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Abstract

Background: The goal of metabolomics analyses is a comprehensive and systematic understanding of all
metabolites in biological samples. Many useful platforms have been developed to achieve this goal. Gas
chromatography coupled to mass spectrometry (GC/MS) is a well-established analytical method in metabolomics
study, and 200 to 500 peaks are routinely observed with one biological sample. However, only ~100 metabolites
can be identified, and the remaining peaks are left as “unknowns”.

Result: We present an algorithm that acquires more extensive metabolite information. Pearson’s product-moment
correlation coefficient and the Soft Independent Modeling of Class Analogy (SIMCA) method were combined to

manual processing.

automatically identify and annotate unknown peaks, which tend to be missed in routine studies that employ

Conclusions: Our data mining system can offer a wealth of metabolite information quickly and easily, and it
provides new insights, particularly into food quality evaluation and prediction.

Background

Metabolomics is based on biology, analytical chemistry,
and information science, and it has become an impor-
tant tool in many research areas [1-5]. The metabolome
information can be used to extrapolate novel biological
knowledge [1,6-8]. The main platforms in metabolomics
studies are based on hybrid systems such as GC/MS,
liquid chromatography (LC)/MS, and capillary electro-
phoresis (CE)/MS, all of which have been applied in
many fields - including biomarker studies in medical
diagnosis and quality evaluation and prediction in food
science [2,3,5,9-11]. Among these platforms, GC/MS is a
relatively mature method because the reproducible mea-
surement is possible and many peaks (200 to 500) can
be reliably obtained from a biological sample [1,3,12]. In
addition, peak identification is straightforward when
retention time (RT) and mass spectra data are compared
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to those of accumulated compound information in a
laboratory (reference library). For these reasons, GC/MS
is generally recognized as one of the most versatile and
applicable platform in metabolomics.

Since GC/MS is mature enough to run a batch of ana-
lyses and to easily identify metabolite peaks, the devel-
opment of a fast data analysis tool is essential [6,7].
Currently, peak identification and annotation is time-
consuming when these processes are performed
manually. Moreover, manual analysis results in serious
problems in the accuracy of peak identification and
annotation depending on the knowledge and expertise
of individual researchers. Peak annotation is especially
difficult because the extensive knowledge of fragmenta-
tion patterns by electron ionization (EI) is required.
Therefore, it is an important challenge to develop data
processing tools that identify and annotate metabolites
easily, accurately, and rapidly.

Previous software platforms for peak identification
utilize retention indexes that depend on an n-alkane
mix (AMDIS [13], BinBase [14], MetaQuant [15],
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TagFinder [16], MetaboliteDetector [17]). But the reten-
tion index method requires some complicated proce-
dures such as sample preparation and data analysis due
to the m-alkane mix of the exogenous compounds.
Moreover, the obtained metabolite information is lim-
ited to identifiable peaks because these platforms treat
the ambiguous peak as “unknown”. Therefore, many
potentially interesting biomarkers tend to be
disregarded.

There are several reasons why extracted peaks are left
unidentified. First, peaks with a low signal-to-noise
ratio, i.e., those with a large amount of noise, decrease
the degree of coincidence (DOC) when compared to a
reference library. Second, de-convolution may be unsuc-
cessful because of co-elution (i.e., simultaneous elution
of multiple compounds). Last and most importantly, no
reference library is complete or covers information on
all possible metabolites. If a certain metabolite is known
to exist in a biological sample, a standard compound
can be analyzed to resolve one unknown peak. However,
if there is no information for a large number of
unknown peaks, the cost of collecting standard com-
pounds is prohibitively expensive; moreover, if a com-
pound is not commercially available, the compound
must be synthesized. For these reasons, it is important
to deduce any kind of chemical information about
unknown peaks.

We developed a data mining system to easily obtain
metabolite information by using two mathematical
methods. The first method is a Pearson’s product-
moment correlation coefficient for identification that we
based on retention time and weighted mass spectrum
[18,19]. Using 1) a retention time correction based on
pseudo-internal standard and 2) a relaxed mass fitting
to a reference library resulted in an identification pro-
cess that was less dependent on column aging, column
cuts, or column lot. In spectral comparison, higher
masses are given more weight to reduce false positives
and false negatives.

The second method is the Soft Independent Modeling
of Class Analogy (SIMCA) [20] for the annotation of
unknown peaks, and some techniques of SIMCA utiliz-
ing mass spectra have been developed, especially in
toxic studies [21-25]. SIMCA is a supervised classifica-
tion technique that is based on principal component
analysis (PCA) [26], and it is useful for building multiple
class models. New measurements are projected in each
principle component (PC) space that describes a specific
class, and the F-test is used to evaluate the Euclidean
distances of the objects toward the model. We con-
structed the five chemical class models including amine,
organic acid, fatty acid, sugar, and sugar phosphate
groups as initiative. Using this method, we developed an
annotation algorithm for unidentified peaks.
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We utilized the free software MetAlign [27] for base-
line correction, peak detection, and peak alignment.
MetAlign has been a powerful tool for data preproces-
sing of GC/MS-based metabolomics [28,29]. The CSV
format file exported from MetAlign can be analyzed by
program written in Visual Basic, which software name is
Aloutput. Our system and manual is given as additional
files 1, 2, 3, and 4.

