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Abstract

cell types.

Background: It has been long well known that genes do not act alone; rather groups of genes act in consort
during a biological process. Consequently, the expression levels of genes are dependent on each other.
Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With
the advent of microarray technology, newer computational techniques to detect such interaction or association
between gene expressions are being proposed which lead to an association network. While most microarray
analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how
entire association network structures change between two or more biological settings, say normal versus diseased

Results: We provide a recipe for conducting a differential analysis of networks constructed from microarray data
under two experimental settings. At the core of our approach lies a connectivity score that represents the strength
of genetic association or interaction between two genes. We use this score to propose formal statistical tests for
each of following queries: (i) whether the overall modular structures of the two networks are different, (i) whether
the connectivity of a particular set of “interesting genes” has changed between the two networks, and (iii) whether
the connectivity of a given single gene has changed between the two networks. A number of examples of this
score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks
based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning
parameters, our method works well on simulated data. We also analyze a real data set involving normal versus
heavy mice and identify an interesting set of genes that may play key roles in obesity.

Conclusions: Examining changes in network structure can provide valuable information about the underlying
biochemical pathways. Differential network analysis with appropriate connectivity scores is a useful tool in
exploring changes in network structures under different biological conditions. An R package of our tests can be
downloaded from the supplementary website http://www.somnathdatta.org/Supp/DNA.

Background

Construction of biological networks (gene-gene, protein-
protein, gene-protein, etc.) has been of considerable
interest amongst computational biologists as is evident
by a fast growing literature [1]. Often, network con-
struction via computational methods is considered to be
a faster and more viable alternative to experimental
methods, especially, for high throughput studies. It can
be argued that, in many genomic studies, it is of even
greater interest to see how the network of connected
gene pairs change from one experimental condition to
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another since such changes may offer an important clue
regarding an underlying biological process such as iden-
tification of pathways that correspond to such a change.

Whereas a variety of network construction methods
now exist, methodologies for a differential network ana-
lysis are few and far between. It is therefore the purpose
of this paper to introduce a formal statistical methodol-
ogy to detect significant changes in two biological net-
works. We describe and study our methods in the
context of gene-gene interaction networks although it is
conceivable that the methods can be easily adapted to
other types of biological networks. Specifically, we are
interested in statistical tests for answering the following
questions related to networks constructed using the
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same set of genes under two experimental conditions:
(i) whether the overall modular structures of the two
networks are different, (ii) whether the connectivity of a
particular set of “interesting genes” has changed between
the two networks, and (iii) whether the connectivity of a
given single gene has changed between the two net-
works. The building blocks of all our statistical tests are
the set of scores that measure the strength of associa-
tion/interaction between gene pairs in the two networks.
We provide examples of a number of measures of gene-
gene association/interaction such as correlation, partial
correlation, mutual information, posterior probabilities
and so on. Another measure that is heavily used in this
paper is based on a partial least squares [2-5] modeling
of one gene’s expression on the remaining genes. These
scores were introduced in our earlier paper [6] on
genetic network reconstruction.

An early attempt to study how pairwise correlation
between genes in two plants change was presented in
[7]. A differential network analysis using liver gene
expression data in normal versus heavy mice was per-
formed in [8] in an attempt to identify the underlying
genetic drivers and pathways, and they also proposed a
test for differential connectivity of a single gene. A side
by side comparison of gene expression networks for
normal versus CFS (Chronic Fatigue Syndrome) patients
was performed in [9] through a visual analysis and
detected change in connectivity of certain node genes
although they did not carry out any statistical signifi-
cance tests. Their association scores were based on a
mutual information criterion [10]. Finally, [11] fit sepa-
rate structural equations to the two sets of gene expres-
sions and tested the null hypothesis of equality of the
coefficients in the two models as an indication of equal-
ity in the overall network structures.

In the Methods section, we describe an approach of
measuring association/interaction using connectivity
scores, and we primarily use scores based on PLS [6].
We also describe how to identify modules and hub
genes from these scores in an unsupervised manner.
Then we formulate the three test statistics to inspect
various aspects of how the two networks are different.
Unlike previous approaches, this approach offers a for-
mal statistical test using each notion of differential con-
nectivity. Our simulation results are reported in the
Results section. We simulate from two different types of
models where we know some form of the ground truth.
In the Results section, we also reanalyze a data set on a
mouse obesity study.

