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Abstract

Background: MicroRNAs (miRNAs) are ~22 nt long integral elements responsible for post-transcriptional control of
gene expressions. After the identification of thousands of miRNAs, the challenge is now to explore their specific
biological functions. To this end, it will be greatly helpful to construct a reasonable organization of these miRNAs
according to their homologous relationships. Given an established miRNA family system (e.g. the miRBase family
organization), this paper addresses the problem of automatically and accurately classifying newly found miRNAs to
their corresponding families by supervised learning techniques. Concretely, we propose an effective method,
miRFam, which uses only primary information of pre-miRNAs or mature miRNAs and a multiclass SVM, to
automatically classify miRNA genes.

Results: An existing miRNA family system prepared by miRBase was downloaded online. We first employed n-
grams to extract features from known precursor sequences, and then trained a multiclass SVM classifier to classify
new miRNAs (i.e. their families are unknown). Comparing with miRBase’s sequence alignment and manual
modification, our study shows that the application of machine learning techniques to miRNA family classification is
a general and more effective approach. When the testing dataset contains more than 300 families (each of which

cn/projects/miRFam.htm.

holds no less than 5 members), the classification accuracy is around 98%. Even with the entire miRBase15 (1056
families and more than 650 of them hold less than 5 samples), the accuracy surprisingly reaches 90%.

Conclusions: Based on experimental results, we argue that miRFam is suitable for application as an automated
method of family classification, and it is an important supplementary tool to the existing alignment-based small
non-coding RNA (sncRNA) classification methods, since it only requires primary sequence information.

Availability: The source code of miRFam, written in C++, is freely and publicly available at: http://admis.fudan.edu.

Background

Sequences of DNA, RNA and proteins are the funda-
mental currency of modern biological research, which
link the different levels of the biological hierarchy, from
genes to 3D structures [1]. Common features of species
and functionally important residues can be identified
through sequence mining. RNA, which stores informa-
tion like DNA and acts as an enzyme like proteins, may
have supported cellular or pre-cellular life [2], and is
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crucial to protein synthesis that plays a very important
role in life.

There are many RNAs with other roles in particular
regulation of gene expression. Research shows that non-
coding RNA genes produce a functional RNA product
rather than a translated protein [3]. The most startling
recent development in the non-coding RNA (ncRNA)
field is the widespread importance of microRNA
(miRNA). In the past six years, accompanied with the
development of experimental [4,5] and computational
[6-9] miRNAs detecting methods, the number of
miRNA genes registered in miRBase [10] increased
rapidly. We explored miRBase from version 5 to version
15 and found that the number of known miRNAs
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Figure 1 The explosion of miRNA genes (Sep. 2004 - Apr. 2010). MiRNAs registered in miRBase increased rapidly in recent years. AlImost at
the same time when we finalized this manuscript, the 16th version of miRbase was released on 10 September 2010. Here, the latest information
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increased rapidly during the last several years (Figure 1).
A similar trend can also be seen in [10]. It can be
expected that with the use of next-generation sequen-
cing technology [11-13], more miRNA genes will be
identified. MiRNAs [14], belonging to the family of
small non-coding RNAs (sncRNAs), are endogenous in
many animal and plant genomes, and are now recog-
nized as one of the major regulatory gene families in
eukaryotic cells [15]. They modulate diverse biological
processes, including embryonic development, tissue dif-
ferentiation, and tumorigenesis. MiRNAs inhibit transla-
tion and promote mRNA degradation via sequence-
specific binding to the 3'UTR regions of mRNAs [16].
Mature miRNAs are derived from longer precursors,
each of which can fold into a hairpin structure that con-
tains one or two mature miRNAs in either or both its
arms [17]. The biogenesis of a miRNA in animals con-
sists of two steps. In the first step, the primary miRNA
(pri-miRNA), which is several hundred nucleotides long,
is processed in the nucleus by a multi-protein complex
containing an enzyme called Drosha to give rise to the
~70 nt long miRNA stem-loop precursor (pre-miRNA),
which is then exported to the cytoplasm. The second
step takes place in the cytoplasm where the pre-miRNA
matures into a ~22 nt long miRNA:miRNA* duplex,
with each strand originating from the opposite arm of
the stem-loop [18]. Then, the miRNA strand of the
miRNA:miRNA* duplex is loaded into a ribonucleopro-
tein complex known as the miRNA-induced silencing
complex (miRISC) [19]. To date, the miRNA* was

thought to be peeled away and degraded. However,
some studies indicate that miRNA* is also sorted into
Argonauts and might have a regular function in Droso-
phila melanogaster [20].