For validation, we performed two experiments. The
first experiment included the standard mixtures: fifteen
samples each mixed with 99 well-known standard com-
pounds. In the standard-mix experiment, we demon-
strated that the identification and annotation algorithms
were robust and resulted in very few false positives or
false negatives. The second experiment was a re-analysis
of our published data. This experiment demonstrated
that the required time for data processing was much
shorter and that the novel system produced superior
results. The proposed algorithm can be a powerful tool
for quality evaluation and prediction, particularly in
food science.

Methods

1. Theoretical aspect

Retention time correction

Retention times provide important information for iden-
tifying metabolites. A common problem in accurate
identification is chromatographic shift resulting from
column aging or lot differences. To adjust such shifts,
retention indexes based on an n-alkane mix are usually
calculated. However, retention index correction has
some disadvantages. First, the requirements for sample
preparation, such as density adjustment between meta-
bolites and an n-alkane mix, are complicated. Moreover,
if the type or number of n-alkane mix used in each
laboratory is different, results may not be compatible
among laboratories. Therefore, we used stable metabo-
lite peaks derived from biological samples as indexes in
order to reduce the problem of chromatographic shift.
Retention times from the reference library were updated
by several pseudo-internal standards. The update
method was as follows.

new __ .new
RTeW — phew = 1-tn +1 1-tn

R —t°) (n=1~7)
n 1d ( n
¢, — rtgd

with rt, , 1 > 1ty

RT™Y represents the retention time after update in
the reference library, RT°' represents that of original
data (See also additional file 4), rt"™" and rt°? represent
the retention time of the updated pseudo-internal stan-
dard and that of original one, respectively.

In an actual implementation, a user can choose up to
eight compounds as pseudo-internal standards. The
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selection of standards is user-dependent, but the use of
standards that result in early and late peaks is recom-
mended for more accurate adjustment.

Peak identification

The most important information for peak identification
is the mass spectrum of a compound. Pearson’s pro-
duct-moment correlation coefficient was used to mea-
sure the similarity of two mass spectra, which were
represented as vectors of intensity for each integer mass
unit. Because the EI ionization method is a hard ioniza-
tion method, recorded mass spectra generally show lar-
ger intensities for lower masses than for higher masses.
Because higher masses provide more reliable informa-
tion for compound identification, higher masses were
given larger weights in comparing two mass spectra.
The identification method was as follows.

EgrrL
DOC= "™  [RT—c<rt<RT+|
IErll lILe
Egr = [EgS™ Ege™ - -+ EsGo
Lo = [Lg5" 156" - - Lsgo

new old
EPeY = W, EO
1d
LIeY = W,ES

with W, = 1 if n < 200 or W, = B4 if n > 200, [85 < n < 500]

Ert and L, represent the totally-weighted vectors of
an extracted peak and of a reference compound, respec-
tively. The parameter c presents the time width for a
reference search. E°'¢ and E™" represent the original
intensity and the weighted intensity of the extracted
spectrum, respectively. L and L represent the origi-
nal intensity and the weighted intensity of a reference
compound. For example, if an extracted peak, A, is
eluted at 600 sec and the time width parameter c is set
to 2 sec, the compounds from 598 to 602 sec in a refer-
ence library are selected as candidate matches. The
compound from the reference library with the highest
DOC when fitted to peak A is further selected as the
match. If no candidate match is found, a prediction
algorithm, described in the next section, is applied.

It should be noted that the time width was set by a
user. Although pseudo-internal standard correction may
impair accuracy compared to retention index correction,
this relaxed mass fitting may have reduced the number
of false negatives. This assertion is based on the
assumption that mass spectra are more consistent and
reliable than retention time for peak identification. In
addition, although a few compounds have high similar-
ity, the weighted mass spectra may have reduced false
positives because the difference of the intensity in high
masses was emphasized.

Peak prediction
SIMCA is a well-known pattern recognition method that
distinguishes each class separately in a principal
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component (PC) space. SIMCA can also evaluate
whether new objects belong to a specific model or not.

A training matrix, X, contains objects of different
known classes. The sub-matrix, Xy, (m x p) contains m
training objects belonging to class K that were measured
at p variables. Each class training set is modeled sepa-
rately by PCA. X is described with a score matrix, T,
and loading matrix, V, as follows.

X = Xg + Ti(m x 1)V (r x p) + Ex(m x p)
withr <m —1

The number of important PCs, r, to describe the class,
K, is usually determined by cross-validation [30,31]. Ex
is the matrix containing the residuals. Xy is divided into
two parts. One part TxVy, is described by r PCs, and the
other Ey is the residuals of the PC space. The standard
deviation of Eg, i.e., the residual standard deviation
(RSD), and the RSD of new objects fitted to class K
model are first compared, and then new objects are
evaluated to determine whether they belong to class K.
The RSD of Eg is, in fact, a measure for the Euclidean
distance of the class K objects toward the r PC space.