Results and discussion

We investigate the performance of our testing proce-
dures in a number of simulated data sets as well as one
real data set. As can be seen from these studies, the
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proposed statistical tests are effective in detecting differ-
ences between the network structures.

Simulated data

We use two types of simulation models to generate
data. The first approach uses partial differential equa-
tions to model expression levels, and one could gener-
ate networks of various structures and complexities
that are presumably quite realistic. The second simula-
tion model generates a simple Gaussian network where
(transformed) gene expressions are generated from a
multivariate normal distribution. By selecting the var-
iance-covariance matrix, we can induce various types
of association/interaction amongst the genes; another
advantage of this model is that replicated data sets can
be generated with the same network structure so that
statistical properties of our tests (i.e., size and power)
can be computed empirically.

Differential equation based networks

The SynTReN software developed by [12] simulates bio-
logical networks with known underlying structures
based on existing biological subnetworks and are mod-
eled with Michaelis-Menten and Hill kinetic equations.
This software was used to generate two networks with
N; = 50 samples each and p = 50 genes. The first net-
work (network A) consists of five separate modules with
ten genes each while the second network (network B)
has a single module with all 50 genes. The software
allows the user to specify several tuning parameters
which control the noise and complexity in each gener-
ated network; all probability parameters were set to 0.05
for both the treatment and control networks. The two
networks are illustrated in Figure 1 using the Cytoscape
software [13].

We consider testing for differential modular structures
in the two networks as described in the Methods section
using PLS connectivity scores. Clearly, the performance
of the method will depend on the choice of the mini-
mum module size m and ¢, which is a user selectable
parameter threshold on the connectivity scores to deter-
mine if there should be an edge between two nodes
(genes) in a network. If € is too large, then the method
will find very few interactions between genes and there-
fore very few (if any) modules; if € is too small, then the
method will find too many interactions between the
genes and every gene will be in the same large module.
As m increases, the number of modules /; and J,
decreases. Consequently, we performed a sensitivity ana-
lysis with respect to the tuning parameters m and e. The
p-values were computed using P = 1000 random permu-
tations each.

In this simulated example, there is a statistically signif-
icant difference between the modular structures for a
wide range of values of m and e based on the test for
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Network A had five modules whereas Network B had one.

Figure 1 Two simulated networks. Gene expression data on fifty samples on fifty genes in two networks were simulated using SynTReN.

Network B

different modular structures in the Methods section.
Table 1 shows the results for the minimum module size
of m = 5 with various choices of ¢, and presents the
value of the test statistic A/ and its corresponding
p-value. The results for other values of m between 1
and 8 are very similar and available on the supplemen-
tary website [14].

Gaussian networks

We conducted a simulation study based on two net-
works (treatment and control) each generated from the
multivariate Gaussian distribution with a zero mean vec-
tor. Under this setup, we investigate the statistical power
of the test for differentially connectivity for each of the
genes described in the Methods section.

We report the results for two network settings, one
with p = 20 genes and another with p = 100 genes.
Additional results for other setups, including PLS scores,
are available on a supplementary website [14]. For each
Monte-Carlo sample, the p-value of each test is based
on 1000 random permutations. Since each such calcula-
tion is based on Monte-Carlo replications of the original
samples whereas the observed level of significance (p-
value) for each original sample is based on another level

Table 1 Tests for differential modular structure in the
two networks created by SynTReN software

€ N p-value
.20 641 .000
.25 862 .000
30 910 000
35 919 001
40 965 003

of Monte-Carlo iteration, the total computational
demand is fairly substantial. As a result we base our cal-
culations on 1000 Monte-Carlo iterates for the 20-gene
and 100-gene networks.

The covariance matrix of the control network is taken
to be the identity matrix. This signifies a hypothetical
situation where none of the genes is interacting with
one another. The diagonal elements of the covariance
matrix of the treatment network are 1, the off-diagonal
elements of the first 10 genes are p or -p depending on
whether the sum of the respective indices are even or
odd, and the remaining off-diagonal elements are 0.
Three values of p were used where larger p indicates
higher association so that we may expect the power of
our test to increase with p. Thus, the first 10 genes are
the “important” genes whose connectivity is present in
the treatment network but not in the control network;
the remaining genes are “unimportant” which behave
independently in both networks. In this study, we
selected two sample sizes, n = 50 and 200. A reasonable
test should have an increasing power function with the
increasing sample size.