MiRBase is the central online repository of miRNA
nomenclature, sequence data, annotation and target pre-
diction, which first appeared in Oct. 2002 [21]. Release
15 contains 14197 miRNA loci from 66 species. From
version 5.0, miRBase began to classify miRNAs into dif-
ferent families.

This kind of information was stored in miFam.dat,
which was freely available online http://www.mirbase.
org. These families were prepared manually. Essentially,
it was done by using the single-linkage method to clus-
ter the precursor sequences based on BLAST hits, and
then adjusting (merging and/or splitting) manually the
clustered families by multiple sequence alignment. The
aim is to put miRNAs that have a common ancestor
into the same family.

Rfam [22] is another well known RNA database. It con-
tains a collection of multiple sequence alignments and
covariance models (CMs) that represent ncRNA families.
The primary aim of Rfam is to annotate new members of
known RNA families on nucleotide sequences, particu-
larly complete genomes, by using sensitive BLAST filters
in combination with CMs. Both primary sequences and
base-paired secondary structures are used to establish
and annotate families. Release 10 contains 1446 families,
including 453 miRNA families. But the quality of multi-
ple sequence alignments and secondary structures is still
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a challenge for Rfam. Furthermore, Rfam requires a lot of
computing resources to establish the family structure,
which is time consuming, especially when the number of
sequences is huge.

Since pre-miRNAs can form stable hairpins, this speci-
fic structural property has been used to cluster or classify
them by some ncRNA clustering or classification meth-
ods [23,24]. Will et al. [23] presented a structure-based
clustering approach, LocARNA (local alignment of
RNA), which is capable of extracting putative RNA
classes from genome-wide survey of structured RNAs.
The performance of LocARNA relies on the prediction
accuracy of RNA secondary structures. However, current
RNA secondary structure energy models are not always
able to predict native RNA structures, even for short
molecules [25]. Furthermore, hairpin secondary structure
might be less effective in miRNA classification since all
miRNAs can fold back into this type of structure.

By far, multiple sequence and/or structure alignments
are still widely used in ncRNA clustering and classifica-
tion field. But neither of them has completely solved the
ncRNA clustering or classification problem, especially
for miRNAs. Not to mention effectiveness, only effi-
ciency is still far from being satisfactory, since these
methods could be very time-consuming when applied to
large-scale validation of miRNA families.

As we know, miRNAs are highly conserved in not
only their primary sequences but also their secondary
structures. And miRNAs in the same family always have
consensus secondary structures and similar functions
[26]. Hence, it is biologically significant to subsume
miRNAs with consensus second structures and similar
functions to the same family. In this paper, based on the
family system provided by miRBase, we explored super-
vised learning techniques to accurately and automati-
cally classify pre-miRNA or mature sequences.

Concretely, we propose an effective alignment free
model named miRFam to classify newly detected miR-
NAs. First, it extracts n-grams as features from primary
sequences. Then, these n-gram features are integrated
into one feature vector by concentration. Finally, it trains
a multiclass SVM classifier SVM”“//s hased on the
families prepared by miRBase to classify new pre-
miRNA or mature sequences whose families are not yet
known.

As a powerful tool, miRFam aims to classify new miR-
NAs into their corresponding families. It can not only
support researchers who just obtained novel miRNAs
computationally or experimentally to go on exploring
the function of these miRNAs, but also enhance the uti-
lity of miRBase by providing higher automation and
accuracy for miRNA classification. When measuring
sequence similarity, unlike BLAST [27] or other
BLAST-based methods, miRFam uses shorter sequence
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segments, thus it has a much smaller search space,
which allows it to run faster. As the first miRNA-
oriented sncRNA family classification method, miRFam
has several advantages: (1) Only primary information of
miRNAs is required, no other assumption (e.g., common
secondary structures within a family or limitation of
sequence length) is imposed. (2) Compared with multi-
ple sequence alignment (MSA), miRFam is more effi-
cient and accurate. To classify ~10,000 pre-miRNA
sequences, MSA will cost several hours while miRFam
consumes only several minutes. (3) miRFam is insensi-
tive to sequencing error and the exact position of pre-
miRNA in pri-miRNA. The change of several bases has
very little effect on the feature vectors.

