The number of gene pairs selected is set as one for the TSP classifier.
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which are often composed of low-dimensional attributes
and high-dimensional instances, microarray data are
composed of high-dimensional attributes (p) and low-
dimensional instances (n). Consequently some tradi-
tional machine learning and data mining algorithms
which are effective for the former become ineffective for
some p > n problems like microarray classification.
Excellent classification can in some cases be achieved
with a small number of genes, even a single gene
selected from thousands of candidates. Optimal com-
plexity depends on the degree of differential expression
among the classes and sample size. Complexity is not,
however simply the number of genes in the classifiers.
Complexity also depends on gene selection criteria and
classification rules employed. Simple models typically
involve a simple feature selection scheme and simple
classification rule. In contrast, complex models often
involve sophisticated feature selection procedures and/or
complicated classification rules. Models based on com-
plex algorithms for multivariate gene selection and com-
plex classification rules may contain few genes but
overfit the data. Empirical comparisons have indicated
that complicated wrapper methods such as aggregated
classification trees sometimes perform poorly compared

to simple classifiers such as DLDA and k-NN in some
cases [36].
Gene selection is critical in building good classifiers

and there is no simple completely general answer to the
question of how many genes a good classifier should
include? For interpretability and ease of porting to assay
platforms more suitable to use in clinical practice, it is
advantageous to include a small number of genes in the
classifier. The optimal number of genes depends on the
sample size, the number of differentially expressed
genes, their degree of differential expression and correla-
tion structure and the type of classifier used [34,37,38].
In some cases, the number of genes or other aspects of
classifier complexity can be regarded as tuning para-
meters to be optimized by an inner-loop of cross-valida-
tion [39]. Our results indicate that single-gene models
should be included as candidate classifiers in such
optimization.
In [33], the authors explored the sensitivity to number

of features for some standard classifiers, and found only
limited changes in performance when varying the num-
ber of genes used with a lower limit of 10 genes. Classi-
fication accuracy with 10 genes was in most cases as
good as or better than accuracy with more genes.

Table 5 Stability of gene selection

Dataset Classifier The genes selected and their occurrence percentages across the CV loop

Melanoma SGC-t 200965_s_at (99%), 213050_at (1%)

SGC-W 217906_at (92%), 218552_at (4%), 218996_at (1%), 219343_at (1%), 221577_x_at (1%), 221882_s_at (1%)

Breast Cancer 1 SGC-t 259466 (92%), 291660 (5%), 950574 (3%)

SGC-W 259466 (98%), 291660 (2%)

Brain Cancer SGC-t J02611_at (95%), X53331_at (5%)

SGC-W J02611_at (93%), X67951_at (3%), HG3543-HT3739_at (2%), X12794_at (2%),

Breast Cancer 2 SGC-t AI868854 (65%), AK026899 (13%), AK026789 (12%), AK025709 (3%), AI240933 (3%), AF119844 (2%), AW006861 (2%)

SGC-W N30081 (65%), AF119844 (23%), AI868854 (12%)

Gastric Tumor SGC-t W70254 (100%)

SGC-W AA171606 (94%), W70254 (6%)

Lung Cancer 1 SGC-t 37210_at (66%), 198_g_at (15%), 40165_at (12%), 32254_at (5%), 41344_s_at (2%)

SGC-W 1252_at (100%)

Lung Cancer 2 SGC-t 33754_at (100%)

SGC-W 40936_at (98%), 33833_at (0.5%), 34320_at (0.5%), 37157_at (0.5%), 39640_at (0.5%)

Lymphoma SGC-t X76538_at (100%)

SGC-W X76538_at (91%), D30655_at (9%)

Myeloma SGC-t 33146_at (88%), 32546_at (12%)

SGC-W 32546_at (99%), 1071_at (1%)

Pancreatic Cancer SGC-t 209596_at (98%), 206451_at (2%)

SGC-W 206451_at (45%), 209596_at (43%), 218498_s_at (6%), 219625_s_at (4%), 212058_at (2%)

Prostate Cancer SGC-t 34452_at (100%)

SGC-W 34452_at (100%)

Note: In Breast Cancer 1, the genes are denoted by Clone ID; in Breast Cancer 2 and Gastric Tumor, the genes are denoted by GenBank Accession number; in all
the others, the genes are denoted by Probe Set.
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Although the univariate feature selection approach used
by Dudoit and Fridyland was simple compared to some
of the complex multivariate feature selection approaches
that have been used, the former often outperformed the
latter [29,40].
We have found that single gene classification models

are frequently of commensurate accuracy as more com-
plex classifiers. For problems with genes that are quite
differentially expressed, single gene classifiers appear to
do well. For more difficult problems without highly dif-
ferentially expressed genes, it can be useful to include
more genes in the model instead of using the single
most extreme gene which may be noise. In some of
these cases with small number of samples, however, the
single gene model might do as well because models with
more genes may overfit the data.
For most of the datasets examined, the single-gene