In each setting, we compute the following quantities:

(i) Sensitivity: This is computed by proportion
amongst the “important” genes that were declared to be
significantly differentially connected.

(ii) Specificity: This is computed by proportion
amongst the “unimportant” genes that were declared to
be not significantly differentially connected.

(iii) True discovery rate (TDR): This is computed by
proportion amongst genes declared significantly differ-
entially connected that were amongst the “important”
genes.
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(iv) True non-discovery rate (TNR): This is computed
by proportion amongst genes declared to be not signifi-
cantly differentially connected that were amongst the
“unimportant” genes.

High values of each of these measures indicate good
performance of the testing procedure in some aspect.
Note that the sensitivity is the same as the average
power; that is, it is the proportion of Monte-Carlo sam-
ples for each given “important” gene in which it is
declared to be significantly differentially connected aver-
aged across all ten “important” genes. Similarly, one
minus the specificity is the average size.

Here we report the results for our tests for the corre-
lation scores. Since it is a Gaussian network that was
constructed using various degrees of correlation between
the dependent genes, the results using the sample corre-
lation are the easiest to interpret and most natural. The
supplementary website lists the results using other
scores. Results for p = 20 are summarized in Table 2
whereas those for p = 100 are listed in Table 3. The
nominal size for all tests was set at & = 5% which
means a gene is declared to be differentially connected
if its permutation based p-value is less than 0.05. The
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results for oo = 10% are provided in the supplementary
website [14].

For p = 20, the sensitivity of all the tests performed
together is close to 1. In order to account for simulta-
neous testing of multiple hypotheses, we also considered
the standard Benjamini-Hochberg(BH) [15] adjusted
p-values to declare significance. We also attempted
other relatively recent multiple hypotheses adjustment
procedures. These include the local FDR due to [16],
the g-value due to [17], and the fdrtool due to [18].
Their performances varied across the different measures
but overall, none of them seem to do better than the
tests without any p-value adjustments. Consequently,
these are not reported in the tables.

For p = 100, the sensitivity increased as p increased
and was lower for the BH adjustments. The procedures
have high specificity with the BH adjustment. The TNR
is also close to 1 and the unadjusted TDR ranges
between 60%-70% which suggest that some unimportant
genes were deemed to be differentially connected by the
procedures which is not unexpected since only 10% of
the genes were truly important. The BH adjustment
improved the TDR to between 90%-95%.

Table 2 Empirically estimated performance measures for the tests of differential connectivity of single genes using

correlation scores applied at a targeted nominal level of 5%

n P Sensitivity Specificity TDR TNR
unadjusted adjusted unadjusted adjusted unadjusted adjusted unadjusted adjusted
50 5 990 893 949 970 951 970 989 982
200 1 1 946 970 949 971 1 1
50 7 1 1 948 969 951 970 1 1
200 1 1 950 973 952 973 1 1
50 9 1 1 946 969 948 970 1 1
200 1 1 948 968 950 969 1 1

The measures are reported based on both unadjusted p-values and p-values adjusted based on the BH multiplicity correction. The number of “important” genes
was 10 and the total number of genes was 20.

Table 3 Empirically estimated performance measures for the tests of differential connectivity of single genes using
correlation scores applied at a targeted nominal level of 5%

n P Sensitivity Specificity TDR TNR
unadjusted adjusted unadjusted adjusted unadjusted adjusted unadjusted adjusted
50 5 760 340 947 996 616 913 973 931
200 1 999 949 994 687 946 1 1
50 7 986 .862 948 993 676 935 998 985
200 1 1 949 993 685 943 1 1
50 9 1 996 946 992 675 936 1 1
200 1 1 949 994 684 948 1 1

The measures are reported based on both unadjusted p-values and p-values adjusted based on the BH multiplicity correction. The number of “important” genes
was 10 and the total number of genes was 100.
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In this simulation experiment, we were aware of the
identity of the important genes. We also investigated the
performance of the test for differential connectivity of a
class of genes described in the Methods section. In each
case, the power for detecting the class of important
genes is 1 when using pairwise correlations. Full results
are presented in the supplementary website [14].

The analysis for the Gaussian simulations is based on
the statistical tests described in the Methods section.
While it is certainly possible to use regularized statistical
tests for the Gaussian model based on appropriate
asymptotic theory, we only present the Gaussian model
as a simple model for which we can easily conduct a
simulation study. The more general statistical tests
described in the Methods section are not only applicable
to the Gaussian model, but also to more complex models
which are more appealing from a biological perspective.

