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Abstract

Background: The protein folding problem remains one of the most challenging open problems in
computational biology. Simplified models in terms of lattice structure and energy function have
been proposed to ease the computational hardness of this optimization problem. Heuristic search
algorithms and constraint programming are two common techniques to approach this problem.
The present study introduces a novel hybrid approach to simulate the protein folding problem
using constraint programming technique integrated within local search.

Results: Using the face-centered-cubic lattice model and 20 amino acid pairwise interactions
energy function for the protein folding problem, a constraint programming technique has been
applied to generate the neighbourhood conformations that are to be used in generic local search
procedure. Experiments have been conducted for a few small and medium sized proteins. Results
have been compared with both pure constraint programming approach and local search using well-
established local move set. Substantial improvements have been observed in terms of final energy
values within acceptable runtime using the hybrid approach.

Conclusion: Constraint programming approaches usually provide optimal results but become
slow as the problem size grows. Local search approaches are usually faster but do not guarantee
optimal solutions and tend to stuck in local minima. The encouraging results obtained on the small
proteins show that these two approaches can be combined efficiently to obtain better quality
solutions within acceptable time. It also encourages future researchers on adopting hybrid
techniques to solve other hard optimization problems.

Background
A protein folds into a state of minimum free energy
called its native state or tertiary structure. As presented in
[1], this folded tertiary structure can be predicted from

the sequence of component amino acids known as the
primary structure. Knowledge of final 3D structure of
proteins helps to design drugs and detect structural
differences due to misfolding; therefore, crucial to
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pharmacology and medical science. The general principle
by which a natural protein folds and efficient prediction
of its tertiary structure remain the most challenging
problems in computational biology.

This mystery has stimulated researchers to protein
folding simulations by using reliable and faster compu-
tational techniques. Various simplified models have
been proposed in terms of lattice structure and energy
function to ease the computational complexity of this
hard problem. The prevailing strategy to solve protein
folding problem has been to determine a placement of
the amino acids in 3D space that results in the minimum
energy structure. Energy function has been modeled that
captures the idea of assigning energy between pairs of
amino acids placed within a certain distance. Even with
the simplest of Hydrophobic-Polar (HP) energy function
and discrete rectangular lattice model (i.e., HP model
[2]), the problem is shown NP-Complete [3]. The
problem is also shown NP-hard for HP-like models on
generalized lattices [4].

Effectively the protein folding problem reduces to an
optimization problem where the energy function has to
be minimized under a set of constraints. Consequently,
one can resort to Constraint Programming (CP) and
stochastic Local Search (LS) algorithms to tackle this
problem. Both techniques are commonly used to
approach hard optimization problems.

Local search methods generate solutions in polynomial
time by doing a clever sampling in the search space of
exponential size. The major drawback is that it can not
guarantee optimal solutions in polynomial time since
the search space is randomly explored and it often tends
to get stuck in local optima. Previous approaches using
local search methods for protein folding simulation
include Tabu Search [5,6], Simulated Annealing [7] and
Population-based Local Search Method [8]. The main
advantage of using local search methods is that they can
quickly converge to better quality solutions, if not
optimal, when efficient neighbourhood functions are
employed.

Nevertheless, the uncertainty of stochastic search algo-
rithms leads researchers to model and solve the problem
using constraint programming. Yue and Dill [9] first
presented a solution algorithm, called the Constraint-
based Hydrophobic Core Construction (CHCC) method
having faster runtime and claimed to give optimal
solution. Later, Backofen & Will [10,11] made use of
constraints over finite domains in both rectangular and
Face-Centered Cubic (FCC) lattice using HP energy
function. A Constraint-based Protein Structure Prediction
(CPSP) tool was introduced, based on their method,

which can predict the optimal structure of proteins
having length up to 160 on FCC lattice in very short time
[12]. Nevertheless, their approach is computationally
intractable for more elaborate energy functions such as a
20 amino acid pairwise interaction energy function
[13,14]. A Two-Stage Optimization approach was pro-
posed later in [15] which uses CPSP tool to provide
initial structure for local search procedure on FCC lattice
and elaborate energy function. The two-stage optimiza-
tion approach was reported to outperform simulated
annealing-based local search procedure alone.

