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Abstract

Background: Automated genotype calling in tetraploid species was until recently not possible, which hampered
genetic analysis. Modern genotyping assays often produce two signals, one for each allele of a bi-allelic marker.
While ample software is available to obtain genotypes (homozygous for either allele, or heterozygous) for diploid
species from these signals, such software is not available for tetraploid species which may be scored as five
alternative genotypes (aaaa, baaa, bbaa, bbba and bbbb; nulliplex to quadruplex).

Results: We present a novel algorithm, implemented in the R package fitTetra, to assign genotypes for bi-allelic
markers to tetraploid samples from genotyping assays that produce intensity signals for both alleles. The algorithm
is based on the fitting of several mixture models with five components, one for each of the five possible
genotypes. The models have different numbers of parameters specifying the relation between the five component
means, and some of them impose a constraint on the mixing proportions to conform to Hardy-Weinberg
equilibrium (HWE) ratios. The software rejects markers that do not allow a reliable genotyping for the majority of
the samples, and it assigns a missing score to samples that cannot be scored into one of the five possible
genotypes with sufficient confidence.

Conclusions: We have validated the software with data of a collection of 224 potato varieties assayed with an
Illumina GoldenGate™ 384 SNP array and shown that all SNPs with informative ratio distributions are fitted. Almost
all fitted models appear to be correct based on visual inspection and comparison with diploid samples. When the
collection of potato varieties is analyzed as if it were a population, almost all markers seem to be in Hardy-
Weinberg equilibrium. The R package fitTetra is freely available under the GNU Public License from http://www.
plantbreeding.wur.nl/UK/software_fitTetra.html and as Additional files with this article.

Background
Several important agronomic and horticultural crops are
tetraploids, including potato (Solanum tuberosum), leek
(Allium porrum) and alfalfa (Medicago sativa). In such
species marker alleles can be present in different dosages,
ranging from 0 (nulliplex) to 4 (quadruplex). Differences
in allele dosage may result in differences in the RNA levels
of a particular allele and in phenotypic differences [1].
Therefore it is important to be able to exactly determine
the allele dosage.
In species with tetrasomic inheritance like autotetra-

ploids the four copies of each chromosome may recom-
bine with each other, showing no or little preferential

pairing [2]. In contrast, in allotetraploids, also termed
amphidiploids, in effect there are two different genomes
that show little or no recombination.
Genetic studies in species with tetrasomic inheritance

have lagged behind those in diploids because segregation
patterns are more complex. The exception is where one
parent of a cross contains an allele in single dose (simplex,
abbb) and the other parent is homozygous (nulliplex,
bbbb); in this case segregation is exactly as in a diploid
heterozygous × homozygous cross. While software has
been developed for linkage analysis including duplex
marker segregation and multi-allelic markers [3], genetic
studies in tetraploids rely mostly on simplex × nulliplex
marker segregation, or on simplifying assumptions regard-
ing chromosomal pairing [4]. Still, the construction of
linkage maps based on such simplex × nulliplex markers is
problematic because most of the markers will be in
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repulsion phase (two tetraploid cross parents have 8
homologs, so only one in 8 pairs of simplex × nulliplex
markers are in linkage phase), meaning that genetic dis-
tances can be assessed only with low precision.
With the advent of high-throughput SNP genotyping

technologies the number of available markers is increas-
ing dramatically. To take full advantage of these technol-
ogies it is desirable to make use of all segregating
markers in a population, not just the simplex × nulliplex
markers. Also for association mapping in collections of
genotypes the use of as many markers as possible would
be useful [5,6]. This requires the ability to score allele
dosage, in contrast to just presence or absence of an
allele, like in the case of simplex × nulliplex markers.
In the past highly polymorphic SSR markers have been