classification methods appear to work as well as more
standard methods such as DLDA, SVM, k-NN and RF,
based on a larger number of genes, and two-gene classi-
fiers such as the TSP classifier. Here the classification
results used for comparison obtained by DLDA, SVM,
k-NN and RF might not be optimal as we have pre-spe-
cified their model parameters rather than optimized
these parameters. Thus, we re-examined the classifica-
tion results obtained through optimizing the parameters
of the compared classification models. For k-NN, we
compared the three groups of classification results
obtained by1-NN, 3-NN and the nearest centroid,
respectively. These results were close to each other (see
Table S10 of Additional file 1). Furthermore, we re-clas-
sified the eleven data sets using the DLDA, k-NN and
SVM classifiers with the optimized gene selection signif-
icance level which was chosen from the grid 0.01, 0.005,
0.001, and 0.0005 in order to minimize the CV error
rate. Table S11 presents the classification accuracies
attained with the optimized and no- optimized para-
meter for all of the datasets (Additional file 1), suggest-
ing that their gap is minor. In addition, we examined
the classification results achieved under varied values of
tuning parameter cost for SVM for selected datasets and
found no change. Finally, we investigated the perfor-
mance variation of the RF classifier by tuning its two
parameters: the number of trees and the number of
genes randomly sampled as candidates at each split. We
found that the performance variation was minimal. In
summary, the classification performance with the pre-
specified parameters is close to that with the optimized
parameters for DLDA, SVM, k-NN and RF, and there-
fore the conclusions gained from the comparison ana-
lyses of our single-gene classifiers and the standard
classifiers are justified.
Our single gene classifier for a training set was devel-

oped by applying the entropy-based discretization

method to find the optimal cut point for the single gene
selected based on the t or WMW statistics (see the
Methods). Of course, the cut-point finding could also be
included in the single gene selection like the methods
proposed in [20,41]. However, our experiments have
indicated that the cut-point based feature selection for
all genes would greatly compromise the time efficiency
of the algorithm for high-dimensional gene expression
data which generally contain thousands of attributes.
Additionally, the gene selection methods involved in dis-
cretization may miss the most informative genes because
the discretization procedure itself could cause the partial
loss of the information hidden behind data. By contrast,
the t-test or WMW based gene selection approach can
avoid of this kind of information loss, and therefore is
more likely to select the most informative genes. Includ-
ing optimal discretization in gene selection could also
result in overfitting the training set. This issue could be
addressed in future research.

Conclusions
To deal with high-dimensional gene expression data,
simple classifiers should be preferred to complicated
ones for their interpretability and applicability. In the
present study, we developed extremely simple single-
gene classifiers. We examined a large number of data-
sets and a large number of previously published classi-
fier algorithms and found that our single gene classifiers
have comparable performance to more complex classi-
fiers in most cases examined. Our algorithm for devel-
opment of single gene classifiers is computationally
efficient and the single gene developed appears reason-
ably stable. Although single gene classifiers are not
always successful, their examination is worthwhile
because of their advantages for interpretability and
applicability for biological study and medical use.

Methods
Classifier Development
Within each training set, we used the t-test or the Wil-
coxon-Mann-Whitney (WMW) test to identify the most
statistically significant gene(s) in distinguishing the two
classes. If there were multiple genes with the smallest p-
value (very rare), we chose the one with the smallest
order number in the dataset. Although the t-test is a
popularly used feature selection method, it is sensitive
to gross errors in the data [42]. Alternatively, the
WMW test is a rank-based test which is robust to errors
in the data. Therefore we evaluated it for gene selection
as an alternative to the t-test.
Once the single gene was selected for the training set,

we constructed the classification rule based on a single
cut-point for the expression levels of that gene. If the
expression level of gene g in the sample s is no more
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than T, then the sample is assigned to the class c1;
otherwise the sample is assigned to the class c2, i.e., “E
(g, s) ≤ T = > C(s) = c1; E(g, s) > T = > C(s) = c2“. Here
we refer to the T as the optimal cut point for gene g.
We found the optimal cut point by using the entropy-
based discretization method [43].
For each training set S, we determined the gene g with

the most significant t or WMW statistic, then sorted the
samples as s1, s2, ..., sn, based on the expression levels of
the selected gene g. We constructed the candidate cut
point set P which was composed of the mean values of
E(g, sk) and E(g, sk+1) for all C(sk)≠C(sk+1). For each can-
didate cut point t Î P, we partitioned S into two equiva-
lence classes S1 and S2, where S1 = {s Î S | E(g, s) ≤ t}
and S2 = {s Î S | E(g, s) > t}. Let C1 denote the subset
of samples whose class label is c1, and C2 the subset of
samples whose class label is c2. Define the four sets: P11,
P12, P21 and P22, where P11= S1 ∩ C1, P12= S1 ∩ C2, P21=
S2 ∩ C1, and P22= S2 ∩ C2. We calculated the class infor-
mation entropy of the partition induced by t, denoted E
(g, t, S), which is given by:

E(g,t,S)=−|S1|
|S| (

|P11|
|S1| log2

|P11|
|S1| +

|P12|
|S1| log2

|P12|
|S1| )−

|S2|
|S| (

|P21|
|S2| log2

|P21|
|S2| +

|P22|
|S2| log2

|P22|
|S2| ).