50 = () /(m —r—1)?

m p
= i=1

k=1 i

e{fi represents the residual of object, k, of the class K
training set at variable i.

To predict whether an object, x]new, belongs to the
class K, it is projected on the space defined by the
selected PCs of the class K training set.

V(1 x 1) = [!(1 x p) —X(1 x p)|[Vk(p x 1)
(1 xp) = &1 % p) + V(1 x 1)Vie(r x 1)

k?ew represents the predicted object, x;lew, in the space

of the class K training set. The residual vector e]new of
new

object x;~ " is calculated as follows.
new _  new “pEW
G =5 %

And the RSD, s; i.e., a Euclidean distance taking into
account the degree of freedom, is obtained as follows.

p

si= | Y () (m—r—1)

i=1

One determines whether the residual variances 572 and
sg are significantly different by calculating the F-value
compared to the tabulated critical F-crit for (m - r -1)

and (m - r -1)* degree of freedom.
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If the residual variances sz and s} are significantly dif-
ferent, the new object will not be classified into the
class K. On the other hand, if the residual variances are
not significantly different, the new object will be classi-
fied into class K. The test is performed under all classes.

In the Aloutput software, SIMCA is applied to uni-
dentified peaks to classify them into a metabolite group
(sugar, sugar phosphate, organic acid, amine, or fatty
acid). If an unidentified peak could be classified into
multiple groups, the group associated with the largest p-
value is chosen. In this study, however, unknown peaks
were rarely classified into multiple groups (3 out of 84
cases in re-analysis). If an unidentified peak is not classi-
fied into any class, the peak is ultimately reported as
unknown. But the Aloutput software creates an orga-
nized data matrix that includes the unknown peak infor-
mation. This type of output represents the ultimate goal
of metabolomics studies, which is a comprehensive ana-
lysis of all metabolites in the biological samples.

2. Practical workflow

Construction of the SIMCA model

We prepared five metabolite groups for annotation:
sugar, sugar phosphate, organic acid, fatty acid, and
amine, and 12, 10, 12, 9, and 13 compounds, respec-
tively, were prepared for the training matrix (Table 1).
We used the relative intensities of each mass value ran-
ging m/z 85 to 500 as variables in the SIMCA model.
Standard mixture experiment

In order to validate the accuracy of our identification
and annotation algorithms, we performed the following
verification experiment. Standard compounds (99 total,
see Table 2 and 3) were dispensed into 2 ml eppendorf
tubes at three concentrations (5 pl, 10 pl, or 15 ul each
standard solution of 10 mM). For each pattern, five
tubes were prepared (15 standard mixtures in total).
Any methanol in the mixtures was evaporated in a
vacuum centrifuge dryer for 1 hour, and the mixtures
were freeze-dried overnight.

Sample derivatization procedures were followed pre-
viously [5]. In brief, methoxyamine hydrochloride in
pyridine was added for oximation, and N-methyl-N-(tri-
methylsilyl) trifluoroacetamide (MSTFA) was added for
silylation, and 1 pl of each mixture was injected in the
split mode (25:1, v/v). Auto-sampler was a 7683B series
injector (Agilent Co., Palo Alto, CA), and gas chromato-
graph was a 6890N (Agilent Co., Palo Alto, CA), and
mass spectrometer was a Pegasus III TOF (LECO, St.
Joseph, MI). The column was a 30 m x 0.25 mm i.d.
fused silica capillary column coated with 0.25 pm CP-
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SIL 8 CB low bleed/MS (Varian Inc., Palo Alto, CA).
The front inlet temperature was 230°C. The helium gas
flow rate through the column was 1 ml/min. The col-
umn temperature was held at 80°C for 2 min isother-
mally and then was raised by 15%C/min to 330°C and
was held there for 6 min isothermally. The transfer line
and ion source temperatures were 250°C and 200°C,
respectively. 20 scans per second were recorded over the
mass range 85-500 m1/z.

MS data were exported in the netCDF format (See
additional file 5). Fifteen chromatograms were peak-
detected and aligned using the MetAlign software
(Wageningen UR, The Netherlands, freely available at
http://www.pri.wur.nl/UK/products/MetAlign/). The
resulting data was exported in the CSV-format file (See
additional file 6). After updating retention times of our
reference library by the pseudo-internal standard correc-
tion method (see above), peak identification and annota-
tion were executed in the Aloutput software.

Published data experiment

In order to verify the utility of our system, we re-ana-
lyzed data from our previous work that is reported in
Pongsuwan W et al. [5]. The analytical method used for
this experiment was exactly the same as that used for
the standard mixture experiment.