Results

In order to evaluate the miRFam method, we designed a
pipeline that is illustrated in Figure 2. The experiments
were arranged into three groups: single family tests,
multi-family tests and application-oriented large-scale
miRBase family tests, which were conducted on a num-
ber of datasets whose details are presented in the meth-
ods section. We started with single family tests, then
multi-family tests and finally application-oriented large-
scale miRBase family tests. Single family tests are classi-
cal binary classification, while the other tests are multi-
class classification. With miRFam, users can conveni-
ently choose different combinations of #-grams. Accord-
ing to our experience, unigrams, bigrams, trigrams and
tetragrams are enough to classify all miRNAs registered
in miRBase. For single family and multiple-family tests,
even only unigrams, bigrams and trigrams are enough
to achieve satisfactory classification performance. All
experimental results were achieved by 5-fold cross vali-
dation. That is, each dataset is first randomly divided
into five equally-sized partitions, each of which contains
the same ratio of positive and negative examples. And
then any four partitions are merged as the training set
to train miRFam, which is further evaluated with the
fifth data partition. This procedure is repeated five times
with different combinations of training and testing sets,
and the final classification performance is obtained by
averaging the five tests’ results.

Single family tests

Synthetic dataset test

The three biggest families in miRBasel4 are let-7, mir-
17 and mir-9, which contain 208, 154 and 134 members,
respectively. These three families were merged with
three synthetic datasets R1, R2 and R3, respectively.
miRFam was then tested on these three merged data-
sets, which are denoted as “let-7+R1”, “mir-17+R2” and
“mir-9+R3”. Our aim is to show that miRFam can dis-
tinguish real pre-miRNAs from synthetic random
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Details of datasets and features were also shown.

Figure 2 The experimental pipeline. In order to show the discriminative power of miRFam, we designed a series of experiments including
single family tests, multi-family tests, and tests on large-scale miRBase families. All these experiments were carried out by 5-fold cross validation.

<SVM, 5-fold-CV>

sequences with similar base compositions. As expected,
the combination of #-gram and multiclass SVM algo-
rithm can precisely classify real miRNAs and random
sequences. Experimental results are presented in Table
1, from which we can see that the accuracy is higher
than 98.5% for all three families. Next, we took “let-7
+R1”, which gets the middle accuracy, as an example for
further analysis. In 5-fold cross validation, only four
sequences (MI0010673, MI0010668, RANDOM195,
RANDOM198) were misclassified. MI0010673 and
MI0010668 were first discovered from Schistosoma japo-
nicum by cloning and sequencing a small (18-26 nt)
RNA cDNA library from adult worms [28]. We sub-
mitted these two real miRNA sequences to Rfam (ver-
sion 10.0) separately, but no hit was obtained. We then
turned to Clustal W2 to generate the MSA with default
parameters and viewed the guide tree by Jalview2.5 (see
Figure S1 in additional file 1). We found that
MI0010673 and MI0010668 were located in separate

Table 1 Results of single family experiments

experiment SE(%) SP(%) Acc(%)
let-74+R1 99.50 99.52 99.51
R¥* mir-17+R2 100.0 100.0 100.0
mir-9+R3 98.58 98.46 98.52
let-7+S 99.02 99.69 99.42
S mir-17+S 99.33 99.69 99.57
mir-9+S 100.0 99.38 99.56

* Only trigram and bigram features are considered in these experiments.

branches, while RANDOMI195 and RANDOM198 lied
in the nearby branches. Results showed that these syn-
thetic sequences were so similar to the real ones that
they were indistinguishable by using miRFam and MSA.
In order to give a more intuitive picture of these data-
sets, we calculated the Euclidean distance (ED) between
the real and synthetic cluster centers, and we found that
the larger the Euclidean distance is, the better the classi-
fication performance is (see Figure S2 in additional file
1).