Real data

We illustrate our methodology using a real data set.
Mouse data

We apply our tests described in the Methods section to
a subset of microarray expression data obtained from
liver tissue of female mice and corresponding clinical
traits for the mice that was analyzed previously by [8].
The full data set consists of 3421 genes and 135 mice.
The data set was further reduced by removing genes
and mice with missing values. For the differential analy-
sis, we selected two networks of mice. The first network
consisted of the 50 heaviest mice with weights greater
than 40.5. The second network consisted of the 50 lean-
est mice with weights less than 36.9. We worked with a
filtered collection of genes G based on univariate
regressions of mouse weights on each individual gene’s
expressions using all mice; we chose the 314 genes with
z-scores greater than 5.

Using PLS connectivity scores and the test for differ-
ential structures (with a minimum module size of m = 5
and threshold connectivity score of € = 0.5), the value of
the test statistic is A/ = .976 with a p-value of p(%) =
0.033 based on 1000 random permutations; thus the
modular structures of the two networks are significantly
different at a 5% level. The module structures of the
two networks are illustrated in the Supplementary Mate-
rial website using the Cytoscape software [13]. In addi-
tion we performed a sensitivity analysis with respect to
varying € and found that, for any moderate choice of ¢,
the modular structures are statistically significantly dif-
ferent. The complete results for ¢ € {-0.35, 0.40, 0.45,
0.50, 0.55} are presented in the Supplementary Material
website [14].

Next, using the test for differential connectivity of
individual genes, we found 56 genes which are signifi-
cant at level 0.05 without any multiplicity correction.
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The gene names, values of the test statistic, and the cor-
responding p-values for the 20 most differentially con-
nected genes are listed in Table 4. A complete list is
given on the Supplementary Material website. Below, we
give a brief commentary for the biological functions of a
select few genes which we mined using the Entrez Gene
tool [19].

The first two genes on this list, Anxa2 and Anxa5,
encode members of the annexin family. Members of this
calcium-dependent phospholipid-binding protein family
play a role in the regulation of cellular growth and in
signal transduction pathways. This protein functions as
an autocrine factor which heightens osteoclast formation
and bone resorption.

Apolipoprotein M, also known as APOM, is a human
gene. The protein encoded by this gene is an apolipo-
protein and member of the lipocalin protein family. It is
found associated with high density lipoproteins and to a
lesser extent with low density lipoproteins and triglycer-
ide-rich lipoproteins. The encoded protein is secreted
through the plasma membrane but remains membrane-
bound, where it is involved in lipid transport.

The gene F7 initiates the extrinsic pathway of blood
coagulation. In the literature, this gene has been tested
for association to various diseases including blood coa-
gulation disorders, hepatocellular carcinoma, cardiovas-
cular diseases, cerebral infarction, coronary disease, and
diabetic angiopathies.

The fifth gene on this list, Igfbp7, has been tested in
the literature for association to various form of neo-
plasms. It has been proposed to participate in processes
such as negative regulation of cell proliferation and reg-
ulation of cell growth.

We used DAVID [20] functional clustering with the
genes in Table 4. The following two functional clusters
reported in Table 5 were identified on the basis of
enrichment scores (as performed by DAVID using Fish-
er’s exact test). We also performed (post-hoc) the test

Table 4 The 20 most differentially connected genes
based on the test for differential connectivity between
the lean and heavy mice networks

Gene d p-value Gene d p-value
Anxa2 0.118 0.000 Spp1 0.232 0.000
Anxa’ 0.119 0.000 9430028I06Rik 0.153 0.000
Apom 0.186 0.000 AA960558 0.153 0.001
F7 0.122 0.000 Map4k4 0.145 0.001
Igfbp7 0.157 0.000 Proz 0.126 0.001
Itih1 0.149 0.000 2310046G15Rik ~ 0.158 0.001
Kng2 0.168 0.000 Erbb3 0.167 0.003
Sennla 0.149 0.000 Ppic 0.097 0.003
Sle22a7 0.154 0.000 Tubal 0.132 0.003
Slc43al 0.162 0.000 lgfbp2 0.182 0.004
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for differential connectivity of these functional classes in
the two networks of lean versus heavy mice. The corre-
sponding p-values were less than 107 (the last column
of Table 5). Figure 2 illustrates the connectivity for the
heavy mice network of the two functional gene clusters
for gene pairs with scores which exceed 0.5 in magni-
tude. For the lean mice network, there were no such
connections between these gene pairs.