used to study segregation of alleles in polyploid species
[7,8] and a general method, MAC-PR (microsatellite
DNA allele counting - peak ratios) was developed [9]. In
MAC-PR ratios between microsatellite peak areas are
used to deduce the allelic configuration of a polyploid
plant. The current technologies for SNP genotyping [10],
including Illumina GoldenGateTM [11] and Infinium
array [12,13] typically generate two signals, one for each
of two alleles at a marker locus. In principle, these signals
are proportional with the allele dosage, e.g. one of five
classes from nulliplex to quadruplex in a tetraploid spe-
cies. However, in real life both signals are generally con-
tinuous, making it more difficult to assign a sample to a
specific class. One approach to convert the continuous
signal scores to discrete genotype classes is to apply a
clustering algorithm to the two-dimensional signal data.
This is the approach used e.g. by Illumina’s proprietary
GenomeStudio software http://www.illumina.com/soft-
ware/genomestudio_software.ilmn for diploid samples. In
the diploid case only three genotype classes are possible,
and assigning a genotype class to each cluster is not too
difficult, even if one of the classes does not occur. How-
ever with tetraploid samples the problem is more com-
plex. There are five instead of three possible genotype
classes, which makes the cluster separation more diffi-
cult. Also, possibly occurring null alleles (alleles that are
not recognized by the assay and hence do not generate a
signal) may produce one or two additional clusters, in
contrast to the diploid case. Finally, in a clustering
approach the issue arises how to match the clusters to
the different genotypes; in a tetraploid the number of
clusters and genotypes is larger which complicates this
matching, especially if less than five clusters are detected.
Very recently, a software package, beadarrayMSV
became available that is able to analyse Illumina BeadAr-
rays in the partly duplicated genomes and uses a cluster-
ing approach to discriminate five possible genotypes [14];
this is discussed in more detail below.

We present here an alternative approach based on
mixture models. Mixture models have been used in the
codominant scoring of AFLP band intensities for diploid
species [15,16], and specifically in collections of geno-
types [17]. Our approach is based on the allele signal
ratio, i.e. the fraction of the a signal in the total signal.
We fitted a mixture of five normal distributions to the
allele signal ratios, with each distribution representing
one of the five possible genotype classes. The means of
the five distributions are constrained by the correspond-
ing allele ratios (see Implementation - The mixture
model). Because we model the component means expli-
citly as a function of the allele ratios, the assignment of
components to genotype classes is in our case auto-
matic. Furthermore, the relation between allele ratios
and means of the distributions helps to identify each
distribution, even when the distributions overlap consid-
erably. These advantages compared with a clustering
approach are well worth the considerable extra compu-
tation time required.

Implementation
The mixture model
We fit mixture models to the response signals to classify
the markers into one of five genotype classes, corre-
sponding to the five possible allele dosages in tetra-
ploids. This type of classification is often called model-
based clustering, because a statistical model is used for
the responses. We describe the model here.
Let the pair saand sbrepresent the measured a and b

allele signal strengths for an individual. We analyze the
fraction sa/(sa+ sb). As it is advantageous to have a
homoscedastic response in the mixture model, and the
calculated fraction shows variance heterogeneity with
smaller variation for fractions closer to 0 and 1, we take
the arcsine-square root (asr) transformed fraction
y = arcsin

√
sa/(sa + sb) to stabilize the variance.

For the transformed fraction y a normal (or Gaussian)
mixture model [18] is fitted:

f
(
y
)
=

∑5

j=1
πjfj

(
y
)

with fjthe density of a normal distribution with mean
μjand common standard deviation s. The mixing prob-
abilities πjare the prior probabilities of a marker to have
allele dosage j, with Σjπj= 1. In the model described
above, five components are specified for the five allele
dosages (0,..,4), but in other situations less or more
components may be needed. In case of five components,
ten model parameters have to be estimated: five means
μj(for the mean responses of the five allele dosages), one
standard deviation s (measuring the common spread of
individual responses with the same allele dosage), and
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four probabilities πj(measuring the fraction of indivi-
duals having the jth allele dosage), with the fifth prob-
ability following from the other four.
One of the principles in statistical modelling is parsi-

mony: remove redundant model parameters to improve
stability and interpretability of results. Here it may be
beneficial to put constraints on two groups of
parameters:
1) Constraints on πjaccording to Hardy-Weinberg