Real dataset test

MiRNAs and snoRNAs are two classes of small non-
coding regulatory RNAs, which have been extensively
investigated in recent years. Although their functions in
the cell are distinct, they share interesting genomic simi-
larities. Recent sequencing projects have identified pro-
cessed forms of snoRNAs that resemble miRNAs. A
comparison of the genomic locations of reported miR-
NAs and snoRNAs reveals an overlap of some specific
members of these two classes [29,30]. Keeping this in
mind, we evaluated miRFam on another three datasets,
which were constructed by merging dataset S with the
families let-7, mir-17 and mir-9, and were denoted as
“let-7+S”, “mir-17+S” and “mir-9+S”, respectively. The
results are presented in Table 2, which shows that miR-
Fam can easily distinguish miRNAs from snoRNAs, and
the accuracies are higher than 99%.

The effect of concentration factor

In this paper, we introduced the concentration factor to
weight the features of family vectors (see Equ. 2).
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Table 2 Results of different combinations of n-gram
types

Group Acc Acc(tri- Acc(tri-, bi- Acc(tri-, bi-
(trigram)  &bigram) &unigram)? &unigram)b

Tao 90.67 96.21 68.90 96.76

G 9361 9840 87.63 98.86

G, 87.62 99.01 87.74 99.01

Total® 85.08 9348 63.75 93.62

9 Results of miRFam with unigram, bigram and trigram, without concentration
factor. ®Results of miRFam with unigram, bigram and trigram, with
concentration factor. “Combination of T, G; and G.. All results are
percentiles.

Intuitively, the longer fragments of sequences should be
more informative than the shorter ones. For example,
with some exceptions [31], a triplet codon in a nucleic
acid sequence specifies a single amino acid. And here, a
trigram is exactly a triplet. Thus, in representing miR-
NAs sequences, the longer #n-grams should outweigh the
shorter ones. In what follows, we will see whether our
concentration factor weighting scheme conforms to the
above intuition and observation, by checking the centers
(before and after weighting) of the three families (let-7,
mir-17 and mir-9) and dataset S (the mixed snoRNA
class).

Figure 3(A) and Figure 3(B) are the center vectors

before and after weighting (evaluated by ,E and %. x C;

respectively) of four families. Roughly, before the
weighting, trigrams have apparently smaller values than
bigrams and unigrams. But after the weighting, trigrams
get substantially enhanced. Furthermore, we calculated
the variance of each feature’s value among four families
before and after weighting, the results are illustrated in
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Figure 3(C) and Figure 3(D). We can see that after
weighting, the variances of trigrams are relatively
enlarged, while the variances of bigrams and unigrams
are substantially restrained. That is to say, our weighting
scheme makes the trigram feature values of different
families be more discrepant, which will benefit the clas-
sification of these families. Additionally, we evaluated
the effect of concentration factor on multi-family data-
sets (Table 2). Without the concentration factor, more
than 10% classification accuracy was lost on all datasets.
MiRFam performed even worse when only trigrams
were used.

In summary, the analysis on the feature vectors of dif-
ferent families shows that the concentration factor
weighting scheme can enhance the trigrams while
restraining the bigrams and unigrams, which is reason-
able and consistent to the intuition and observation.
Most importantly, our extensive classification experi-
ments in this and the later sections also show indirectly
that the weighting scheme is effective.

Multi-family tests

As mentioned before, with the development of powerful
deep sequencing technology, more miRNA genes will be
identified in the future. But the number of real miRNAs
in a certain genome is still unknown. Thus, a major
concern is how well miRFam will perform if only a
small number of known miRNAs are available for some
certain families and species. In the previous single family
tests, we have employed three types of n-grams (uni-
grams, bigrams and trigrams) as features, so one natural
question is how the different combinations of these
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types of n-grams will impact miRFam’s performance.
Furthermore, as mature miRNAs and hairpin sequences
are somehow a little different, it occurs to us whether
miRFam will perform differently on them. To answer
these questions, we tested miRFam on three multi-
family datasets constructed from miRBase (version 14)
according to their family members. T, contains the top
20 biggest families in miRBase (version 14), while G,
and G, contain those families whose members are
around 40 and 20, respectively. Here, the numbers 40
and 20 are randomly selected. Performance measure-
ments like sensitivity and specificity are usually defined
for binary classification. Here we actually deal with
multi-class (i.e. multi-family) classification, so we use
accuracy (Acc) as the performance indicator.