Result and Discussion
Validation and optimization of the SIMCA model
It was important to evaluate independence of five class mod-
els. We performed PCA toward the data matrix (56 x 416), i.
e., spectral vectors of 56 compounds used in the SIMCA
model (Figure 1la and 1b). The metabolite groups were
clearly separated by the first and second PCs, and the amine
and fatty acid groups were especially independent. As shown
in Figure 1b, the loading plot shows that the m1/z 86 and 174
contributed to the discrimination of amine group, and the
m/z 117, 129, and 132 contributed to the discrimination of
fatty acid group. To investigate the features of organic acid,
sugar, and sugar phosphate groups in detail, we applied PCA
to the data matrix (34 x 416) including only the three
groups. As shown in Figure 1c and 1d, the m/z 299 clearly
discriminated the sugar phosphate group, and the m/z 147
was a characteristic mass to the organic acid group.

After we applied PCA to five metabolite groups indivi-
dually, we optimized each model using interclass dis-
tance as follows.

1
T
S12 = eie:
(p—r)m XI: o
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Table 1 Compounds used in the training set for the SIMCA method
Class Name IUPAC CAS KEGG
Sugar Fructose (35/4R 5R)-2-(hydroxymethyl)oxane-2,3,4,5-tetrol 57-48-7 C00095
Galactose (3R4S,5R 6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol 59-23-4 C00124
Glucose (3R4S,55,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol 50-99-7 C00031
Glycerol propane-1,2,3-triol 56-81-5 Cool1e
Maltose (2R,35,4S,5R 6R)-2-(hydroxymethyl)-6-[(2R,35,4R,5R)-4,5,6-trih ydroxy-2- 69-79-4 C00208
(hydroxymethyl)oxan-3-ylJoxyoxane-3,4,5-triol
Sucrose (2R,3R4S,55,6R)-2-[(25,35/4S,5R)-3,4-dihydroxy-2,5-bis(hydrox ymethyl)oxolan-2-yl] 57-50-1 C00089
oxy-6-(hydroxymethyl)oxane-3,4,5-triol
Trehalose (2R35,45,5R 6R)-2-(hydroxymethyl)-6-[(2R,3R45,55,6R)-3,4,5-t rihydroxy-6- 99-20-7 01083
(hydroxymethyl)oxan-2-ylloxyoxane-3,4,5-triol
Xylitol (2R4S)-pentane-1,2,3,4,5-pentol 83-99-0 C00379
Inositol cyclohexane-1,2,3,4,5,6-hexol 87-89-8 C00137
Sorbitol (2R,3R4R,55)-hexane-1,2,3,4,5,6-hexol 50-70-4 C007%4
Ribose (3R/4S,5R)-5-(hydroxymethyl)oxolane-2,3,4-triol 50-69-1 C00121
Maltitol (25,3R4R,5R)-4-[(2R,3R4S,55,6R)-3,4,5-trihydroxy-6-(hydroxyl methyl)oxan-2-yl] 81025-03-8 C13542
oxyhexane-1,2,3,5,6-pentol
Sugar Fructose-6- [(2R,3R49)-2,3 4,6-tetrahydroxy-5-oxohexyl] dihydrogen phosphate 643-13-0 00085
phosphate  phosphate
Glucosamine-6- [(2R,35,4R 5R)-5-amino-2,3 4-trihydroxy-6-oxohexyl] dihydrogen phosphate 3616-42-0 C00352
phosphate
Glycerol-2- 1,3-dihydroxypropan-2-yl phosphate 17181-54-3  C02979
phosphate
Arabinose-5- [(2R,3R49)-2,3 4-trihydroxy-5-oxopentyl] phosphate 13137-52-5 C01112
phosphate
Ribulose-5- [(2R,3R)-2,3 5-trihydroxy-4-oxopentyl] phosphate 551-85-9 C00199
phosphate
Sorbitol-6-phosphate  2,3,4,5,6-pentahydroxyhexyl phosphate 20479-58-7  C01096
Phosphoenolpyruvic  2-phosphonooxyprop-2-enoic acid 138-08-9 C00074
acid
Deoxyribose-5"- [(2R,35)-3-hydroxyoxolan-2-yllmethyl hydrogenphosphate 7685-50-9 C00673
phosphate
Glucose-6-phosphate  [(2R,35,4S,5R)-3,4,5,6-tetrahydroxyoxan-2-yllmethyl dihydrogen phosphate 56-73-5 C00092
Ribulose-1,5- (2,3-dihydroxy-4-oxo-5-phosphonatooxypentyl) 24218-00-6  C01182
bisphosphate
Organic Oxalic acid oxalic acid 144-62-7 00209
acid
Isocitric acid 1-hydroxypropane-1,2,3-tricarboxylic acid 320-77-4 C00311
2-Isopropylmalic 2-hydroxy-2-propan-2-ylbutanedioic acid 3237-44-3 C02504
acid
Succinic acid butanedioic acid 110-15-6 C00042
Maleic acid (2)-but-2-enedioic acid 110-16-7 C01384
Malic acid 2-hydroxybutanedioic acid 617-48-1 C00711
Malonic acid propanedioic acid 141-82-2 00383
Glutaric acid pentanedioic acid 110-94-1 C00489
Glycolic acid 2-hydroxyacetic acid 79-14-1 C00160
Citramalic acid 2-hydroxy-2-methylbutanedioic acid 2306-22-1 C00815
Citric acid 2-hydroxypropane-1,2,3-tricarboxylic acid 77-92-9 C00158
Methylmalonic acid  2-methylpropanedioic acid 516-05-2 C02170
Fatty acid  Elaidic acid (E)-octadec-9-enoic acid 112-79-8 C01712
Heptadecanoic acid  heptadecanoic acid 506-12-7 Not found
Icosanoic acid icosanoic acid 506-30-9 C06425
Lauric acid dodecanoic acid 143-07-7 C02679
Lignoceric acid tetracosanoic acid 557-59-5 08320
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Table 1 Compounds used in the training set for the SIMCA method (Continued)
n-Caprylic acid octanoic acid 124-07-2 C06423
Nonanoic acid nonanoic acid 112-05-0 C01601
Octacosanoic acid octacosanoic acid 506-48-9 Not found
Palmitoleic acid (E)-hexadec-9-enoic acid 373-49-9 C08362