equilibrium (HWE). If the allele dosages are in HWE, a
single parameter p, representing the allele frequency in
the population, suffices instead of four probabilities πj.
The constraints are π1 = p4, π2 = 4p3(1-p), π3 = 6p2(1-p)
2, π4 = 4p(1-p)3, π5 = (1-p)4.
2) Constraints on μj, by incorporating an assumed

relationship between allele dosage and signal strength.
We first assume that the signal strengths saand sbde-
pend linearly on the allele dosage: with x the dosage of
allele a, and 4-x the dosage of allele b, the model states
for the mean signal strengths of saand

sb

{
μsa = a0 + a1x

μsb = b0 + b1(4− x)
, where a0 and b0 are the back-

ground signal strength for alleles a and b. The fraction
μsa /(μsa + μsb) contains a superfluous parameter, and
can be simplified into model 1:

μsa

μsa + μsb
=

c1 + x
c1 + x + c2 + r(4− x) (1)

with c1 = a0 /a1, c2 = b0 /a1, and r = b1 /a1. Hence,
parameters c1 and c2 are proportional to the background
signals, and r is the ratio of sensitivities of the a and b
signal strengths to the allele dosages.
If the a and b background signal strengths are equal, a

common parameter c = c1 = c2 can be used to arrive at
model 2:

μsa

μsa + μsb
=

c + x
2c + x + r(4 − x) (2)

The assumption of a linear relationship between signal
strength and allele dosage may be too restrictive. There-
fore, the model for the individual signal strengths is

extended into

{
μsa = a0 + a1x + a2x2

μsb = b0 + b1(4− x) + a2(4− x)2
,

assuming equal curvature for both signals, rendering the
third model

μsa

μsa + μsb
=

c1 + x + dx2

c1 + x + dx2 + c2 + r(4− x) + d(4 − x)2
(3)

with d = a2 /a1.
Model 3 may be simplified into model 4, by equating

the background signal strengths:

μsa

μsa + μsb
=

c + x + dx2

c + x + dx2 + c + r(4 − x) + d(4− x)2
(4)

Models (1) - (4) are formulated for the fraction of
means of signal strengths. However, as the response is
the asr-transformed variable y, the models need to be
transformed as well. The transformed model (1) for the
expectation of y is μy= asr((c1 + x)/(c1 + x + c2 + r (4 -
x))), and likewise for the other three models.
There are two minor complications with the models:

• The models 1-4 are developed for the fraction of
expected signal strengths E(sa)/(E(sa) + E(sb)), but we
analyze the fraction sa/(sa+ sb), amounting to a
model for the expected fraction E(sa/(sa+ sb)). How-
ever, the expectation of a fraction and the fraction of
expectations are approximately, but not exactly,
equal.
• Transformation bias. We analyze the asr-trans-
formed ratio of intensities y = asr(sa/(sa+ sb)),
amounting to a model for the expectation E(y). This
expectation is approximately, but not exactly, equal
to asr(E(y)).

Summarizing, two approximations are employed: E(asr
(sa/(sa+ sb))) ≈ asr(E(sa/(sa+ sb))) ≈ asr(E(sa)/(E(sa) + E
(sb))).
To compare different models, e.g. the unconstrained and

HWE-constrained model, -2log-likelihoods (-2LL) may be
compared, with by definition a smaller -2LL for the
unconstrained (larger) model. To balance model fit and
increased model complexity, we use the Bayesian Informa-
tion Criterion (BIC), which adds a penalty to the -2LL
based on the number of parameters k in the model (and n
the number of individuals): BIC = -2LL+k ln(n) [19].
The different mixture models are fitted to the trans-

formed fractions using maximum likelihood (ML). The
EM-algorithm is used to find the ML-estimates [20].
The EM-algorithm needs starting values of the para-
meters. Next, E- and M-steps are iterated. In the E-step,
given the current parameter values, the posterior prob-
abilities of an individual to have each of five allele
dosages are calculated, followed by the M-step, in which
the mixture probabilities πjare estimated, and μjand s
by weighted non-linear least squares. The fitting is done
using R [21]. For a more elaborate description of mix-
ture models for marker genotyping and the EM-algo-
rithm, see [17].