Conclusions
Studying how the network structure changes between
two conditions (e.g., two stages of a biological process)
offers important clues about the underlying biochemical
pathways. Differential network analysis, as we call it,
provides formal statistical tests to undertake such an
exploratory investigation. This is often done in conjunc-
tion with a differential gene expression analysis and
offers a deeper understanding than that obtained by a
list of genes that are differentially expressed between the
two conditions. Indeed such a list can be used as a fil-
tering or selection step where the network structures of
these genes are further explored under the two condi-
tions. While the real data example presented in this
paper is a fixed-time experiment, the methods could be
used to examine whether a network is differentially
expressed over two distinct time periods. However, ana-
lyzing dynamic networks with multiple conditions is a
more complicated topic for future investigation.

We explore the use of connectivity scores in the con-
struction of measures of the strength of a relationship
between a pair of genes in a network and how this
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strength changes from one biological condition to another.
Simulation investigations of our method are carried out
using appropriate sets of scores. Although the formulas
for the test statistics can easily be adapted to incorporate
other measures of association or interaction, it is impor-
tant to choose an appropriate measure of connectivity.
PLS scores tend to work well in most circumstances.

While the precise calibration of the statistical level is
problematic, the resulting methods using an approximate
level of p-value control results in reasonable performance
(in terms of various measures, as demonstrated empiri-
cally). Also, the utility of these methods for exploratory
analysis is well demonstrated by the real data application.

There is scope of further theoretical work towards
obtaining a better approximation to the statistical null
distribution. Development of appropriate global error
rate control statistical adjustments is another interesting
problem in this regard. Essentially all the existing proce-
dures rely on the independence (or some form of weak
dependence) of multiple statistical tests which is not
satisfied for testing change of interaction scores of pairs
of genes. These issues will be investigated elsewhere.

Methods

Some notations are necessary to describe our statistical
tests. We assume that two microarray studies are con-
ducted on the same set of genes but under two different
biological conditions. Here the term “biological condi-
tion” is very generic and depending on the application
may correspond to, for example, subject type (e.g., male
versus female), tissue type (normal versus cancerous) or

Table 5 Functional clustering of differentially connected genes

Cluster Description Genes p-value
Blood coagulation Anxa2, Anxa5, F7, Proz 0.000
Protein secreted into the cell surroundings APOM, Anxa2, Spp1, Igfbp7, Itih1, Proz, Coll4al 0.000

Blood
coagulation

Protein secreted into
the cell surroundings

Figure 2 Network structures for the mouse data. Connectivity for the heavy mice network of the gene clusters in Table 5 (displayed for gene
pairs with | § | = 0.5). In contrast, there were no connections between these gene pairs for the lean mice network (not shown here).
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time index in a time course experiment. We assume
that the data (normalized and often log transformed
gene expression values) for each study can be repre-
sented by an N x p matrix X where N is the number of
subjects in the study and p is the number of genes (or
more appropriately, probes) in the study. Typically,
some form of scores are constructed from the expres-
sion matrix X for each pair of genes to measure the
interaction between them, and a network is constructed
by connecting the pairs for which the corresponding
score exceeds a threshold.

Connectivity score between a pair of genes

Each of the statistical tests described in this section are
based on a connectivity score 3;, between the ith and
kth gene derived from X. Let x; be the (centered and
scaled) expression vector for the ith gene. Here we
describe some choices of the connectivity scores that
could be used for conducting our statistical tests. All
these measures of association/interaction between genes
have been previously proposed in the literature for recon-
struction of genetic networks.

Correlation

A widely used simple measure of strength of the associa-
tion between two genes is the Pearson correlation coeffi-
cient. The correlation between gene i and gene k is given
by

T
. X; Xp

ik N L
JGx)(f x)

This gives the coefficient of a simple linear regression
model of one gene’s expression values on the other,
given that both are standardized. For a more detailed
discussion, see [21] and the references therein.