A better application of CP technique to protein folding is
to encode the problem directly under constraint pro-
gramming model and to search for the minimum energy
structure. Palu et al. [16] showed heuristic approaches to
protein folding problem using Constraint Logic Program-
ming over finite domains (CLP(FD)). Despite satisfactory
performances on small/medium sized instances, it was
proved ineffective in scaling to larger instances of the
problem [17]. Later, they developed a solver that can
model the protein folding as a Constraint Satisfaction
Problem (CSP) on 3D lattices and produced acceptable
quality solutions for larger proteins [18]. In general, CP
techniques guarantee to provide optimal solutions if the
problem is modeled correctly. But as the solution space
grows exponentially according to the problem size, the
exponentially-increasing execution time is always a huge
concern.

In this paper we combine local search and constraint
programming approaches aiming the expected outcome
of better quality solutions in acceptable execution time.
We introduce a protein folding simulation procedure on
FCC lattice that employs a CSP solver to generate
neighbourhood states for a simulated annealing-based
local search method. We use 20 amino acid pairwise
interaction energy function introduced in [14]. The
choice of the FCC lattice is motivated by the fact that it
was shown to yield very good approximations of real
protein structures [19]. Also it does not suffer from the
bipartiteness of the cubic lattice, which allows interac-
tions only between amino acids of opposite parity in the
sequence. The hybrid approach introduced in this paper,
produces considerably better solutions than pure con-
straint programming approach within practically feasible
time-limit. It also produces better solutions within
comparable time than those produced by local search
employing well-established neighbourhood function.

Results and discussion
This section reports the results obtained from running a
collection of experiments using hybrid approach, pure
constraint programming approach, pure local search
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approach and two-stage optimization approach (see Back-
ground Section). Preliminary tests are performed on 3
smaller proteins (namely 4RXN, 1ENH, 4PTI) to tune
(“learn”) the various paramaeters. These parameters are
then used to carry out the experiments on a larger set of
proteins having length ranging from 54 to 74 including the
learning set(the same used in [15]). The first column of
each table contains official id of the protein assigned in the
protein data bank (PDB) [20]. Since we completely omit the
secondary structure information of the protein when
solving the problem, these results are not comparable to
those using secondary structure information (eg. [16-18]).
All of the experiments have been performed on an Intel(R)
Xeon(R) CPU E5440 at 2.83 GHz with 32 GBmemory. The
operating system is Linux CentOS and the compiler is gcc
v.4.1.2 with the expensive optimization flags enabled.
Since the selection of neighbourhood space is randomly
guided in hybrid approach, different runs may lead to
different solutions. So we executed 10 runs with the hybrid
approach for each protein and report the results obtained
on the best run. The number of iterations is set to 2000 for
each LSA run in hybrid approach.

Hybrid approach and pure CP approach
For each protein we executed 2 runs with the pure CP
approach, one with complete enumeration search and
another with bounded block fail (BBF) heuristic search. In
Table 1, we report the search time and the final (best)
energy value reached for each protein and compare them
with the results from hybrid approach. The second
column (N) denotes the number of amino acids in the

protein. The ‘Enumeration’ column presents the best
energy found using a complete exploration of search tree
within the time limit. The ‘BBF’ column presents the
same information using the BBF heuristic. Note that, for
BBF heuristic the block size is set to 5 and the number of
allowed failures for each block is set to 20. These
parameters are explained in [18]. Finally the ‘Hybrid’
column shows the best energy found and the runtime
after completing 2000 iterations using hybrid approach.

The energy values found with the hybrid approach are
significantly better than the ones found with the pure CP
approach in much lesser time. It was observed from our
experiment that the time required for pure CP search to
find the next best solutions from the current best ones
are quite large, because of the fact that the search space is
too big to explore and the search diverges. Even with the
BBF heuristic, the performance is discouraging. On the
other hand, we observed regular improvements in energy
values during the SA run in hybrid approach.