Model and marker selection
The selection of a suitable mixture model for a given
marker is the result of a multi-step process that has
been developed empirically.
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Before starting the model selection itself, unreliable
observations should be removed. In the case of an Illu-
mina GoldenGate assay we removed all observations
with a total signal intensity less than 3200 (see Data sets
for the rationale for this threshold).
In the first step, eight different mixture models are

fitted. Each model consists of 5 component distribu-
tions. The means of the component distributions are
constrained by the five possible allele ratios, using one
parameter for the ratio of intrinsic signal strength for
both alleles, and additionally one or two parameters for
signal background, and no or one coefficient for a quad-
ratic term in the signal response (Equations 1-4). This
results in four possible models for the means of the
component distributions. Each of these models is com-
bined with two models for the mixing proportions: (a)
the mixing proportions are not constrained, or (b) the
mixing proportions are constrained to Hardy-Weinberg
equilibrium (HWE) ratios. The HWE restriction often
helps in identifying the peaks, even if the actual ratios
depart slightly from the HWE. As the EM algorithm
does not always find the global maximum from a given
start configuration of parameter values, the EM algo-
rithm for these eight models is started with two differ-
ent configurations of means: one where the five original
means are derived from a hierarchical clustering of the
signal ratios, and one where they are set at equidistant
positions on the transformed scale from 0.142 to 1.429
(corresponding to 0.02 and 0.98 on the original scale).
The BIC of the 16 results are compared and the result

with the minimum BIC is selected. Using the selected
model, for every sample the probabilities of belonging to
each of the five distributions are calculated. Only if the
maximum probability is above a certain threshold (by
default 0.99) the corresponding genotype class is assigned
to the sample. This threshold affects the reliability of the
genotype scores; a high threshold (such as the default)
results in a high reliability but in less called genotypes;
and if the percentage of called genotypes drops below a
specified level (see below) the SNP is not scored at all.
If the difference in response between the two allelic

signals is large (parameter r is much smaller or larger
than 1), a wide gap occurs between the nulliplex or
quadruplex peak and the next peak, while the other four
peaks are closely spaced. In such cases it may happen
that the EM algorithm does not find the optimal fit but
instead fits the simplex or triplex peak in the wide gap.
In order to detect and correct such mis-fits, a second
step tests whether the simplex or triplex peaks have a
lower mixing proportion or a smaller number of sam-
ples assigned than peaks at both sides. If this is the case,
the eight models are fitted again with a third starting
configuration for the distribution means: if the triplex
peak appears to be fitted in the gap the means of the

duplex, simplex and nulliplex peaks are reassigned to
the triplex, duplex and simplex peak; for the nulliplex
peak a new mean halfway between the (new) simplex
mean and 0.0 is assigned. A similar rearrangement is
made if the simplex peak appears to be fitted in the gap.
Using this new starting configuration of the means the
EM algorithm for the eight models is run again.
For each of the fitted models a check is done if a

lower peak occurs between higher peaks. Neither in a
cross progeny nor in a population in Hardy-Weinberg
equilibrium such a pattern is expected. Therefore, by
default the algorithm includes a third step which rejects
all fitted solutions where such a pattern occurs; how-
ever, this check can be disabled. If in all fitted models
lower peaks occur between higher peaks or if this check
is disabled, no solutions are rejected in this step.
After these initial steps, the fitted model with the low-

est BIC among the non-rejected solutions is selected.
Again for every sample the probabilities of belonging to
each of the five distributions are calculated and geno-
types are assigned using the same criterion as in step 1.
In the final step, markers can be rejected based on sev-

