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Abstract

Background: Data from metabolomic studies are typically complex and high-dimensional. Principal component
analysis (PCA) is currently the most widely used statistical technique for analyzing metabolomic data. However, PCA
is limited by the fact that it is not based on a statistical model.

Results: Here, probabilistic principal component analysis (PPCA) which addresses some of the limitations of PCA, is
reviewed and extended. A novel extension of PPCA, called probabilistic principal component and covariates
analysis (PPCCA), is introduced which provides a flexible approach to jointly model metabolomic data and
additional covariate information. The use of a mixture of PPCA models for discovering the number of inherent
groups in metabolomic data is demonstrated. The jackknife technique is employed to construct confidence
intervals for estimated model parameters throughout. The optimal number of principal components is determined
through the use of the Bayesian Information Criterion model selection tool, which is modified to address the high
dimensionality of the data.

Conclusions: The methods presented are illustrated through an application to metabolomic data sets. Jointly
modeling metabolomic data and covariates was successfully achieved and has the potential to provide deeper
insight to the underlying data structure. Examination of confidence intervals for the model parameters, such as
loadings, allows for principled and clear interpretation of the underlying data structure. A software package called
MetabolAnalyze, freely available through the R statistical software, has been developed to facilitate implementation
of the presented methods in the metabolomics field.

Background
Metabolomics is the term used to describe the study of
small molecules or metabolites present in biological
samples. Examples of such metabolites include lipids,
amino acids, bile acids, keto-acids. Studies of the con-
centration levels of these molecules in biological sam-
ples aim to enhance understanding of the effect of a
particular stimulus or treatment [1-3]. The most com-
monly applied analytical technologies to metabolomic
studies are nuclear magnetic resonance spectroscopy
(NMR) [4] and mass spectrometry (MS) [5]. With
respect to NMR-based metabolomics the data are
usually in the form of spectra which are binned into
regions of a specified width. Typically, the data gener-
ated by these methods are large and complex. Firstly,
the number of observations n in metabolomics

experiments is typically much less than the number of
peaks (or variables) p in a spectrum, n ≪ p. In such a
situation, the application of standard parametric statisti-
cal methods such as regression is not straight forward
as there are insufficient data for parameter estimation.
Secondly, many metabolites may not have any relation-
ship with the trait under study and they can induce var-
iation which is not relevant, hampering comprehensive
data analysis [6]. In view of these difficulties, when ana-
lyzing metabolomic data there is a genuine need for
multivariate dimension reducing techniques which can
take into account the complexities of the data and
expose any underlying relationships. Principal compo-
nents analysis (PCA) [7] is probably the most widely
used technique for analyzing metabolomic data [8]. The
popularity of PCA in metabolomics is due to the fact
that it is a simple non-parametric method which can
project the NMR or MS spectra into lower dimensional
space, revealing inherent data structure, and providing a
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reduced dimensional representation of the original data.
Despite its widespread use in metabolomics, PCA has
several shortcomings. Most significantly, PCA does not
have an associated probabilistic model, which makes
assessing the fit of PCA to the data difficult and limits
the potential to extend the scope of application of PCA.
Additionally, PCA can fail to reveal underlying groups
of subjects in the data, therefore providing a spurious
view of the underlying data structure [9,10]. Other lim-
itations include the inability of PCA to deal with missing
data appropriately [11].
Such limitations can be addressed by deriving PCA

from a probabilistic framework resulting in probabilistic
PCA (PPCA) [12]. The merits of a probabilistic
approach are manyfold. Firstly, the maximum likelihood
solution of the PPCA model corresponds to PCA and
hence the familiar characteristics (such as principal
scores and loadings) of PCA are retained. With regard
to model estimation, closed form solutions for para-
meter estimates exist. Additionally, the Expectation
Maximization (EM) algorithm [13] can be employed to
estimate the parameters of the PPCA model. The EM
algorithm is computationally efficient and also has the
capacity to deal with missing data [14]. The probability
density based approach facilitates comparison of differ-
ent PPCA models to determine the ‘best’ model for the
data using statistically principled approaches. In prac-
tice, this allows selection of the number of required
principal components in a statistically valid manner.
Given the probabilistic footing of the PPCA model, the
Bayesian inferential framework [15,16] can be employed
for inference, facilitating the inclusion of any prior infor-
mation the practitioner may have [17].
Perhaps the key advantage of approaching PCA from a