Hybrid approach and local search
For each protein sequence we performed 10 independent
simulated annealing-based local search runs starting with
random initial structures. Then we performed 10 inde-
pendent runs for the two-stage optimization approach
outlined in [15]. The number of iterations for the local
search stages were set to 1,500,000. We used pull move sets
[6] as neighbourhood functions for the local search,
which were shown to be very efficient for protein folding
simulation [5,6]. In Table 2, we compare search time and

Table 1: Results: Comparison With Pure CP

Enumeration BBF heuristic Hybrid

Id N Energy Time(limit) Energy Time(limit) Energy Time

4RXN 54 -14.52 5 h -41.21 5 h -168.076 1 h 19 m
1ENH 54 -24.058 5 h -41.854 5 h -157.062 1 h 16 m
4PTI 58 -22.811 5 h -52.775 5 h -213.778 1 h 30 m
2IGD 61 -19.598 5 h -47.589 5 h -186.696 1 h 13 m
1YPA 64 -22.831 5 h -61.464 5 h -258.709 1 h 08 m
1R69 69 -20.716 5 h -57.491 5 h -222.317 43 m
1CTF 74 -21.503 5 h -30.697 5 h -233.764 1 h 56 m

Table 2: Results: Comparison With Local Search

LSA Two-stage Hybrid

Id Energy Energy Time Energy Time

4RXN -165.401 -167.781 10 m 51 s -168.076 1 h 05 m
1ENH -152.747 -153.098 2 m 33 s -157.062 1 h 02 m
4PTI -215.698 -212.500 6 m 21 s -213.778 1 h 20 m
2IGD -180.893 -183.205 2 m 37 s -186.696 55 m
1YPA -256.017 -257.81 16 m 54 s -258.709 42 m
1R69 -215.166 -219.402 14 m 42 s -222.317 35 m
1CTF -228.921 -233.86 11 m 12 s -233.764 1 h 36 m
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best energy value results from various approaches. The
‘LSA’ column presents the best energy value found using
pure logarithmic simulated annealing procedure. The
‘Two-stage’ and ‘Hybrid’ columns present the best energy
value and the time to reach this state using two-stage
optimization approach and hybrid approach respectively.
Note that, ‘Hybrid-Time’column in Table 2 reports the
minimum runtime to reach the best energy value, whereas
‘Hybrid-Time’column in Table 1 reports the total runtime
to complete 2000 iterations.

One can observe that the energy values found with the
two-stage optimization are generally better than pure
local search whereas hybrid approach gives better energy
values than two-stage optimization. It was reported in
[15] that two-stage optimization generally reaches better
solutions in fewer number of iterations than local search
alone. Therefore we compared the runtime of hybrid
approach with two-stage optimization only. We can see
that, hybrid approach produces better final energy values
than two-stage optimization but takes longer time to do
so. The reason is explained in Methods Section. Still the
runtime of hybrid approach is within acceptable range
given the quality of the solution it generates.

Conclusion
The purpose of our present work was to demonstrate that
protein folding problem on FCC lattice with elaborate
energy functions can be approached by hybrid use of
constraint programming and local search; and by making
the best use of both techniques, hybrid approach can
outperform the only use of constraint programming and
local search, in terms of quality of solutions and execution
time. We first modeled a basic protein folding problem on
FCC lattice with 20 amino acids pairwise interaction energy
function into the constraint programming framework of
COLA solver. Then we integrated this CP model with a
simulated annealing-based local search in such a way that
the COLA solver can provide random neighbourhood
states. We kept the modeling as simple as possible by using
an easy definition of contact distance and allowing all
possible angles on FCC lattice. Our tests confirmed that the
hybridization of these techniques generates siginificantly
better solution with better execution time than the pure
constraint programming model. Our tests also showed that
hybrid approach results in better solution compared to
simulated annealing with pull move set but it takes longer
execution time.