The impact of training dataset size

All 2198 precursor sequences in Ty, were divided into
ten equally-sized partitions. First, we randomly took one
partition (10%) of the sequences as the training set, the
remaining nine partitions (90%) as the testing set. Then,
we increased the training set by one partition (10%), and
accordingly the testing set was reduced by one partition
(10%). This process continues iteratively till half of T,
was for training and the other half for testing. At each
round, miRFam was trained and tested, and its perfor-
mance is evaluated by cross validation. As shown in Fig-
ure 4, the accuracy is 56.01% when only 10% of Ty is
used for training. With the increase of training samples,
the accuracy stably goes up. When the training set and
the testing set are of equal size, the accuracy of miRFam

100

70

Accuracy(%)

60+

50 T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90

Percentage of tarining sequences (%)

Figure 4 Classification performance vs. the size of training
dataset. We used T, to show the impact of training dataset size.
At the beginning, only 10% of 2198 sequences in T,y were treated
as training samples while others (90%) were used to test miRFam.
At each round, we increased the training set by one partition (10%),
and accordingly the testing set was reduced by one partition (10%).
This process continued iteratively till half of T, was for training and
the other half for testing. The result of normal 5-fold crass validation
is also shown.
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is nearly 90%. For a normal 5-fold cross validation on
the whole dataset, i.e, training miRFam with 80% sam-
ples and testing it with the remaining 20%, the accuracy
is 96.76%.

The impact of the combination of different n-gram types
Here, we examine how classification performance will be
impacted by the different combinations of unigrams,
bigrams and trigrams on these multi-family datasets
(Table 2). Actually, we also test miRFam with tetra-
grams, the results are presented in Additional file 1,
Table S3.

We found that miRFam performs better when more
types of n-gram features were used. Even when only the
trigrams were used to classify miRNAs, the accuracy is
around 90%. For the G, dataset, when features of uni-
gram, bigram and trigram types were all included, the
accuracy was surprisedly more than 99%. Further
exploring the classification results, we also found that
some abnormal sequences with noise bases (not A, U, G
and C) were also classified correctly in 5-fold cross vali-
dation (sequences are listed in Table S2 in Additional
file 1), which means that miRFam is insensitive to base
changes, such as single-nucleotide polymorphism (SNP)
or sequencing error.

In addition, by transforming pre-miRNA sequences to
feature vectors, both normal and abnormal sequences
were handled in a similar process, thus avoiding the
cumbersome addition, deletion and modification opera-
tions used in MSA.

Test with mature miRNAs

It has been shown that miRNAs are modified after
maturation [32]. So, we also evaluated miRFam on
mature miRNAs contained in these multi-family datasets
(Table 3). Comparing to the results in Table 3, it can be
seen that in most cases, miRFam performs better with
mature miRNAs than with all miRNAs, which indicates
that miRFam can accurately classify both hairpin and
mature sequences. In fact, for a mature miRNA, the
seed region is always much more functional than the
other regions, it is the core functional region of its pre-
cursor. Thus, miRBase also prefers to put miRNAs with
similar mature sequences into the same families. That is
the reason why miRFam can achieve better performance

Table 3 Results on mature miRNAs

Group Families Members* Acc(tri-, bi-&unigram, %)
Too 20 1529 96.80
Gy 10 351 97.71
G, 10 162 99.38
Total 40 2042 95.03

* Two reasons why the numbers of mature sequences in multi-family datasets
are less than that in hairpins. First, different pre-miRNAs may generate similar
mature miRNAs. Second, some pre-miRNAs contain several mature miRNAs,
but only one is considered.
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with shorter maturity. It is also more efficient to classify
mature miRNAs than to classify pre-miRNAs, since
matures usually contain no more than 30% bases of
their precursors.

Application-oriented large-scale families tests

A good model should not be data specific, instead it
should be generally applicable. Although miRFam can
achieve excellent results in single family tests and multi-
family tests, what we really care about is its practical
application performance. Based on this consideration, we
evaluated miRFam on large-scale families from miRBase
(version 14 and 15). Results are presented in Table 4.