probabilistic modeling point of view is the facility to
assess the uncertainty associated with the resulting
model output. In practice, this translates to the ability
to examine the uncertainty in an observations’ principal
component score, or in the estimated loadings. In this
article, the construction of confidence intervals for
model parameters such as loadings using the jackknife
method is illustrated. Thus a more principled and clear
insight to the principal component solution is available
under the probabilistic approach than under the tradi-
tional covariance matrix decomposition approach.
In general, metabolomics studies generate metabolo-

mic data in addition to other phenotypic data, examples
of which include age, gender and bmi (body mass index)
in the case of human based studies. Inclusion of these
covariates in multivariate models when analyzing meta-
bolomic data is highly desirable in order to allow a com-
prehensive analysis of the data. In this article a novel
extension of the PPCA model called probabilistic

principal components and covariates analysis (PPCCA)
is introduced which incorporates covariates into the
model and facilitates joint modeling of metabolomic
data and covariates. Another crucial benefit of the prob-
ability density based approach is that a collection of
PPCA models can be combined to form a mixture of
PPCA models (MPPCA) for nonlinear modeling pur-
poses [18]. A mixture of PPCA models can be used to
cluster subjects whilst facilitating dimensionality reduc-
tion of metabolomic data. This model is closely related
to the mixture of factor analyzers used to cluster micro-
array expression data in [19]. The application of
MPPCA analysis to metabolomic data is presented and
highlights the danger of assuming a single underlying
PPCA model in cases were (often unknown) groups of
observations are present.
These statistical methods (PPCA, PPCCA and

MPPCA) are illustrated through an application to two
metabolomic datasets. A software package called Meta-
bolAnalyze [20], freely available through the R statistical
software [21], has been developed to facilitate imple-
mentation of the presented methods in the metabolo-
mics community and elsewhere.

Methods
Probabilistic PCA (PPCA) is a probabilistic formulation
of PCA based on a Gaussian latent variable model and
was first introduced by Tipping and Bishop in 1999
[12]. The PPCA model reduces the dimension of high-
dimensional data by relating a p-dimensional observed
data point to a corresponding q-dimensional latent
variable through a linear transformation function, where
q ≪ p. Given the statistical model underpinning PPCA,
extensions of the model are possible, and a wealth of
statistical tools can be utilized. Such extensions and
tools are detailed in what follows.

Probabilistic Principal Components Analysis
Let xi = (xi1, . . . , xip)

T be an observed set of variables (eg. an
NMR spectrum) for observation i and ui = (ui1, . . . , uiq)

T

be a latent variable corresponding to observation i in the
latent, reduced dimension space. In terms of traditional
PCA, ui can be viewed as the principal score of subject i.
The PPCA model can be expressed as follows

x ui i i  = + +W  

where W is a p × q loadings matrix, μis a mean vector

and  i is multivariate Gaussian noise for observation i,

i.e. p(  i ) = MV Np(0, s
2I) where I denotes the identity

matrix. The latent variable ui is also assumed to be mul-
tivariate Gaussian distributed, p(ui) = MV Nq(0, I). The

Nyamundanda et al. BMC Bioinformatics 2010, 11:571
http://www.biomedcentral.com/1471-2105/11/571

Page 2 of 11



conditional distribution of the observed data given the
latent variable can then be expressed as

p x u MVN ui i p i| , .( ) = +( )   W I  2 (1)