Amine Dopamine 4-(2-aminoethyl)benzene-1,2-diol 51-61-6 C03758
Cadaverine pentane-1,5-diamine 462-94-2 C01672
n-Butylamine butan-1-amine 109-73-9 C18706
Putrescine butane-1,4-diamine 110-60-1 C00134
Tyramine 4-(2-aminoethyl)phenol 51-67-2 C00483
Isobutylamine 2-methylpropan-1-amine 78-81-9 C02787
2-Aminoethanol 2-aminoethanol 141-43-5 C00189
1,3-Propanediamine  N',N-dimethylpropane-1,3-diamine 109-76-2 C00986
n-Propylamine propan-1-amine 107-10-8 Not found
Tryptamine 2-(1H-indol-3-yl)ethanamine 61-54-1 C00398
Histamine 2-(1H-imidazol-5-yl)ethanamine 51-45-6 C00388
1-Methylhistamine 2-(1-methylimidazol-4-yl)ethanamine 501-75-7 C05127
Serotonin 3-(2-aminoethyl)-1H-indol-5-ol 50-67-9 C00780

Compounds in each metabolite group were randomly selected from our reference library based on the metabolite feature. The popular name, IUPAC name, CAS
registry number, and KEGG ID were described, respectively.

Table 2 43 out of 99 compounds included in the five classes

Class Name IUPAC Predicted Name
Organic acid  Citramalic acid 2-hydroxy-2-methylbutanedioic acid Organic acid
Citric acid 2-hydroxypropane-1,2,3-tricarboxylic acid Organic acid
Fumaric acid (E)-but-2-enedioic acid Organic acid
Glycolic acid 2-hydroxyacetic acid Organic acid* and
Sugar
Maleic acid (2)-but-2-enedioic acid Organic acid
Malic acid 2-hydroxybutanedioic acid Organic acid
Malonic acid propanedioic acid Organic acid
Mandelic acid 2-hydroxy-2-phenylacetic acid Organic acid
Oxalic acid oxalic acid Organic acid
Oxamic acid oxamic acid Organic acid
Shikimic acid (3R4S,5R)-3,4,5-trihydroxycyclohexene-1-carboxylic acid No annotation
Succinic acid butanedioic acid Organic acid
Sugar Arabinose (25,3R4R)-2,3,4,5-tetrahydroxypentanal Sugar
Arabitol (2R4R)-pentane-1,2,3,4,5-pentol Sugar
Fructose (354R,5R)-2-(hydroxymethyl)oxane-2,3,4,5-tetrol Sugar
Galactose (3RA4S,5R 6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Sugar
Glucose (3RA4S,55,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Sugar
Inositol cyclohexane-1,2,3,4,5,6-hexol Sugar* and
Organic acid
Maltose (2R 35,4S,5R 6R)-2-(hydroxymethyl)-6-[(2R,35,4R,5R)-4,5,6-trihydrox y-2-(hydroxymethyl) Sugar
oxan-3-ylJoxyoxane-34,5-triol
Mannose (3545,55,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol (2R,3RA4S,55,6R)-2-[(25,35,4R 5R)-4- Sugar
hydroxy-2,5-bis(hydroxymethyl)
Melezitose -2-[(2R,3R4S,55,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-ylJox yoxolan-3-ylJoxy-6- Sugar
(hydroxymethyl)oxane-3,4,5-triol
Ribitol pentane-1,2,3,4,5-pentol Sugar
Ribose (3RA4S,5R)-5-(hydroxymethyl)oxolane-2,3,4-triol Sugar
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Table 2 43 out of 99 compounds included in the five classes (Continued)
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Sucrose (2R 3R4S,55,6R)-2-[(25,35,45,5R)-3,4-dihydroxy-2,5-bis(hydroxymet hyl)oxolan-2-ylloxy-6- Sugar
(hydroxymethyl)oxane-3,4,5-triol
Threitol (2R 3R)-butane-1,2,34-tetrol Sugar
Trehalose (2R 35,4S,5R 6R)-2-(hydroxymethyl)-6-[(2R,3R4S,55,6R)-3,4,5-trihyd roxy-6-(hydroxymethyl)  Sugar
oxan-2-ylJoxyoxane-3,4,5-triol