Since 5-fold cross validation was employed, families
that contain less than 5 members were not considered
at first. A detailed family distribution in miRBase could
be found in Figure S3 in the additional file 1. From
miRBase v14, the 334 families that contain no less than
5 members were selected, which hold 87.49% (7797/
8912) pre-miRNA sequences of the whole database. On
this dataset, miRFam achieved an accuracy of 98.18%.

When we were preparing this manuscript, miRBase
(version 15) was released in April 2010. This is a signifi-
cant update, with over 3000 new hairpin sequences and
more than 4000 new mature sequences. From miRBase
v15, 398 families were selected, each of which contains
no less than 5 members. These families constitute
84.38% (9379/11115) hairpin sequences in the whole
database. Even with such large-scale families, miRFam
still got an accuracy of 97.97%.

When dealing with miRBase v15, there are still 1736
pre-miRNAs distributed in 658 families that were not
processed (see Figure S3). Among them, 351 families
have only 2 members. In the final experiment, we tested
miRFam on the whole 1056 families in miRBase v15.
For those families with less than 5 members, we ran-
domly chose one member as the testing sample, and the
remaining as training samples, miRFam still obtained an
accuracy of 90.66%, which was a surprisingly satisfactory
result, considering that classifying a dataset with a large
number of classes and the extremely uneven distribu-
tions of members in these classes is a well-recognized
challenging task.

Table 4 Performance of large-scale miRBase families test

miRBase14 miRBase15
Family number 3347 3987 1056°
MIiRNA number 7797 9379 11115
Accuracy (%) 89.21 88.91 85.09
Accuracy (%)d 98.18 9797 90.66

¢ Families in miRBase whose members are no less than 5.
b All families in miRBase 15 are used.

¢ miRFam results with uni-, bi- and trigram features.

9 miRFam results with uni-, bi-, tri- and tetragram features.
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Discussion

Effectively classifying newly detected miRNAs to their
corresponding families is helpful for their further func-
tional analysis. However, only a few works have been
done to address this issue, which is far from being estab-
lished. Unlike existing alignment-based sncRNA cluster-
ing or classification methods [23,33,34], which can also
be used to cluster or classify miRNAs, the proposed miR-
Fam bases on supervised learning techniques, which is
more general and effective. It does not require sequence-
or structure-based alignment, thus it is free from the dif-
ficulty of choosing multiple parameters used in the align-
ment-based methods, and is also free from the quality
issue of miRNA secondary structure prediction. Cer-
tainly, miRFam is not completely parameter-free, it still
has to set two parameters, i.e., the feature vector length /
and the trade-off between training error and margin c.
Another advantage of the miRFam method is its effi-
ciency, especially when the number of sequences is huge.
Furthermore, miRFam can achieve satisfactory classifica-
tion performance over the family system prepared by
miRBase. Of all predictions made by miRFam, the accu-
racy is beyond 90%. Therefore, it can be used to replace
the manual modification, which will greatly save time.

Most known miRNA sequences are evolutionary con-
served [35], miRNA families may have consensus sec-
ondary structures [26], and the microRNA-target
relationships are also conservative [36]. As people’s
interest in the miRNA world continuously grows, more
and more datasets are going to appear. Correspondingly,
there is an urgent need to classify the newly discovered
miRNAs into their corresponding families according to
sequence and/or structure similarities. With correct
family classification, it is easier to elucidate the struc-
tures and functions of the new sequences, by using mul-
tiple sequence alignments. Apparently, more in-depth
information can also be available, such as SNPs within
pre-miRNAs and mature miRNAs [37].

One potential limitation of the proposed approach is
that it relies on a prepared family classification struc-
ture. Actually, this is a common problem with classifica-
tion - a supervised machine learning approach, and the
quality of training sets significantly influences classifica-
tion accuracy. To overcome this limitation, we can turn
to clustering analysis, which is an unsupervised learning
approach that can automatically group the miRNA
sequences into different categories based on their char-
acteristics of sequences and/or structures. We keep this
issue as our future work.