The distribution of the observed data, p(xi), also
known as the predictive distribution, can be derived
from the convolution of p(ui) and p(xi|ui) giving

p x MVNi p
T( ) = +( )   , .WW I2

In contrast to the more conventional view of PCA
which is a mapping from the high dimensional data
space to a low dimensional latent space, the PPCA fra-
mework is based on a mapping from a latent space to
the data space. The observed data xi is generated by
first drawing a value for the latent variable ui from its
unit variance multivariate Gaussian distribution, p(ui).
The observed variable xi is then sampled, conditioning
on the generated value for ui, from the isotropic distri-
bution defined in (1).
Any observed data point xi can be represented in a

latent space by its corresponding q-dimensional latent
variable ui. The distribution of the latent variable given
the observed data can be derived using Bayes’ Theorem
to give

p u x MVN xi i q
T

i| ,( ) = −( )( )− −M W M1 2 1  (2)

where M is a q × q matrix defined as M = WT W +
s2I. A key benefit of the PPCA approach is that, not
only is an estimate of the location of each observation
in the lower dimensional space available through its
expected value  (ui) = M-1WT (xi - μ), an estimate of
its associated uncertainty is available through the cov-
ariance matrix s2M-1 in (2). This is in contrast to con-
ventional PCA where the lower dimensional location
(i.e. the score) of an observation is available, but the
uncertainty associated with it is not. The parameters
(W, μand s2) of the PPCA model can be estimated
using maximum likelihood. Maximizing the (log) likeli-
hood function with respect to model parameters is
non-trivial; in [12] it is demonstrated that the esti-
mates do however have closed form solutions. Cru-
cially, the log likelihood of the PPCA model is
maximized when the columns of W span the principal
subspace of conventional PCA [12]. Thus the maxi-
mum likelihood estimate (MLE) of the loadings matrix
Ŵ in PPCA corresponds exactly to the loadings matrix
in conventional PCA. Hence the model output in
PPCA is exactly that obtained in conventional PCA,
but with the additional advantages of uncertainty
assessment and potential model extensions.

In this article maximum likelihood estimates of the
model parameters are derived via the EM algorithm [13]
because of its stability and widespread applicability. The
EM algorithm is typically used to compute MLEs in
probabilistic models when the model depends on unob-
served variables or when some data are missing. The
algorithm alternates between two steps until conver-
gence: the expectation (E) step and the maximization
(M) step. In the E-step, the expected values of the latent
variables are estimated given the observed data and the
current estimates of the model parameters. In the M-
step, the model parameters are re-estimated by maxi-
mizing the log likelihood function using the expected
values of the latent variables derived in the previous E-
step. The two steps are repeated until convergence.
Many convergence assessment criteria are available;
some criteria are based on log likelihood gain between
iterations while others use an estimate of the converged
log likelihood value as a basis for stopping. Here Ait-
ken’s acceleration procedure [22] is used for conver-
gence assessment. Specific details of the EM algorithm
for the PPCA model are given in Additional File 1. An
implementation of the algorithm is available in the
package MetabolAnalyze through the R statistical soft-
ware [21].

Probabilistic Principal Components and Covariates
Analysis
With its basis in a statistical model, the PPCA model
can be extended in several ways. Given the availability
and relevance of subject covariates in metabolomic stu-
dies, here the PPCA model is extended to facilitate joint
modeling of covariates and metabolomic data, giving the
probabilistic principal components and covariates analy-
sis (PPCCA) model. This novel model extension is
achieved by assuming that the latent variable distribu-
tion for observation i follows a multivariate Gaussian
distribution centered at δi rather than at the origin, i.e.
p(ui) = MV Nq (δi , I), where

d
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Here a is a q (L + 1) matrix of parameters which cap-
ture the relationship between the latent variable and the
covariates and Ci is a (L+1) vector of an intercept term
and the L covariates of observation i. The motivation
behind this model extension is that a subject’s covariates
may influence their location in the principal subspace.
Conditional on this location, the observed data point is
then generated as in (1). Note that through the model
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definition (3) the covariates may have different effects
on each of the dimensions of the principal subspace
through the parameter vectors a1, . . ., aq.
Under the PPCCA model, the conditional distribution

of xi given ui is the same as that of the PPCA model
given in (1). The predictive distribution p(xi) differs
from that of the PPCA model and is now defined as

p x MVNi p i
T( ) = + +( ) W WW I  , 2

The posterior distribution of the latent variable ui
given the observed data xi is also affected by the inclu-
sion of covariates and is defined to be