We need to work on refining the parameters reported in
Table 3 that control the search space and execution time.
It was found out during the preliminary tests that only
use of the shorter subchain length (eg. l = 6) quickly
leads to solutions slightly worse than those reported in
Table 2. But the process then got stuck into local minima

and longer l had to be chosen in order to escape from
there increasing the runtime considerably. We can look
for better escape strategies that will not contribute
significantly to the execution time.

Nevertheless, based on the encouraging results we obtained
from simple modeling, we can conclude that hybrid
approach would be a good idea to attack the protein
folding problem for more realistic models. Tertiary
structures often contain local 3D rigid conformations
known as secondary structure (eg. a-helices, b-sheets). We
can use these secondary structure information in order to
predict more realistic conformations since the contact
based energy function is not sufficient enough to reproduce
local arrangements such as helices and/or sheets. Using
secondary structure information, obtained through neural
network prediction, not only helps to predict realistic
tertiary structures but also improves the execution time
significantly by over-constraining the problem. We can also
include additional constraints derived from known chemi-
cal and physical properties [21] to speed-up execution. As
future work, we plan to incorporate these constraints to our
hybrid approach aiming to get four distinct targets. Firstly,
we will get more realistic final conformations. Secondly, we
will get it in lesser execution time. Thirdly, we will predict
larger instances of proteins. Finally, we can compare the
effectiveness of our approach over existing COLA imple-
metation of [18]

Last but not least, the idea of modeling a problem in
constraint programming framework and then using it in
a local search algorithm as neighbourhood function can
be an interesting approach to solve other hard combi-
natorial optimization problems. Almost all optimization
problems in biology are NP-hard and many real
problems have beautiful natural combinatorial formula-
tions. The application of hybrid approach can be useful
in this particular context.

Methods
The protein folding problem
The primary structure of a protein is comprised of a
sequence of n amino acids, i.e., s = {s1, ..., sn} where each

Table 3: Parameter Settings. Combination of parameters used
during CSP solving part in each iteration of local search. l denotes
the length of subchain selected for perturbation, b denotes the
domain dilation parameter and P (l) denotes the probability of
selecting length l

l b P (l)

7 3 0.5
9 2 0.3
11 1 0.15
13 1 0.5
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si Œ A . A is the alphabet of amino acids and |A | = 20.
Given a lattice model L, the 3D conformation of protein
is the assignment of amino acids in the lattice points
such that adjacent positions of s remain adjacent in the
lattice and no two amino acids overlap. The protein
tends to reach a 3D conformation with minimum free
energy, which is called its tertiary structure. One idea of
determining the free energy associated with a particular
conformation is to assign energy to pairs of amino acids
on the lattice within a predefined distance (formalized as
contacts) and then summing all up. The objective of the
protein folding problem is to determine the 3D
conformation from primary structure such that the free
energy is minimized.

Lattice and energy model
The domain of FCC lattice consists of points (x, y, z) Œ ℤ
such that x + y + z is even. Two FCC points Pi(xi, yi, zi) and
Pj(xj, yj, zj) are adjacent if and only if |xi - xj| ≤ 1, |yi - yj| ≤ 1,
|zi - zj| ≤ 1 and |xi - xj| + |yi - yj| + |zi - zj| = 2. Each FCC lattice
point is adjacent to 12 neighbouring points and three
consecutive adjacent points forms one of these four angles
60°, 90°, 120°, 180°. Observe that, for lattice units, it
holds that |xi - xj| + |yi - yj| + |zi - zj| = 2. Two amino acids si
and sj in lattice positions Pi and Pj, respectively, are said to
be in contact, i.e., contact(Pi, Pj), if and only if they are not
adjacent in the primary sequence, i.e., |i - j| > 1 and |xi - xj| +
|yi - yj| + |zi - zj| = 2.

In [14], the authors developed table of empirical contact
potential that points out the energy contributions
associated to pairs of amino acids si and sj in contact,
described by the commutative function energy(si, sj).
These contributions are developed from statistical
methods applied to structures obtained from X-rays
and NMR experiments.