Conclusions

Sequence alignments are useful for the analysis of geno-
mic data. For example, miRNA genes in newly sequenced
organism can be detected based on their homology to
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genes in related and well-studied species [4,38]. Once
homologous genes are detected, one can perform a MSA
with the hope of establishing miRNA families. However,
MSA is time consuming in doing this work, different
MSA algorithms may build quite different alignments,
and choosing an appropriate alignment algorithm is cru-
cial to the performance of family classification.

In this article, we developed a new approach miRFam
to accurately and automatically classify miRNA precur-
sors by using #n-grams and a multiple-class SVM classi-
fier. To evaluate the miRFam method, we designed a
pipeline, including single family tests, multi-family tests
and large-scale families tests. Based on the experimental
results, the following conclusions could be drawn:

1. miRFam can effectively distinguish synthetic ran-
dom sequences and similar snoRNA sequences from
real pre-miRNA sequences (Table 1).

2. Even with a small number of training samples,
miRFam can still achieve a high accuracy. And with
more types of n-gram features, miRFam can perform
better (Table 2 & Figure 4).

3. Both precursors and mature miRNAs can be used
to infer miRNA families. With shorter mature
sequences, miRFam can achieve better classification
result (Table 3).

4. When the dataset contains more than 300 families
and each family holds no less than 5 members, the
classification accuracy is around 98%. Even with the
entire miRBase (version 15, 1056 families and more
than 650 of them hold less than 5 samples), the
accuracy surprisedly reaches 90% (Table 4).

In summary, we proposed the first supervised learning
based approach miRFam to automatically assign miRNA
precursors to their corresponding families with high
accuracy. It can be useful to help family classification,
especially in the applications that previously have been
done manually, such as miRBase. Additionally, due to its
robustness, miRFam can be used in a wide range of sce-
narios, as long as an existing family assignment informa-
tion is available. Certainly, its performance depends on
the existing family assignment information. However, as
there is more and more study on miRNA, it is foresee-
able that more miRNAs will be identified and registered
in miRBase. Such a situation will certainly favor the
existence and utilization of the miRFam method. In
return, miRFam will also contribute a lot to the efficient
exploration of these newly discovered miRNAs.

Methods

Datasets

In this work, we constructed several datasets using data
from miRBase and Rfam. These datasets were divided
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into three categories: single family datasets, multi-family
datasets and large-scale family datasets. To facilitate the
description, we used some notations to represent the
datasets of the first two categories. These notations are
summarized in Table 5.

We first ranked miRNA families in miRBase according
to the number of members contained in each family. R
contains three subsets R1, R2 and R3, corresponding to
the three biggest families in miRBase v14 (let-7, mir-17
and mir-9). R1, R2 and R3 were constructed by rever-
sing the original pre-miRNA sequences in let-7, mir-17
and mir-9 with squid [39], respectively. S was con-
structed by mixing SNORA26 and SNORA33 down-
loaded from Rfam v10.0.

SNORA26 (RF00568) is a member of the H/ACA class
of small nucleolar RNAs, while SNORA33 (RF00133) is
a member of the C/D box class. After being filtered to
less than 90% identity, they contain 195 and 122
sequences, respectively. Three multi families datasets
(T40, G1, Gy) were constructed from miRBase v14 based
on the result of family ranking. The biggest family in G,
is mir-33 containing 47 members, and the smallest
family is mir-26 containing 41 members. While the big-
gest (smallest) families in G, is mir-315 (mir-320), con-
taining 21 (20) miRNAs (Additional file 1, Table S1).

Feature vectors

In this paper, we treat family establishment as a classifi-
cation problem. The first step is to transform miRNA
sequences to numeric vectors, which are usually called
feature vectors. Here, n-grams [40] are used as features
of miRNA sequences.

n-grams

An n-gram is a subsequence consisting of n spatially
consecutive items from a given sequence. The items in
this study are pre-miRNA bases (A,C,G and U). A n-
gram of size 1 (i.e. n = 1) is referred to as a “unigram”,
size 2 (n = 2) is a “bigram”, size 3 (n = 3) is a “trigram”,
size 4 is a “tetragram”, and size 5 or more (i.e. n > 5) is