p u x MVN xi i q
T

i i| ,( ) = − +( )( )⎡
⎣

⎤
⎦

− − M W M1 2 2 1   

The location (or score) of observation i in the latent
space is given by  (ui) = M-1[WT (xi - μ) + s2δi],
which depends on both the data point xi and the covari-
ates of observation i through δi. Thus when representing
an observation in a reduced dimensional space the
PPCCA model takes account of both the spectra data
and the associated covariates. Deeper insight to the true
underlying structure of the data is then feasible as possi-
bly influential external factors are explicitly modeled.
The effect of covariates on the qth latent dimension

can be explored through examination of the estimated
regression parameter vector aq = (aq0, . . ., aqL)

T ; these
parameters can be interpreted within the context of the
problem to provide insight to the type and strength of
influence some covariates may have on the (often inter-
pretable) latent dimensions.
Parameter estimation for the PPCCA model can be

achieved via an efficient EM algorithm; Specific details
of the EM algorithm for the PPCCA model are given in
Additional File 1. An implementation of the algorithm is
available in the package MetabolAnalyze through the R
statistical software [21].

Mixtures of Probabilistic Principal Components Analysis
Models
The models discussed so far assume that the association
between the observed data and the latent variable is lin-
ear. This assumption can be inadequate in a situation
where the observations in the data set have an underly-
ing group structure. In such cases the linearity assump-
tion may not reveal all of the internal structures of the
data [23]. Standard PCA also suffers from this
phenomenon.
In many high throughput technologies which result in

high dimensional data, interest often lies in identifying
underlying sub groups within a set of observations.
Exploring high dimensional data with underlying

nonlinear structures therefore requires modeling atten-
tion. Employing a single PPCA model to model such
data is not adequate, since PPCA provides a globally lin-
ear projection of the data. A collection of single PPCA
models can be combined to obtain a mixture of prob-
abilistic principal components analysis models (MPPCA)
[18] which clusters observations into groups and
reduces data dimension.
Under a MPPCA model, with probability πg, observa-

tion i is modeled as

x ui g ig g ig  = + +W   ..

Here Wg and μg are a p × q loadings matrix and the

mean respectively for group g, and  ig is a multivariate

Gaussian noise process for observation i, given that i is
a member of group g. The latent location for observa-
tion i, given that i is a member of group g, is denoted
uig. That is, with probability πg, observation i is modeled
using a PPCA model with group Specific parameters.
Observation i is assumed to have been drawn from a

finite mixture distribution with G components (or
groups), i.e.

p x p xi g

g

G

i g g( ) ( | , )  =
=

∑ 
1



where p(xi| μg, Σg) is a PPCA model for group g with
mean parameter μg and covariance matrix

 g g g
T= +W W I 2 . The mixing proportion πg denotes

the probability of an observation belonging to group

g g gg

G
0 1 1

1
≤ ≤ =( )=∑ and . Note that for reasons

of parsimony the error covariance 2 has been con-
strained to be equal for all groups [24].
The MPPCA model can be fitted using a two stage

EM algorithm called the Alternating Expectation Condi-
tional Maximization (AECM) algorithm [25]. For clarity,
the details of the AECM algorithm for the MPPCA
model are deferred to Additional File 1. Under the
MPPCA model, in addition to the latent location vari-
able, the unobserved group membership of each obser-
vation is also viewed as a latent variable. Specifically, for
each observation, a latent binary vector zi = (zi1, . . . ,
ziG)

T is imputed where zig = 1 if observation i belongs to
group g and 0 otherwise. At convergence of the AECM

algorithm the estimate ẑ ig is the posterior probability of

observation i belonging to group g. The MPPCA model
clusters observations into groups by assigning them to
the group to which they have highest posterior probabil-
ity of membership. Thus clustering of observations and
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dimension reduction, through the use of principal com-
ponents, are achieved simultaneously.