Mathematical formalization
Given the amino acid sequence s, a conformation j of s in
FCC lattice is an injective function j: {1... n} Æ L such
that j (si) and �(si+1) are adjacent for i = 1... n - 1 and
j(si) ≠ j(sj) for i ≠ j to avoid overlapping.

The protein folding problem can then be formalized as an
optimization problem for finding the conformation j of
s such that the following energy function is minimized:

E contact s s energy s si j i j

j i

n

i

n

( ) ( ( ), ( )) ( , ).φ φ φ= ⋅
= +=

−

∑∑
21

1

(1)

CP framework
Modeling the protein folding problem on FCC lattice
leads to the following structural constraints.

• adjacent property: Adjacent amino acids in the
primary sequence are mapped to adjacent lattice
points. For each i Œ {1... n - 1}, |xi - xi+1| + |yi - yi+1| +
|zi - zi+1| = 2
• non-overlap property: Two non-adjacent amino
acids in the primary sequence must not occupy the
same lattice point and must be separated by at least
one lattice unit. For each i, j Œ {1... n} and |i - j| > 1,
|xi - xj| + |yi -yj| + |zi - zj| ≥ 2

The protein folding problem is effectively a Constraint
Satisfaction Problem (CSP) defined by the constraints
above with an objective energy function (Equation 1) to
be minimized. Authors in [16,18] added some extra
constraints to disallow angles of 60° and 180° for three
consecutive amino acids. Also their definition of contact
distance is somewhat different from us. This study is,
however, intended to measure the effectiveness of hybrid
approach over local search and pure constraint program-
ming approaches. Protein folding simulation results
have been reported in the literature with local search
using efficient neighbourhood function that allows all
the possible angles for three consecutive amino acids in
FCC lattice [6,15]. These definition of angles and contact
distance are used in our work in order to make valid
comparisons.

COLA solver
COLA is an ad-hoc constraint solver on discrete
3-dimentional crystal lattices developed by Palu et al.
[18]. The solver allows user to define lattice variables
with associated domains, constraints over them and to
search the space of admissible solutions.

Given a sequence s and lattice L, the lattice variable Vi

represents the lattice point (xi, yi, zi) of amino acid si.
A domain D is described by a pair of points (D, D ),
where D= (Dx, Dy, Dz) Œ ℤ and D D D Dx y z= ∈( , , ) Z . D
implicitly defines a box:

Box D x y z x D y D z Dx x y y z z( ) {( , , ) | , , }= ∈ ≤ ≤ ≤ ≤ ≤ ≤L D D D

Each variable V is associated to a domain DVdescribed by
a pair of points (DV, DV ). V is admissible if Box(DV) ≠ F.
V is ground if it is admissible and DV = DV .

A set of primitive binary constraints is defined in the
form of C(Vi, Vj, d) over two variables Vi and Vj, based on
spatial distances d Œ N. A CSP on the variables V1, ..., Vn

with domains D DV Vn1 , ,… is a set of constraints of
above-mentioned forms. A solution of the CSP is an
assignment of lattice points to the variables V1, ..., Vn

within corresponding domains and satisfying all the
binary constraints.
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The solver is modeled in a way that separates constrain
phase from search phase, thereby not allowing addition
of new variables or constraints during search phase. The
solver uses a combination of consistency techniques and
systematic search to guide the solving process. Standard
backtracking+propagation search procedure [22] is imple-
mented to explore the search tree efficiently. The detailed
description on COLA solver can be found in [18].

LS framework
Simulated annealing (SA) was introduced as an optimiza-
tion tool independently in [23,24]; see also [25]. The
underlying algorithm acts within a solution space in
accordance with a specific neighbourhood structure,
where the transition steps are controlled by the objective
function. The solution space for the protein folding
problem consists of all the possible self-avoiding walks
(SAW) on the FCC lattice. The objective function to be
minimized here is given by the Equation 1. A logarithmic
cooling schedule is employed which was shown in [26]
to converge to optimal solutions. In the context of local
search methods, it is important to employ an efficient
neighbourhood function that determines the overall
performance in terms of run-time and final energy value.
We use CP technique described in CP framework Section
to generate the neighbourhood for LS.