Xylose (25,3RAS,5R)-oxane-2,3,4,5-tetrol Sugar
Glycerol propane-1,2,3-triol Sugar

Sugar Ribulose-5-phosphate [(2R3R)-2,3,5-trihydroxy-4-oxopentyl] dihydrogen phosphate Sugar phosphate

phosphate

Amine Cadaverine pentane-1,5-diamine Amine
Dopamine 4-(2-aminoethyl)benzene-1,2-diol Amine
Isobutylamine 2-methylpropan-1-amine Amine
n-Butylamine butan-1-amine Amine
n-Propylamine propan-1-amine Amine
Putrescine butane-1,4-diamine Amine
Spermidine N*~(3-aminopropyl)butane-1,4-diamine No annotation
Spermine N,N*-bis(3-aminopropyl)butane-1,4-diamine No annotation
Tyramine 4-(2-aminoethyl)phenol Amine
Histamine 2-(1H-imidazol-5-yl)ethanamine Amine
Serotonin 3-(2-aminoethyl)-1H-indol-5-ol Amine
Tryptamine 2-(1H-indol-3-yl)ethanamine Amine

Fatty acid Heptadecanoic acid heptadecanoic acid Fatty acid
Octadecanoic acid octadecanoic acid Fatty acid

Table 2 shows 43 standard compounds classified to the five metabolite groups constituting the SIMCA method. Table 3 shows the remaining 56 standard
compounds. Table 2 and 3 also show the predicted name of each compound by the SIMCA algorithm. If a compound was classified into some groups, the
groups were fastened by “and”. The asterisk (*) indicates the group with higher p-value. If a compound was not classified into any groups, the predicted name
was described as “No annotation”.

Table 3 56 out of 99 compounds not included in the five classes

Class

Name

IUPAC

Predicted Name

Benzene

4-Aminobenzoic acid

Benzoic acid
o-Toluic acid

Phenylalanine

Tyrosine
Ferulic acid
Dopa

4-aminobenzoic acid

benzoic acid

2-methylbenzoate

(25)-2-amino-3-phenylpropanoic acid
(25)-2-amino-3-(4-hydroxyphenyl)propanoic acid
(B)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid
(25)-2-amino-3-(3,4-dihydroxyphenyl)propanoic acid

No annotation
No annotation
No annotation
No annotation
No annotation
No annotation
No annotation

Alpha-Keto acid

2-Oxoglutaric acid

2-oxopentanedioic acid

No annotation

Pyruvic acid 2-oxopropanoic acid Amine

Indole, Imidazole Histidine (25)-2-amino-3-(1H-imidazol-5-yl)propanoic acid No annotation
Histidinol 2-amino-3-(1H-imidazol-5-yl)propan-1-ol No annotation
Tryptophan (25)-2-amino-3-(1H-indol-3-yl)propanoic acid No annotation

Purine, Pyrimidine Adenine 7H-purin-6-amine No annotation
Caffeine 1,3,7-trimethylpurine-2,6-dione No annotation
Cytosine 6-amino-1H-pyrimidin-2-one No annotation
Guanine 2-amino-3,7-dihydropurin-6-one No annotation
Inosine 9-[(2R,3R4S,5R)-3 4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3H-p urin-6-one No annotation
Thymine 5-methyl-1H-pyrimidine-2,4-dione No annotation
Uracil TH-pyrimidine-2,4-dione No annotation
Xanthine 3,7-dihydropurine-2,6-dione No annotation
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Table 3 56 out of 99 compounds not included in the five classes (Continued)
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Amino acid 2-Aminobutyric acid 2-aminobutanoic acid No annotation
2-Aminoisobutyric acid 2-amino-2-methylpropanoic acid No annotation
4-Aminobutyric acid 4-aminobutanoic acid Amine
Alanine (25)-2-aminopropanoic acid No annotation
Allothreonine (25,35)-2-amino-3-hydroxybutanoic acid No annotation
Asparagine (29)-2,4-diamino-4-oxobutanoic acid No annotation
Aspartic acid (25)-2-aminobutanedioic acid No annotation
Citrulline (25)-2-amino-5-(carbamoylamino)pentanoic acid No annotation
Cysteine (2R)-2-amino-3-sulfanylpropanoic acid No annotation
Glutamic acid (25)-2-aminopentanedioic acid No annotation
Glutamine (25)-2,5-diamino-5-oxopentanoic acid No annotation
Glycine 2-aminoacetic acid Amine
Glycyl-glycine 2-[(2-aminoacetyl)amino]acetic acid No annotation
Homoserine 2-amino-4-hydroxybutanoic acid No annotation
Isoleucine (25,35)-2-amino-3-methylpentanoic acid No annotation
Leucine (25)-2-amino-4-methylpentanoic acid No annotation
Lysine (25)-2,6-diaminohexanoic acid No annotation
Methionine (25)-2-amino-4-methylsulfanylbutanoic acid No annotation
N-Acetyl-DL-valine 2-acetamido-3-methylbutanoic acid No annotation
Ornithine (25)-2,5-diaminopentanoic acid No annotation
Proline (25)-pyrrolidine-2-carboxylic acid No annotation
Sarcosine 2-(methylamino)acetic acid No annotation
Serine (25)-2-amino-3-hydroxypropanoic acid No annotation
Threonine (25,3R)-2-amino-3-hydroxybutanoic acid No annotation
Valine (25)-2-amino-3-methylbutanoic acid No annotation
B-Alanine 3-aminopropanoic acid No annotation