eral additional criteria. If less than a minimum fraction
(by default 60%) of the samples are assigned a genotype
this indicates an unclear peak pattern. This parameter
interacts with the parameter specifying the minimum
probability level required for assigning a genotype as
described above. Also a peak variance above a certain
threshold (by default 0.1 on the transformed scale) causes
the marker to be rejected; again this filters against
unclear peak patterns. This parameter may be decreased
when the general noise level of the well-performing
assays is low. A third criterion for marker rejection is
when more than a maximum fraction (by default 85%) of
the assigned samples are in the same peak. This para-
meter may be increased for data sets with more samples,
as long as there are sufficient samples outside the main
peak for reliable fitting of the remaining components of
the mixture distribution.
It is recommended to try out some different values of

the parameters based on the guidelines above and
inspect the results for a subset of the markers, before
selecting the values to apply to the full dataset.

The program
The algorithm for model fitting and selection is imple-
mented in fitTetra, an R package [21] which is included
as Additional files 1 and 2. FitTetra produces output in
tabular form, including (1) a specification of the fitted
model with a.o. the means and mixing proportions of
the mixture components, and (2) a list of samples, their
probabilities of belonging to each of the mixture compo-
nents and their assigned genotypes. Further it produces
a graphical presentation with a histogram of the allele
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signal ratio distribution, the fitted model and the geno-
types assigned to the samples. If data on diploid samples
are also available, a histogram with the signal ratios of
these samples is shown superimposed on the tetraploid
histogram for visual comparison; the diploid samples are
not used in the model fitting or selection. A typical
example is shown in Figure 1.

Results
Selection of useful SNPs
The GoldenGate data set consisted of 384 SNPs that
were scored on 224 tetraploid samples, resulting in
86016 data points of which 70556 reached the signal
intensity threshold. Sixty-three of the 384 SNPs (16%)
were rejected because less than 60% of the samples
reached this threshold.
In the first step of the model selection, 9 of the 321

SNPs were rejected because model fitting failed for
numerical reasons with all of the 8 models and both
start configurations used for the component means.
Visual inspection showed that 7 of these 9 SNPs had no
clear peak pattern and 2 were monomorphic. Of the
remaining 312 SNPs, in 58 cases one of the five compo-
nent distributions appeared to be fitted in a wide gap in
the histogram; in these cases the second step of model
fitting was performed with an adjusted starting config-
uration of means, which in 45 cases resulted in an
improved fit (Figure 2).
Finally, of the 312 SNPs 74 were discarded because

less than 60% of the samples could be assigned a geno-
type, 26 because more than 85% of the samples were
scored in one peak and 4 because the standard deviation
of the component distributions was above the threshold
(0.1 on the transformed scale), leaving 208 SNPs that
delivered genotyping data useful for allele dose
determination.
Visual inspection showed that of the 26 SNPs that

were discarded because more than 85% of the samples
was in one peak, 15 were completely monomorphic,
while in 11 cases a small number of samples was found
outside the peak. The other rejected SNPs all showed an
unclear, diffuse pattern in the signal ratio histograms.
Of the 208 SNPs with genotype scores, on visual

inspection nine were dominated by one large peak. While
the large peak contained less than 85% of the samples
and the SNP was therefore not rejected, the remaining
samples for these SNPs did not show clear peaks and
their scoring seemed uncertain. Also, one SNP
(PotSNP234) showed an unclear peak pattern with appar-
ently a small simplex peak between larger nulliplex and
duplex peaks. When this interpretation of the peaks is
correct, the fitted model and most assigned genotypes for
this SNP are incorrect, as the fitted simplex peak rather
than the duplex peak coincides with the heterozygous

diploid peak. Another SNP (PotSNP373) showed a highly
unequal signal intensity for both alleles, with the mean of
the duplex peak above 0.85; also in this case the fitted
model and most assigned genotypes were incorrect.