CP as neighbourhood generator for LS
A CSP can be built for a given protein sequence that
enumerates all conformations satisfying structural con-
straints of protein in a given lattice. The procedure is
basically an exploration of exponentially large search
tree. With the most efficient propagation+backtracking
technique, such an enumeration requires huge amount
of time even for the medium sized instance. The size of
the solution space for the protein folding problem is the
number of self-avoiding walks on the FCC lattice that
can be approximated by the formula (see [27]).

SAW Nfcc
N= 1 2 10 03640 162. * *( . ). (2)

Without the presence of additional constraints (eg.
secondary structure information, not allowing certain
angles in the folding etc. [16,18]), exploring this
exponential search tree for the best energy value is
infeasible.

Instead of exploring the complete search tree, we
propose to explore a small part of it at a time and use
this information for the next step. In each iteration of a
standard local search procedure, the CSP solver is asked
to enumerate all the possible neighbours of the current
conformations by keeping certain parts (variables) of it
fixed to its current lattice positions and allowing a small

part to change their positions. The best neighbouring
conformation found this way will be used for the next
iteration.

We denote small parts of the protein sequence as
subchains for the rest of the discussion. The Logarithmic
simulated annealing (LSA) procedure starts with an initial
conformation, i.e., all lattice variables [V1, ..., Vn] are
ground. Then in each iteration of LSA, a CSP solver
generates random neighbourhood in the following way:

Step 1. Randomly select a lattice variable Vi.

Step 2. Randomly select the length of the subchain l Œ
{7, 9, 11, 13} to be perturbed.

Step 3. Keep the two parts of the conformation
unchanged, namely lattice variable sets [V1, ... Vi] and
Vi+l+1... Vn. These variables remain fixed (ground) to their
current values.

Step 4. For each variable Vj with lattice point (xj, yj, zj) in
the subchain [Vi+1, ... vi+l], we redefine the domains

D DV V Vj j j= ( , )D as follows: DV
j j j

j x b y b z b= − − −( , , )

and D x b y b z bV
j j j

j = + + +( , , ) .

Here 1 ≤ b ≤ 3 is the domain dilation parameter which
controls the size of the domain.

Step 5. Let CSP solver enumerate all the conformations
based on current variable and domain definitions. Select
the conformation with minimum energy.

In short, given a protein sequence and its current
conformation having certain parts fixed, we ask CSP to
find all the possible conformations by altering the
remaining part of the conformation and also not
changing the current conformation too much. The
convergence of the solution towards lower energy
state depends on the efficiency of the local search
procedure (i.e., cooling schedule) employed and careful
choice of subchain length (l) and domain dilation (b)
parameters.

The choice of initial conformation is particularly
important for our approach. It is not only recom-
mended, but also absolutely necessary to start with a
somewhat random “compact” structure irrespective of
the energy value. At the initial stage of the search, the
compact structure allows CSP solver to generate “good”
neighbourhood conformations that help local search
algorithm to converge quickly to conformations with
lower energy. Otherwise, if we start with a “flat” initial
conformation like a straight sheet-like structure, it take
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ages for local search to get to even moderately compact
structure. Since the purpose of CSP solver is to rearrange
a small subchain within a bounded box (defined by the
domains of the corresponding variables), the shape of
the box directly effects the possible number of rearrange-
ments, i.e., the number of self avoiding walks within the
box with two fixed end-points. It is observed that, for a
curve-like subchain structure, the number of SAW’s are
higher, whereas for a sheet-like subchain structure, the
number of SAW’s are lower. Therefore, in our imple-
mentation of local search, the initialization procedure
generates a compact initial conformation by iterating the
following steps as long as amino acids are available to be
placed.

Step 1. Apply consecutive forward-left and forward-right
move for 5 times.

Step 2. Go up by applying consecutive left-up and right-
up move once.