Other 2-Hydroxypyridine TH-pyridin-2-one No annotation

4-Hydroxypyridine
Phosphoric acid

TH-pyridin-4-one
phosphate

Kojic acid 5-hydroxy-2-(hydroxymethyl)pyran-4-one

Nicotinic acid pyridine-3-carboxylic acid

Quinic acid (3R,5R)-1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid
Propyleneglycol propane-1,2-diol

Creatinine 2-amino-3-methyl-4H-imidazol-5-one

Urea urea

Ascorbic acid

(2R)-2-[(15)-1,2-dihydroxyethyl]-4,5-dihydroxyfuran-3-one

No annotation
Sugar phosphate
No annotation
No annotation
No annotation
No annotation
No annotation
Organic acid

No annotation

The detail is shown in Table 2.

s1o denotes the interclass residual when Class 1
objects were projected into the PC space of Class 2. r,
and m; represent the factor number of Class 2 and the
number of training objects for Class 1, respectively. It
should be noted that the interclass residual of Class 1
described by Class 2 space was different from that of
Class 2 described by Class 1 space (sj» # s»1). For this
reason, we used an interclass distance D, as the dis-
tance between class models, and the values larger than
one indicate real differences [20]. Higher distances indi-
cate that models are more independent of one another.
If two models are not independent, the interclass dis-
tance is close to zero. Table 4 shows the interclass

distance, PC number, and the important m/z used in
the SIMCA model. The classes were largely independent
of one another. In addition, because only one PC was
used as the latent variable for all metabolite groups, the
model should be robust and less over-fitted. In the cross
validation, the misclassifications were nothing (Table 5).
This result shows that a good model can be constructed
for annotating metabolites from mass spectra.

Identification and annotation accuracies by the standard-
mix experiment

Table 6 shows the result of peak identification by Man-
ual, ChromaTOF software, and the Aloutput software,
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respectively. Our system required only two minutes for
analyzing the CSV-format file, and all 99 compounds in
15 samples were unmistakably identified. Several amino
acids generate two peaks due to different degrees of sily-
lation at primary amines, and sugars generate several
peaks due to their geometric isomers derived from in
the oxime reaction [32-34]. Such peaks were also identi-
fied accurately. Although there were the ten false posi-
tives, some of these false positive might have been
generated by additional reactions in the derivatization
process and by the pyrolysis reaction in the front inlet
and capillary column [33,34]. The formation of TMS-

pyroglutamate from TMS-glutamate is a characteristic
example of an additional reaction in the derivatization
process [34]. Moreover, we also confirmed the accuracy
of annotation algorithm (see Table 2 and 3). Some com-
pounds of organic acid and sugar groups were classified
into two groups. Although the organic acid and sugar
groups were relatively similar as shown in Figure 1 and
Table 4, the end result by p-value was correct. Some
compounds including an amino functional group were
classified to amine group. Despite some misclassifica-
tions, however, the result suggests that our annotation
algorism is acceptable because the mass fragmentation
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Table 4 Interclass distance resulting from SIMCA
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Class name Sugar phosphate Organic acid Sugar Amine Fatty acid PC number Important m/z
Sugar phosphate 0.00 121 1.05 1.85 1.79 1 89, 147, 217, 299
Organic acid 1.21 0.00 146 381 438 1 101, 133, 147
Sugar 1.05 146 0.00 2.72 253 1 89, 103, 147, 217
Amine 1.85 3.81 2.72 0.00 432 1 86, 100, 174

Fatty acid 1.79 4.38 2.53 432 0.00 1 117, 129, 132, 145

We used only one PC for all groups in order to make a robust model without over-fit. A distance close to zero indicates that the two classes are virtually
identical, and the value above 1.0 indicates real differences. The important m/z contributed to a model was indicated, and the most important m/z was shown by

bold type.