Model Selection
A crucial advantage of working within a probabilistic
framework is that a wealth of statistically based model
selection tools can be utilized. This allows the determi-
nation of the “best” statistical model for the data, i.e. the
optimal number of principal components q to retain
and, in the case of the MPPCA model, the optimal
value of G. Such choices are made on the basis of statis-
tical principles instead of using traditional ad-hoc
approaches, such as a scree plot.
The Bayesian Information Criterion (BIC) [26] is a

popular model selection tool. The BIC is defined to be

BIC  = −2l K nln( ) (4)

where l is the maximum log likelihood value, K is the
number of free parameters in the model and n is the
number of observations. The model which yields highest
BIC value is deemed the optimal model.
The BIC can be viewed as a criterion that rewards

model fit (through the first term in (4)) but penalizes
model complexity (through the second term in (4)). The
penalization in the BIC is much stronger than that of
the widely used Akaike Information Criterion [27] and
typically selects more parsimonious models. Within the
context of mixture models, the BIC has been widely
employed, see [10,28,29].
Despite the tendency for the BIC to select parsimo-

nious models, in high dimensional data settings it often
exhibits noisy behaviour-the BIC can be undefined or
perform poorly due to the occurrence of singularities
for some starting values of the EM algorithm, for some
models (i.e. different values of q), or for some numbers
of groups (in the case of the MPPCA model). Addition-
ally, diagnosing convergence of the EM algorithm in
highly-parameterized models can be difficult, leading to
noisy BIC values.
To eradicate this issue, here a regularized version of

the BIC [30,31] is employed as a model selection tool.
This modified version of the BIC evaluates the likeli-
hood at the maximum a posteriori (MAP) estimator
instead of the MLE. The MAP estimator is derived
within the EM algorithm framework where a conjugate
prior is included, and the convolution of the likelihood
and prior are maximized at the M step. Here, a conju-
gate inverse gamma prior on s2 is employed through-
out-the reported BIC values are based on the MAP
estimate for s2 rather than on the MLE. Further details
are provided in Additional File 1. This approach avoids
singularities, and performs similarly to the BIC when
such issues are absent. It also has the effect of

smoothing noisy behavior of the BIC, which is often
observed when parameter estimation is unstable.

Jackknife resampling
The loadings of any probabilistic principal components
based model can be used to identify variables responsi-
ble for the structure in the data. Rather than examining
the (typically large number of) point estimates of the
loadings alone, a gauge of the uncertainty associated
with the loadings can be obtained through estimation of
their standard errors.
Here the jackknife resampling method [32,33] is

implemented. Standard errors are estimated by recom-
puting the loadings (i.e. re fitting the relevant PPCA
model) with the ith observation removed from the data-
set giving the loadings matrix W-i, for i = 1, . . ., n. The
jackknife standard error for the jth loading on the kth
principal component is then estimated as

SE w
n

n
w wjk jk
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n
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∑  
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The standard errors can then be used to compute 95%
confidence intervals (CIs) for the individual loadings.
Such CIs can be used to identify loadings which differ
significantly from zero on a selected principal compo-
nent in the optimal model. Those variables whose load-
ings are significantly different from zero relate to the
variables responsible for the structure within the data.
This approach therefore provides a sparse list of relevant
variables.
Computation time is often an issue when using the

EM algorithm to fit statistical models, and employing
the jackknife technique to obtain standard errors would
clearly exacerbate this problem. In practice computation
times are considerably reduced by choosing good start-
ing values for the algorithm for each of the n runs when
using the jackknife. Here the maximum likelihood esti-
mates of the model parameters when fitted to the entire
data set are employed as starting values for each of the
jackknife runs, considerably reducing computational
costs.