Partial correlation

Partial correlation (PC) based scores for network construc-
tion were proposed by [22]. The partial correlations are
related to the inverse of the standard correlation matrix P
and can be computed using the following relationships

Q = P71 = (wik)
and
T Wik

The authors also proposed a modification when the
covariance matrix is not positive definite (and thus not
invertible) which is the case when N < p. They used the
Moore-Penrose pseudoinverse followed by bagging.
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However, in a later paper [23], they proposed a covar-
iance shrinkage estimator given by

P*=AT +(1-A)P,

where p denotes the estimate of the covariance
matrix P, T denotes the constrained shrinkage target
covariance matrix of a lower complexity (assuming
some form of structure such as equal variances, constant
correlations etc.), and A is the shrinkage coefficient
which balances the bias-variance tradeoff of the two
estimates p (characterized by a relatively large variance)
and T (biased due to imposed constraints).
Partial least squares based scores
For general complex data sets, the association/interac-
tion scores introduced in our earlier work [6] tend to
work well. The basis for these scores is a set of partial
least squares (PLS) fits of each gene’s expression vector,
on that of the remaining genes, such that

v
x; = Z[}Mtl(/‘) + error (1)

(=1

where v, denoting the number of PLS terms tl((), is a
user selectable tuning parameter and the PLS compo-
nents tl([) are linear combinations of x1,..., X;.1, Xit15eer %p
that are algorithmically obtained as follows:

(i) Set € = 1 and XV = [0, X115 Kis1rer x,].

(if) Compute

p
l l l
(=Y dpx

fe#i

where

cl(,f) = X([)Txi [ xIxOx Oy,

(iii) Increase € to £ + 1, compute the deflated design
matrix

x() = x(-1)
_tl(Z—l)[tlU—l)Tt(é—l)]—ltl(Z—l)TX(/J—l),

and while £ < v, go to Step (i).
It is argued in [6] that

(. S (
o 2§=1ﬁiecl(k) + Zgzlﬁkecgﬂ-)
ik —

2

is an appropriate (weighted) measure of total associa-
tion/interaction between the pair of genes i and &k,
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where g — t(/) £ are the least squares esti-
mates of the coefﬁClents in model (1). For further details
on these scores, see [6]. For more background on partial
least squares regression, we refer the readers to [2-5]
and the references therein. An alternative way to define
PLS scores based on the product of PLS regression coef-
ficients is described in [24].

When N and p are large, the statistical tests based on
PLS scores are computationally intense. For the mouse
data described in the Results and discussion section, the
computing times for each of the tests using PLS scores
and 1000 permutations are approximately 40 minutes
on a Linux machine with Intel Xeon 3.20 GHz proces-
sors. Each of the statistical tests described in this section
are implemented in an R [25] package freely available on
the supplementary website [14].

Modules of genes

Often biological networks have a modular structure
where a cluster of genes is connected by short paths
whereas genes that belong to different clusters have no
connectivity, indicating no (or weak) association/interac-
tion between them. In an unsupervised study, one of the
goals of a network analysis is to identify all such mod-
ules. These are mostly accomplished through visual
means. However, a mathematically convenient definition
of a module after a network has been constructed is
provided here. Such an approach is useful in construct-
ing a test for investigating whether the overall modular
structures in two networks are different.

To this end, we use the following mathematical defini-
tion of a module of genes in reference to an association/
interaction network. We like to point out that the term
“module” has been used in the past by different authors
in different contexts (see [26] and the references
therein). In our definition, the minimum size parameter
m and the threshold connectivity parameter ¢ are user
selectable making this approach suitable for an explora-
tory analysis. With these two parameters in place, a col-
lection of genes & will be called a module if f = |%], the
cardinality of &, is at least m and, given any two genes
f1 and f; in & they are connected by a path of genes in
F, fL = g15e» &k = fo, for some k > 2, such that the asso-
ciation/interaction score of each pair on the path is at
least ¢, i.e., |3glgj+1 | > ¢ forall 1 <j<k- 1. Moreover,
such a set has to be a maximal collection so that, for
any gene g ¢ 7, |sg] < ¢, for all fin F

Testing for differential modular structures in two
networks

Suppose two networks have been constructed, say, using
the control (X;) and the treatment (X,) samples, respec-
tively. Given a selection of the two tuning parameters m
and €, we could identify the collection of all modules (as
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defined above) in the two networks. Let
M, = {fkll'“,fk;k} be all the distinct modules of size

at least m and connectivity € in network k, for k = 1, 2.
Let G, be the collection of all genes that were present
in some module in both networks. In other words,

gO :DU}-kj,
]

Given a gene ge G, let ) be the module in net-
work k that contains gene g, for k = 1, 2. The following
proportion of non overlap statistics captures the amount
of differentiation within the modular structures in the
two network:

N=1-

F1j(g)N2j(g)l
Gol 2

£ VAjg) U759

where an empty sum (e.g., when G, = ¢) is to be
interpreted as 0. Note that it lies between 0 and 1 where
0 indicates identical modular structure in the two net-
works and 1 indicates that the modules in the two net-
works have nothing in common.