Table 5 Cross validation of SIMCA model

Actuals phosphate Organic Sugar Amine Fatty
\Prediction Sugar acid acid
Sugar 10 0 0 0 0
phosphate

Organic acid 0 12 0 0 0
Sugar 0 0 12 0 0
Amine 0 0 0 13 0
Fatty acid 0 0 0 0 9

Cross validation was automatically performed by Pirouetto 4.0 software
(InfoMetrix).

Table 6 Peak identification results by manual,
ChromaTOF and the Aloutput software

Analysis time  False negatives  False positives

Manual 39+ 15h 12+6 542
ChromaTOF 20 sec 70 5
Aloutput 2 min 0 10

Manual analysis was performed by six skilled people in our laboratory.
ChromaTOF software identified the compounds based on the NIST library. The
Aloutput software identified compounds based on our reference library.

is not always dependent to the functional groups. In the
fragmentation pattern, pyruvic acid, phosphoric acid,
and urea have m/z 174, m/z 299, and m/z 147 as high
intensity mass, respectively. Spermidine and spermine
have the unique mass fragmentation patterns different
in amine group (See additional file 2).

System evaluation by the data re-analysis

We re-analyzed the published data in order to show the
utility of our system. The biological samples used were
Japanese green teas that had been ranked in an agricul-
tural fair [5]. Our system recognized 231 peaks in these
chromatograms, and offered an organized data matrix
without any missing values (See additional file 7). Out
of 231 peaks, 112 were matched with compounds from
our reference library, and 83 peaks were classified into a
predicted metabolite groups; organic acid, sugar, sugar
phosphate, amine, and fatty acid groups included 56, 18,
3, 6 and 0 peaks, respectively. We applied the organized
data matrix to PCA (Figure 2). Figure 2a and 2b repre-
sent the PCA score plots from the data matrix obtained
by the previous analysis [5] and the new analysis,
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Figure 2 Result comparison. (a) The PCA score plot made by our previous method. (b) The PCA score plot made by our new system. The
legend shows the ranking of the Japanese green tea samples. The variations in each group were relatively small, and each tea grade was clearly
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respectively. Our new system produced better classifica-
tion, and the second PC space closely correlated with
tea grades. Moreover, the required time for data proces-
sing was about 30 min.

Because the second PC correlated with tea quality, we
examined the loading of the second PC (data not shown).
In addition to some identified metabolites, two annotated
metabolites (Figure 3a and 3b) positively contributed to
the second PC, and one annotated metabolite (Figure 3c)
contributed negatively (we also confirmed the mass spec-
tra of these annotated peaks by manual). The amounts of
three metabolites clearly differed among tea grades. Note
here that the second PC was insensitive to the analytical
order because the tea samples had been randomly ana-
lyzed by GC-TOF/MS, also note that ribitol could be reli-
ably used as the internal standard (Figure 3d). Of these
three annotated peaks, we identified one metabolite as

Page 11 of 13

xylonic acid by our additional investigation (Figure 4).
Xylonic acid is a minor sugar acid, and this is new insight
into Japanese green tea. We also examined standard
compounds of xylitol and xylose in order to confirm
whether xylonic acid was generated from these com-
pounds because of additional reaction in the derivatiza-
tion process (data not shown).

Conclusion

The purpose of metabolomics is a comprehensive analy-
sis of metabolites in biological samples. GC-TOF/MS
offers highly reproducible information on primary meta-
bolites. Our new data analysis tool provided the useful
metabolite information and the organized data matrix
accurately and rapidly. The system identified com-
pounds by a retention time correction based on pseudo-
internal standard and a relaxed mass fitting without
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Figure 3 Annotated peaks information. (a), (b), () The peak height of three important metabolites for describing the tea grade in the second
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their annotated names and their respective retention times. These three peaks clearly varied with tea quality.
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Figure 4 Xylonic acid mass spectra. (a) Mass spectra of an
annotated metabolite in a Japanese green tea sample. This
metabolite is the same as Fig. 3a. (b) Xylonic acid mass spectra.

requiring complicated sample preparation procedures,
such as density control. This system can be also used to
re-analyze past data if the reference library is provided.
As shown by the re-analysis of our published data, novel
knowledge about Japanese green tea research is available
for quality evaluation and prediction in food science.
Our study suggests that researchers can achieve high-
quality GC/MS-based metabolomics relatively easily.
However, GC-TOF/MS is comparatively expensive;
therefore, we are working to develop a similar system
for GC-Q/MS, which is considerably less expensive.
Moreover, this method will be also used to develop the
“Known” and “Known unknown” metabolite library
database for non-targeted metabolomics analysis.

Additional material

Additional file 1: Main program of the system. Excel file including the
source program for peak identification and annotation.

Additional file 2: Example reference library. Excel file of an example
reference library used in the main program.

Additional file 3: SIMCA model book. Excel file for SIMCA method
used in the main program.

Additional file 4: Manual. The manual for using our system.

Additional file 5: Example raw data. Example of a raw data file in
standard mixture experiment.

Additional file 6: Example CSV file. Example of a CSV file from
MetAlign.

Additional file 7: Example peak table. Example of the peak table
exported from the system.
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