Metabolomic datasets
The datasets used here were derived from a study pre-
viously reported [34]. Brie y, animals were randomly
assigned to two treatments groups and treated with pen-
tylenetetrazole (PTZ, treated group) or saline (control
group) for a period of 4 weeks. A third treatment group
consisted of animals who received one injection only and
these data are not used within this paper. Throughout
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the treatment period urine was collected from the ani-
mals in collection tubes containing 1% sodium azide sur-
rounded by ice. The animals had no access to food
during this time but had free access to water. At the end
of the treatment period brain regions were isolated and
metabolites extracted as previously described [34]. NMR
spectra were acquired and the spectra were integrated
into bin regions of 0.04 ppm using AMIX (Bruker)
excluding the water regions (4.0-6.0 ppm).
The urine dataset used herein was constructed from

NMR spectra acquired from urine collected on day ten of
the study; it consists of 18 spectral profiles (from 9 trea-
ted and 9 control animals) over 189 spectral bin regions.
The brain dataset comes from animals in the control

group only with spectra acquired from tissues from four
brain regions: the pre-frontal cortex, hippocampus, cere-
bellum and brainstem. In total, there are 33 spectral
profiles over 164 spectral bin regions.

Results
Application of PPCA to metabolomic data
To explore the effect of treatment with PTZ, a PPCA
model was fitted to the urinary metabolomic data. Para-
meter estimation was achieved via the EM algorithm. A
number of PPCA models with varying numbers of prin-
cipal components was fitted; a modified Bayesian Infor-
mation Criterion (BIC) was used to aid selection of the
optimal model (that is, the required number of principal
components q) where a higher value of the criterion
indicates a preferable model.
The fitted PPCA model is illustrated in Figure 1. Fig-

ure 1A shows that the modified BIC is maximized by a
model with five principal components (PCs); such a
model explains 84% of the variation within the urine
spectra data. Should the principal scores be required as
a reduced dimensional input to further statistical model-
ing of the data, the modified BIC clearly indicates that a
five dimensional representation is optimal. Overall, it
represents an unambiguous means of selecting the opti-
mal number of principal components. For clarity, the
scores and loadings on the first two principal dimen-
sions are illustrated. The scores plot (Figure 1B) reveals
that grouping of animals with respect to their treatment
status is evident on the first principal component. The
95% posterior sets are small, indicating little uncertainty
in the scores. The associated loadings (which in turn
correspond to metabolites) are presented in Additional
file 2.
The 95% confidence intervals (CIs) of the individual

loadings are estimated using the jackknife technique –
these CIs are used to identify loadings which are signifi-
cantly different from zero. Of the 189 spectral bins in
the urine spectra dataset, 86 have loadings on PC 1 sig-
nificantly different from zero.

In order to further identify metabolites that strongly
influence the separation of the treatment and control
groups and which will serve as markers for treatment
response, significant loadings greater (in absolute value)
than 0.8 were selected. The cutoff value of 0.8 was cho-
sen by examining a frequency plot of the (absolute)
loading values of the significant spectral bins. A region
in the plot in which the number of selected significant
spectral bins drops steeply while the loading values
remain relatively constant may be used as an indication
of a cutoff point. In the current analysis, the plot (in
Additional file 2) drops at the value 0.8.
Seventeen spectral bins had (absolute) loading values

greater than the cutoff point of 0.8 and are illustrated in
Figure 1C, along with their 95% CIs. Further analysis
was performed to identify which of these bin regions
differ significantly between the two treatment groups
(using a t-test, correcting for multiple testing). Of the
seventeen spectral bins, ten had signal intensities which
were significantly different between the two groups.
Included in these changes were bin regions due to the
drug administered (1.74 ppm 1.86 ppm, 1.9 ppm, 2.22
ppm, and 3.1 ppm). Taurine levels (3.30 ppm and 3.46
ppm), dimethylamine (2.74 ppm) and one unassigned
peak (6.06 ppm) were significantly lower in the treated
group, while isocitrate levels were significantly higher
(2.98 ppm) in the treated group.

Application of PPCCA to metabolomic data
In addition to the urine metabolomic data the weight of
each of the eighteen animals was recorded. Inclusion of
this covariate in the analysis was achieved using the
PPCCA model. Specifically, the covariate is incorporated
to the PPCA model by allowing it to influence the score
of each animal in the principal subspace. From (3), the
expected value of the score of animal i, δi, is modeled as
a linear function of its covariate (i.e. weight):