Also note that the modules according to our definition
are necessarily disjoint and hence the test statistic A/ is
well defined. If one uses alternative definitions of mod-
ules in which a gene is allowed to belong to multiple
modules, the statistic needs to be modified. As for
example, we could replace the summand in A by an
average of similar quantities over the pairs of modules
containing gene g. Further consideration of alternative
definitions of modules is beyond the scope of this paper.

For controlling the type-1 statistical error rate, one
needs to compute the p-value using the following per-
mutation scheme. Let X; be the (N; x p) matrix of
expression values of the N; samples (replicates) of p
genes, p = |G|, for k =1, 2. Let X be the (N7 + Ny) x
p matrix in which the first Ny rows of X are the N;
rows of X; and the last N, rows of X are the N, rows
of X,. Permute the rows of X using a permutation 7 to
get the permuted matrix x7, and let X be the first
N, rows of x7 and X7 be the remaining N, rows of
x* . For each permutation 7, compute the collection of
pairwise scores denoted s” kok=1,2, using the X7
and X7 data respectively and compute the test statistic
on the permuted data as

N(z)=1-

1 1F1j(g)(@)NF2j(g) (=)l
Go ()| F1j(g)(W)UF2j(g) ()

8eGo(m)

where () are the distinct modules in the two
networks based on the permuted data,

Go() :Dufkj(”), and so on. In other words, we
j
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permute the labels of the samples and perform our ana-
lysis again for each permutation.

After computing the MDA statistic corresponding to P
permutations selected at random from the collection of
all permutations, we can obtain an approximate p-value
by computing

PN) = 5 DTN (E) 2 Nopanea)

where the sum is taken over the P random permuta-
tions 7. Under the null hypothesis that the modular
structure of the two networks is the same, the hypoth-
esis test based on this permutation scheme has the cor-
rect size.

Testing for differential connectivity of a class of genes
In a supervised analysis, we may be interested in know-
ing whether the network structure of a specific class of
“interesting” genes &, say, those corresponding to a par-
ticular biological function, has changed from one net-
work to another. In an unsupervised &, this could be a
filtered subset of all genes G, say those exhibiting at
least five fold changes between the control and treat-
ment samples. Another choice for & could be a module
for one of the networks.

We measure the average differential connectivity of
gene pairs in & between two networks by the following
mean absolute distance (MDA) statistic

1 N A
)=y 25 i
izjeF

where 31-1]» and 55 are the interaction scores between
gene pair (i, j) in networks 1 and 2, respectively, with
each constructed as in (2) using the gene expression
data for that particular network. In using this measure
as a test statistic, network connections of & will be
considered to be significantly different in the two net-
works if the value of A(%) is sufficiently large. The
measure is based on the widely-used L; distance.
Although there is no optimality theory in the general
setting considered in this paper, this measure com-
pared favorably with other distance- and entropy-based
measures considered.

The p-value corresponding to A(%) can be computed
via random permutations as before

p(-"t)=%ZI(A(-’F/7T)2A('¢)Observed)

where the sum is taken over P randomly selected per-
mutations 77 and
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A(}",n)=ﬁ 3 spt-spt

izjeF

Testing for differential connectivity of a single gene
The difference in connectivity of a single gene g in two
networks can be assessed by the following MDA statistic

Al A2
S sk

8'eg.8'#g8

d(g) =

b
p-1

where the sum is over all remaining genes in a net-
work and where 3§g’ is the connectivity score between
gene pair (g, ¢’) in networks k = 1, 2. The p-values for
this statistic for each gene can be computed by per-
muting the pooled data columns and reconstructing
the two networks using the permuted data followed by
computation of this statistic for each pair of networks.
Note that the p-values of all the genes can be com-
puted simultaneously using the same set of random
permutations.
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