Table 5 Notations of datasets

notation description

Single R? reverse sequences of the biggest three miRNA
family families
S combination of SNORA26 and SNORA33 from
Rfam10.0
Too 20 families with the largest members, ANM® =
109.9
Multi G, 10 families selected from miRBase14, ANM® =
families 438
G, 10 families selected from miRBase14, ANM? =

20.2

“R1 - let-7; R2 - mir-17; R3 - mir-9.
® ANM - Average Number of Members.
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simply called a “n-gram”. In the sequel, we also call uni-
grams, bigrams, trigrams and tetragram as type 1, 2, 3
and 4 n-grams, and so on. n-grams can be used for effi-
cient approximate matching. By converting a miRNA
precursor to a set of n-grams, it can be embedded into
a vector space, thus allowing a sequence to be compared
with others in an efficient manner. Here, we select uni-
grams, bigrams, trigrams and tetragram as features.

To extract n-grams, we use a window of size # that
slides on pre-miRNA sequences from 5’ to 3’. At each
position on a sequence, the subsequence of length »
covered by the sliding window corresponds to a n-gram.
As the window slides forward, the occurrence frequency
t of each encountered n-gram is recorded.

Concentration
Since RNA sequences contain only the four bases A, U,
G and C, we have 4 unique unigrams, 4> unique
bigrams, 4> unique trigrams and 4* unique tetragrams.
In order to combine these different features into one
feature vector, we introduce a concentration factor.
Denote the number of unique n-grams of type i as N,.
The concentration of type i is the ratio of N;over the
total number of unique n-grams. That is,

Ci= i\]’ , i=1,2,3,4 1)

2 Nj

For example, the trigram (type 3) has 4° unique -
grams. The total number of unique #-grams used in this
study is 340 (4+16+64+256), therefore trigram’s concen-
tration is C;.;= 64/340 = 0.188. Then, the elements of a
feature vector is calculated by (2).

fj=1t{.xCi, jeZand 1 <j <340 (2)
1

Above, t; is the occurrence frequency of a certain
unique n-gram of type i, and 7; is the total occurrence
frequency of all unique n-grams of type i. A feature vec-
tor contains 340 dimensions, each of which corresponds
to a unique n-gram of a certain type i (i = 1, 2, 3 and 4).
Within a vector, the dimensions are arranged in the
order of tetragrams, trigrams, bigrams and unigrams.
The sum of all dimensional values of a feature vector is 1.

Multiclass SVM

Binary classification using support vector machine
(SVM) is a well developed technique. However, due to
performance reasons, using a single SVM formulation
directly to solve the multiclass problem is usually
avoided. A better approach is to use a combination of
several binary SVM classifiers to solve the multiclass
problem. Typical algorithms of multiclass learning
include the multiclass extensions to decision tree learn-
ing [41] and various specialized versions of the boosting
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approach such as AdaBoost.M2 and AdaBoost.MH
[42,43]. However, the dominate approach to the multi-
class problem is multiclass SVM. One of the most
widely-used multiclass SVM methods is one-versus-all.
In this method, M binary classifiers are constructed.
The i-th classifier’s output function Fjis trained by using
the examples from class i as positives and the examples
from all other classes as negatives. For a new example x,
the one-versus-all SVM strategy assigns it to the class
with the largest value of F;[44].

In this study, we use the popular multiclass SVM
package SVM™™“!elass (version 2.20). SVM™*Helass yges
the multi-class formulation described in [45], and is
optimized so that it is very fast in linear cases [46].

MSA implementation and visualization

Multiple sequence alignment is done by Clustal W (ver-
sion 2.0) [47]. The tree visualization of MSA results is
achieved by Jalview (version 2.5) [1]. These tools are
also used by EMBL-EBI online.

Evaluation

The most straightforward way to evaluate the perfor-
mance of a classifier is based on the confusion matrix
analysis. With this matrix, it is possible to evaluate a
number of widely used metrics for measuring the per-
formance of a learning system. Here, we use sensitivity
(SE), specificity (SP) and accuracy (Acc) to evaluate miR-
Fam. They are defined as follows:

se- F spo N (3)
" TP+FN’ " TN +FP’

Here, TP, FP, TN and FN are the numbers of true
positive predictions, false positive predictions, true nega-
tive predictions and false negative predictions,
respectively.

TP + TN

Acc = .
TP + FP + TN + EN
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