 
 

 
i i

q q
i
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= =
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⎥
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1
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where a10, . . ., aq0 are intercept parameters for each
dimension of the principal subspace and a11, . . ., aq1

are slope parameters for the weight covariate (denoted
ci1 for animal i) for each dimension of the principal sub-
space. Hence the influence of an animal’s weight on
their score in the principal subspace is explicitly mod-
eled and can be interpreted through the parameter
matrix a.
The EM algorithm was employed to fit the PPCCA

model to the urine spectra and the weight covariate.
Figure 2A shows that the modified BIC is maximized by
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a model with five principal components (PCs). Examina-
tion of the (two dimensional for clarity) scores plot
(Figure 2B) and the loadings plot (in Additional file 2)
indicates that while the parameter estimates on the first
principal component dimension remain relatively
unchanged from the fitted PPCA model, the estimates
on the second principal component dimension differ
slightly. The general structure of the scores and loadings

remains relatively unchanged suggesting that the ani-
mal’s weights are not influencing the separation between
treated and control animals on PC1. Additionally, it is
apparent (Figure 2B) that the uncertainty associated
with the estimated scores increases under the fitted
PPCCA model. Selection of inferential bin regions iden-
tified the same seventeen regions as those obtained
using the PPCA model (Figure 2C).
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Figure 1 Results of fitting a PPCA model to the urine dataset. A. Plot of the modified BIC values and the proportion of variation explained
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The influence of the weight covariate can be quanti-
fied by examining the associated regression parameter
matrix, detailed in Table 1. Standard errors of the
PPCCA regression parameters were estimated using
jackknife resampling. The parameter estimates and the
associated 95% CIs show that an animal’s weight has a
significant negative effect on the second principal

component only (a20 = 4.08 and a21 = -6.28) and is not
contributing to the treatment effect observed on PC1.

Application of MPPCA to metabolomic data
MPPCA was applied to the brain metabolomic data in
order to determine the number of inherent groups
(if any) in the data. This application also illustrates the
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Figure 2 Results of fitting a PPCCA model to the urine dataset with weight as a covariate. A. Plot of the modified BIC values and the
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pitfalls of assuming a single PPCA model when explor-
ing heterogeneous data.
The scores plot resulting from fitting a single PPCA

model to the brain spectral data is illustrated in Figure
3-it is immediately clear that there is a grouping (or
clustering) structure within the set of 33 observations.
With such a strong clustering structure it would seem
extremely unlikely that the same set of principal axes
would be relevant to each group. Fitting a MPPCA
model simultaneously clusters the data into groups and
reduces the dimension of the data within each group.
Thirty-two different MPPCA models were fitted to the

33 spectra by varying the number G of PPCA models in
the mixture (each representing a group) from 1 to 4 and
the number of principal components q from 1 to 8. Fig-
ure 4 is a heat map illustrating the modified BIC value
for each fitted MPPCA model; the BIC suggests that the
optimal model is the MPPCA model with four groups
and seven principal components. This model can be

used to cluster the observations into four groups and to
visualize the data in each group within its principal sub-
space, hence exploring the structure relevant to each
group. This method provides an objective means of
identifying groups within the data.
In this illustrative example of the clustering and

dimension reducing ability of the MPPCA model, the
origin of each of the spectra was known. Thus, treating
the brain region of origin as an observations’ ‘true’
group, the clustering performance of the method can be
assessed, where each observation is assigned to the
group for which they have largest posterior probability
of membership, under the optimal MPPCA model. In
the current example, the model correctly clusters all
observations into their brain group of origin (Table 2).

Table 1 Regression parameter estimates from the fitted
PPCCA model

Intercept Slope

PC 1 (a1) -0.87 (-3.34, 1.61) 1.34 (-2.47, 5.15)

PC 2 (a2) 4.08 (2.44, 5.72) -6.28 (-8.57, -3.99)

PC 3 (a3) 0.86 (-0.07, 1.78) -1.32 (-2.77, 0.14)

PC 4 (a4) 0.18 (-1.03, 1.38) -0.28 (-2.13, 1.58)

PC 5 (a5) 0.03 (-2.20, 2.26) -0.04 (-3.32, 3.23)

95% CIs are given in parentheses. Those estimates significantly different from
zero are highlighted in bold.
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Figure 3 The scores plot for a single PPCA model fitted to the
brain spectra. Each black dot denotes a score in the two
dimensional principal subspace. The grey ellipses are the 95%
posterior sets illustrating the uncertainty associated with each score.
An underlying group structure is clearly apparent.