Validation and application of the SNPs
Generally the presence of diploid samples allows a visual
check on the correctness of the fitted mixture model.
For 123 of the 206 fitted SNPs (excluding the incorrectly
fitted PotSNP234 and PotSNP373) the diploid samples
were polymorphic. In 110 of these, the diploid peaks
coincided with the nulliplex, duplex and quadruplex
peaks of the tetraploid varieties. In 13 cases the posi-
tions of the diploid peaks did not match that of the cor-
responding tetraploid peaks.
The presence of null alleles may be indicated by the

presence of extra peaks between the duplex and the sim-
plex and/or triplex peaks. While such peaks can be
observed visually in several histograms (e.g. Figure 3,
PotSNP034) it is not clear whether these really represent
aab0 or abb0 genotypes, or are just a random phenom-
enon. We have tried to test for the presence of an excess
of samples between the scored duplex and simplex or tri-
plex samples based on the fitted mixture model, but this
did not produce conclusive results. Therefore fitTetra
cannot give an indication of the possible presence of null
alleles.
For the 208 fitted SNPs a total of 45702 data points with

a signal above the threshold level were available. Of these
data points, 40392 (88.4%) were assigned a genotype, as
the probability of belonging to any of the 5 classes was
above 0.99. The percentage of assigned genotypes varied
between SNPs from 62.3% to 100.0%. Among the 208
selected models, the mixture component means were con-
strained in 56 cases according to Model 1, in 114 cases to
Model 2, in 15 cases to Model 3 and in 23 cases to Model
4. In 195 out of the 208 models (93.8%) the mixing pro-
portions were constrained according to HWE ratios,
meaning that the observed frequencies of the five genotype
classes over all samples were close to those expected
under HWE. The 13 SNPs for which non-HWE models
were selected included eight that were dominated by one
large peak, and the two incorrectly fitted SNPs. This left
three SNPs (PotSNP006, PotSNP131, PotSNP184) with a
regular, fully informative distribution with a non-HWE
model.

Discussion
Assigning potato varieties to a genotype class
In this paper we describe the development of fitTetra,
an R package that assigns genotype scores to tetraploid
samples for bi-allelic markers. We evaluated fitTetra
using data for 384 SNPs obtained using the GoldenGate
technology for a collection 224 potato varieties. Not all
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Figure 1 Typical graphical output of fitTetra. Upper panel: histogram of the signal ratios: allele a/(allele a + allele b) of a set of tetraploid
potato varieties (white bars) and a diploid cross progeny (gray bars) for marker PotSNP016. The model fitted to the tetraploid varieties is
indicated (green line). Lower panel: the genotype (0 to 4 for nulliplex to quadruplex) assigned to the tetraploid samples in relation to the signal
ratios. Unassigned samples are shown at the bottom in red. The diploid samples coincide with the nulliplex, duplex and quadruplex peaks of the
tetraploid samples.
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SNPs turned out to be equally suited for assigning a
genotype score in this collection. We took the approach
that it is better to reject uncertain scores and low-qual-
ity SNPs than to try to assign all samples a score. For

the GoldenGate array this resulted in the selection of
208 out of the 384 SNPs, i.e. 54%. For the selected
SNPs, overall about 88% of the samples were assigned a
genotype.

192 PotSNP192

fre
qu

en
cy

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

2
4

signal ratio

ge
no

|

||||

|||

||

|

|

|

||

||| |

|

|

|

|

||

|

| |

||

|

|

|| |

|

|

|

|

|

||

| |

| |

|

|| ||

|

| |

|

| ||

|

|

|

| ||

| |

||

|

||

|

|

| |

|

| |

||

|

| ||

|

|

|

|

|

| |

|

||

|

|

|

|

| |

| |

|||

|

|

| |

|

|

|

|

|

|

| | || |

|

||

|

|| |

|

|

|

| |

|

|

|

|

||

|

|

|

||

|

|

|

|

|

|| |

| |

|

|

|

||

|

|

| |

| ||

|

|

||

||

|

|

|

|

|

|

|

|

|

| |

|

|| |

|

|

||

|

|

|

|

|

| | |

|

|

| |

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

| |

Figure 2 SNP showing a large gap. For this SNP (PotSNP192) the signal strength of the b allele is smaller than that of the a allele, resulting in
a non-central position of the duplex peak and a wide gap between the nulliplex and simplex peak. For a general explanation see Figure 1.