Step 3. Apply consecutive backward-right and backward-
left move for 5 times.

Step 4. Go up by applying consecutive left-up and right-
up move once again.

Figure 1(a) illustrates such an initial conformation for a
protein having length of 54. Figure 1(b-c) shows the
conformations obtained from two consecutive hybrid
local search iterations using this initial conformation.
Figure 1(d) depicts the final conformation.

Modification to COLA
COLA is a public-domain solver available for download
in [28]. It contains the implementation of protein
folding problem on FCC lattice with additional con-
straints and different notions of contact distance as
mentioned earlier. For the sake of our study, we remove
those additional constraints and modify the contact
definition as well. The major part of modification,
though, has to be done in the search procedure. In the
original implementation, the search procedure starts
with the leftmost variable with all the variables non-
ground and not labeled. The search continues by
assigning values to variables (labeling) one after another
according to one of the two variable selection strategies
(leftmost or first-fail) employing standard combination of
consistency checking and propagation techniques. Once
all the variables are labeled after n level of branching, the
search backtracks to the last modified variables and
assign new values to it (if available). This way the whole
search space is explored systematically. In our case, most
of the variables (n -l) are set ground at the beginning of

search and the l non-ground variables are assigned new
domains. Therefore we modify the search procedure to
make it start from the leftmost non-ground variable and
continue the process till the rightmost non-ground
variable using leftmost variable selection strategy that
explores only l level of branching. While bounded block
fails (BBF) heuristic for solution searching over the whole
solution space is more efficient [18], a complete
enumeration is found to be more appropriate for our
purpose, since we have to deal with only a small block of
variables during each search phase. For the same reason,
the choice of variable selection strategy is immaterial
too. Therefore, we implement leftmost variable selection
strategy with complete enumeration of search tree for
our approach.

This modified search procedure is integrated into LSA to
work as neighbourhood generator as described in CP as
neighbourhood generator for LS Section. The choice of
the range for subchain length, l is purely empirical. It is
observed that CSP performs well with the smaller choice
of l and tends to give better solution in shorter time than
with longer l. On the other hand, though longer l results
in increasing search time, they are vital for allowing local
search to escape from local minima at times. Therefore,
when selecting the length of the subchain to be altered,
randomness is skewed in such a manner that shorter l are

Figure 1
Conformations for 1ENH. (a) Initial conformation with
energy value -0.885 (b) Conformation with energy value -
19.154 after first iteration (c) Conformation with energy
value -29.006 after second iteration (d) Final conformation
with energy value -157.062 after 2000 iterations. The circles
represent the amino acids. The red circles in (b) and (c)
represent the subchain perturbed during the local search
iteration.
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selected more than longer l. Since the choice of l and b
directly effects the size of the search space (in effect
runtime), we empirically find the acceptable combina-
tion of l, b and distribution of l (P (l)) that significantly
speed-up the CSP solving phase (see Table 3).

The precise mathematical anaylsis for calculating the size
of the search space explored by hybrid approach is
complex and yet to be explained by us. It could be
explained best by finding the number of self avoiding
walks within a bounded box on FCC lattice when two
end-points are fixed, which is a complex problem itself
and deserves attention from mathematicians. In general,
the upper bound of the search space in each iteration of
the hybrid local search algorithm is close to a number
10l. l is the length of the subchain to be perturbed and
the number of effective neighbouring positions for a
given variable are approximated by 10. The tuning of
parameters l and P (l) allows us to restrict the search
space from a number close to 10n (see Equation 2) to a
number close to Ih* 108.5 where Ih is the number of
iterations used for hybrid LSA procedure. The introduc-
tion of domain dilation parameter b further reduces the
search space by reducing the effective neighbouring
positions to a number less than 10. It explains why
hybrid approach gains significant speed-up over pure CP
approach. The runtime difference between pure simu-
lated annealing and hybrid simulated annealing can be
explained similarly by the fact that pure simulated
annealing explores a smaller search space of size Ils,
where Ils is the number of maximum iterations used in
the algorithm.
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