1 2 3 4 5 6 7 8

PCs

1

2

3

4

G
ro

up
s

BIC Values

Figure 4 A heatmap of the BIC values for MPPCA models fitted
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better the model. The optimal model with G = 4 and q = 7 is
indicated with a cross.

Table 2 Cross tabulation of the group membership of
subjects based on the estimated MPPCA model and the
brain region of origin

Cerebellum Brain
stem

Pre-frontal
cortex

Hippocampus

Group 1 8 0 0 0

Group 2 0 8 0 0

Group 3 0 0 9 0

Group 4 0 0 0 8
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Furthermore, the model correctly separates the prefron-
tal cortex and hippocampus samples which overlap in
the scores plot under the PPCA model (Figure 3).
The usefulness of this approach in the metabolomics

field lies in its application to studies where the number
of underlying groups and the group membership of each
subject is unknown-the MPPCA model can be used to
identify G and the members of each group within a
study. Examples of such studies include the identifica-
tion of disease phenotypes or treatment responsive
phenotypes.

Conclusions
Principal components analysis is the dominant statistical
method currently employed within the field of metabo-
lomics. Principal components analysis has many merits
and is particularly well used and understood by metabo-
lomic researchers. However, the scope of principal com-
ponents analysis is limited and extensions (to make use
of additional data sources, for example) are not possible,
due to the lack of an underlying statistical model. As
metabolomic research becomes more prevalent and data
intensive, the development of methods which retain the
familiar characteristics of principal components analysis
while having additional analytical properties is of
immediate importance.
This article demonstrates how probability density

based methods can be used in the analysis of data
resulting from metabolomics studies. Probabilistic prin-
cipal components analysis (PPCA), and its equivalence
with traditional PCA, is introduced in [12]. Thus PPCA
retains the familiar and useful properties of PCA, but is
based on a flexible statistical model. Standard statistical
tools are then available for use – in this article a model
selection criterion is employed as a principled approach
to selecting the number of principal components to
retain. Additionally, uncertainty in the model estimates
is assessed and standard errors are derived through the
use of the jackknife technique. This provision of stan-
dard errors further aids model interpretation as infer-
ence on important model parameters such as loadings
can be performed. Here, standard errors are employed
to construct confidence intervals which are then used to
indicate which loadings (and in turn metabolites) under-
lie the data structure.
In this article a novel model extension for PPCA, prin-

cipal components and covariates analysis (PPCCA), is
proposed. The PPCCA model offers a flexible way of
including informative additional information in the
PPCA model. In the context of metabolomics, this of
particular interest, as covariates can be hugely influential
on the metabolomic pro le. Jointly modeling such data
in conjunction with metabolomic data is essential to

facilitate comprehensive data analysis and understand
the true metabolic changes occurring as a result of a
particular stimulus. Overall, incorporating covariates in
the PPCA model directly models any variation due to
the covariates, thus ensuring that the principal compo-
nents provide a clear picture of the structure underlying
the data.
The use of a mixture of PPCA models as a simulta-

neous clustering and dimension reduction technique for
metabolomic data was demonstrated successfully. This
application represents a robust approach to identifying
the number of groups within a dataset. It has great
potential use within the metabolomics field for identify-
ing metabotypes which are responsive to certain treat-
ments. Additionally, a mixture of probabilistic principal
components and covariates analyzers is an intuitive
model extension which would provide clustering,
dimension reduction and covariate modeling capabilities.
Overall, the present study details novel methods for

analysis of metabolomics data which are freely available
through a software package called MetabolAnalyze [20];
the package provides the facility to fit a PPCA model, a
PPCCA model or a MPPCA model to metabolomic
data, or indeed any other suitable data set.

Additional material

Additional file 1: Statistical details of model fitting.

Additional file 2: Loadings plots and plots to aid selection of the
number of influential spectral bins.
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