Voorrips et al. BMC Bioinformatics 2011, 12:172
http://www.biomedcentral.com/1471-2105/12/172

Page 7 of 11



These statistics depend on the choice of the thresh-
olds applied during model selection and the assigning of
genotypes. We have shown that the default settings,
applied in the current study, perform quite well: the

rejected SNPs are either (almost) monomorphic or do
not show a clear peak pattern based on visual evalua-
tion, and the samples not assigned a genotype are
always in the area between neighbouring peaks.
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However, these thresholds can be adjusted by the users
to fit their specific data sets. The visual inspection of
the output data should be done on a representative sam-
ple of the markers to set the various options to suitable
values for the data set under evaluation.
Validating the genotype assignments in the varieties in

an independent way is not easy as there is no ‘gold stan-
dard’. Therefore we used the position of the assignments
in a diploid mapping population as a reference. In 193 of
the 206 SNPs (excluding two evidently mis-fitted SNPs)
the distribution of the diploid peaks matched that of the
tetraploid peaks. In only 13 SNPs (6.3%) this was not the
case. This was not due to a mis-assignment of the tetra-
ploid peaks, but rather to a difference in the intrinsic X
and/or Y signal strengths between the tetraploid varieties
and the diploid population. The reason for this remains
unclear, but might be related to SNPs close to the interro-
gated SNP that interfere with the assay and result in a
lower signal in the diploid material. Alternatively also (par-
tial) amplification of paralogous sequences may explain
the observation. As the diploid samples were derived from
two semi-wild parents [22] and the SNP assays were based
on ESTs from tetraploid varieties, the diploid population
might harbour such additional SNPs or different paralo-
gous sequences not present in the tetraploid varieties. We
attempted to test this assumption by blasting the Golden-
Gate sequences of these 13 SNPs against the sequences of
the RH parent (EMBL, November 2010). However we
found only two hits, in one of which additional SNPs were
present; which is not sufficient to allow a general
conclusion.
SNPs that are not selected for assigning genotype

scores in the tetraploid variety panel are not necessarily
unusable in other contexts. For instance 44 of the 176
rejected SNPs (25%) could be mapped with high confi-
dence in the diploid SH × RH cross progeny [23]. The
most likely reason for performing differently in a wide
range of germplasm compared to a well-defined map-
ping population might be that there are SNPs in the
region of the interrogated SNP that interfere with the
assay.

Comparison between fitTetra and beadarrayMSV
We compared fitTetra with the recently published pack-
age beadarrayMSV [14]. BeadarrayMSV is designed to
analyse SNPs in duplicated loci or (partially) tetraploid
species with disomic inheritance. Like in our autotetra-
ploid (potato) case five different allele ratios are possible
in these situations. However, as described by [14] several
different segregation patterns are possible in such a
situation, different from the patterns occurring in an
autotetraploid. As fitTetra and beadarrayMSV were
developed to analyse the patterns observed in these dif-
ferent situations it is not very surprising that they

perform (considerably) less well with data sets of the
other type, as described in Additional file 3.

Application of the approach
The genotype scores can be applied first of all to improve
genetic studies in tetraploids. Classical mapping can be
carried out more efficiently when all markers that segre-
gate can be used and not just only the nulliplex and sim-
plex markers. For association mapping one could take
into account the allele dose, which might result in a
more precise estimate of the linkage disequilibrium. SNP
markers will also be useful in variety identification in
polyploids [24-26]. In this context the genotype scores
can improve the resolving power of the markers.
An interesting observation from our analysis of a large

collection of tetraploid potato varieties is that almost
none of studied markers show evidence against HWE
ratios. In general HWE results from random mating in a
population. One might expect that potato breeding
involves non-random selection of cross parents and
cross progeny. While this selection may have resulted in
an overall shift of allele frequencies at certain loci it
generally does not seem to result in a departure from
HWE genotype ratios among varieties.
The use of the approach and the package is not

restricted to data obtained from GoldenGate experiments.
In principle it can be applied to data that are obtained
with any bi-allelic marker system that produces different
signals that are proportional to the allele dose. Thus we
expect the system to work also well for Infinium, Fluidigm
or KASPar http://www.kbioscience.co.uk/ derived data
from (auto)tetraploid species. In addition it will also be
useful for the analysis of Pyrosequencing data [27], where
intensity data per allele are obtained that can be trans-
formed into genotype scores. Finally, while fitTetra is spe-
cific for tetrasomically inherited markers, the approach
can in principle be generalized to other ploidy levels; how
well this will work depends mainly on the noise level of
the data, as additional and more closely spaced peaks will
be present at higher ploidy levels.