We selected the t which minimized E(g, t, S) as the
optimal cut point T produced by the gene g. If the can-
didate cut point set P was empty (very rare), we took
the mean expression level of gene g in all training sam-
ples as the optimal cut point.
Here |P11| and |P22| denote the number of class 1 and

class 2 samples predicted correctly respectively, and |
P21| and |P12| denote the number of class 1 and class 2
samples predicted incorrectly. We adopt the classifica-
tion rule “E(g, s) ≤ T = > C(s) = c1; E(g, s) > T = > C(s)
= c2“ if |P11| + |P22| > |P12| + |P21|. However, if |P11| +
|P22| ≤ |P12| + |P21|, then we reverse the direction of
classification, i.e., “E(g, s) ≤ T = > C(s) = c2; E(g, s) > T
= > C(s) = c1“.

Measuring Classifier Performance
We used complete leave-one-out cross validation
(LOOCV) to evaluate classifier performance. All compo-
nents of classifier development were repeated within
each loop of the cross-validation; i.e. in each leave-one-
out training set we selected a single gene and a single
cut-point for that gene and used that single classifier to
classify the omitted sample. In addition, we also con-
ducted the validation by randomly separating the sam-
ples into one training set and one test set. For each data
set, we carried out two types of separations: Type 1
separation (the sample size in the training set is
approximately equal to that in the test set), and Type 2
separation (the sample size in the training set is about
twice as that in the test set) (see Table S12 and Table
S13 of Additional file 1). Thus, we obtained three sets of
classification accuracy results. The LOOCV results are
presented in this text, while the other two are presented
in Additional file 1.

Materials
We selected eleven gene expression datasets to evaluate
classifier performance. These datasets were selected to
cover the range of sample size, gene number and degree
of classification difficulty. The Lung Cancer 2 and Mye-
loma datasets have large sample size. The Melanoma,
Brain Cancer, Breast Cancer 2, Lung Cancer 1, Lym-
phoma and Pancreatic Cancer have relatively small sam-
ple size. The sample size of the Breast Cancer 1, Gastric
Tumor and Prostate Cancer is intermediate. The Mela-
noma, Breast Cancer 2, Gastric Tumor and Pancreatic
Cancer datasets contain a large number of genes, the
Breast Cancer 1, Brain Cancer and Lymphoma datasets
involve a relatively small number of genes and the gene
numbers in the other datasets are intermediate. As for
the degree of classification difficulty, the Melanoma,
Gastric Tumor, Lung Cancer 1, Lung Cancer 2 and

Table 6 Summary of the eleven gene expression datasets

Dataset # Genes Class # Samples

Melanoma [45] 22283 malignant/nonmalignant 70 (45/25)

Breast Cancer 1 [46] 7650 relapse/no-relapse 99 (45/54)

Brain Cancer [7] 7129 classic/desmoplastic 60 (46/14)

Breast Cancer 2 [47] 22575 disease-free/cancer recurred 60 (32/28)

Gastric Tumor [48] 19508 normal/tumor 132 (29/103)

Lung Cancer 1 [49] 12600 squamous cell lung carcinoma/pulmonary carcinoid 41 (21/20)

Lung Cancer 2 [3] 12533 mesothelioma/adenocarcinoma 181 (31/150)

Lymphoma [8] 7129 cured/fatal 58 (32/26)

Myeloma [50] 12651 without bone lytic lesion/with bone lytic lesion 173 (36/137)

Pancreatic Cancer [51] 22283 normal/pancreatic ductal carcinoma 49 (25/24)

Prostate Cancer [6] 12600 normal/tumor 102 (50/52)

Note: The sample size of each class is given in parenthesis.
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Prostate Cancer are easily-classified datasets, while the
others are more difficult. The datasets are described in
Table 6.

Standard Classification Methods Used for Comparison
We compared the performance of our models to that of
four standard classifiers: DLDA, k-NN, RF and SVM.
For the k-NN classifier, we set the parameter k as 3. For
the RF classifier, we set the number of trees and genes
randomly sampled as candidates at each split as 100 and
the squared root of the total number of genes, respec-
tively. The SVM is based on the linear inner product
kernel function.
For the four classifiers, the genes significantly different

between the classes at 0.001 significance level were used
for class prediction. We carried out the four classifica-
tion algorithms in BRB-ArrayTools, which is an inte-
grated package for the visualization and statistical
analysis of DNA microarray gene expression data [44].
The software can be freely downloaded from the web-
site: http://linus.nci.nih.gov/BRB-ArrayTools.html.

Additional material

Additional file 1: Supplementary Table S1-13. The list of 13
supplementary tables
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