Conclusions
Until now automated SNP genotype calling in tetraploid
species was not possible, which hampered genetic analy-
sis. We have developed and evaluated an R package
called fitTetra, that efficiently assigns genotype scores to
bi-allelic markers in tetraploid species. The package can
in principle be used for any type of bi-allelic marker,
including Golden Gate, Infinium and Kaspar, and any
tetraploid species.

Data set
The GoldenGate data set was obtained using the Illu-
mina GoldenGate array with 384 SNPs, as described
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by [23]. A collection of 224 tetraploid potato varieties
covering a wide variation with respect to geographic ori-
gin, year of first registration and intended application
(fresh consumption, chips, crisps, starch production)
was genotyped using this array. Variety codes the tetra-
ploid data set refer to the varieties as described in [6].
In addition 64 diploid samples were analyzed, 58 of
which were a subset of the SHxRH cross population
[22,23]. The actual genotyping was performed by Service
XS Leiden, The Netherlands as described in [23].
From the output of the assay we used the Raw_X and

Raw_Y columns to calculate a total signal intensity (the
square root of the sum of Raw_X squared and Raw_Y
squared) and an allele signal ratio (Raw_X divided by
the sum of Raw_X and Raw_Y). A histogram of the sig-
nal intensities revealed a peak of low-intensity observa-
tions, separated from the higher-intensity observations
by a dip around 3200 (not shown). Therefore we
removed all observations with a total signal intensity <
3200. The calculated signal ratios together with the
SNP_Name and Sample_ID columns were then used as
input for our algorithm, after splitting the data into a
tetraploid data set (for model fitting) and a diploid data
set (for plotting the diploid histograms superimposed
on the tetraploid models). The tetraploid and diploid
data sets are included in the fitTetra package (Addi-
tional file 1).

Availability and requirements
• Project name: fitTetra
• Project home page: http://www.plantbreeding.wur.
nl/UK/software_fitTetra.html
• Operating system(s): Any platform for which the R
software [21] is implemented, including Microsoft
Windows and Linux. A version compiled for Win-
dows is included as Additional file 2.
• Programming language: R [21]. The package
requires R version 2.12.1 or newer; this is relevant
only for the Windows 32-bit implementation of R
which contained an error in some earlier versions.
• Other requirements: None.
• License: GNU General Public License.
• Any restrictions to use by non-academics: None.

Additional material

Additional file 1: The fitTetra R package. Additional file 1: “fitTetra_1.0.
tar.gz” contains the R package fitTetra described in this article,
performing the mixture model fitting and model selection. It contains
the tetraploid and diploid data used in this article and includes detailed
help pages describing the use, input and output of the three user
functions. FitTetra is distributed under the GNU Public License http://
www.gnu.org/ and is also available from http://www.plantbreeding.wur.
nl/UK/software.html. Note that the downloaded file should be renamed
to “fitTetra_1.0.tar.gz” before installing the package.

Additional file 2: A compiled version of the fitTetra R package.
Additional file 2: “fitTetra_1.0.zip” contains the fitTetra package compiled
for the Windows operating system. Note that the downloaded file
should be renamed to “fitTetra_1.0.zip” before installing the package.

Additional file 3: Comparison of fitTetra and beadarrayMSV.
Additional file 3 “Comparison of fitTetra and beadarrayMSV.pdf"describes
the comparison that was made between fitTetra and beadarrayMSV,
using the potato data from this article and the salmon data from [14].
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