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Abstract

Background: Genome-wide association studies (GWAS) using Copy Number Variation (CNV) are becoming a
central focus of genetic research. CNVs have successfully provided target genome regions for some disease
conditions where simple genetic variation (i.e., SNPs) has previously failed to provide a clear association.

Results: Here we present a new R package, that integrates: (i) data import from most common formats of
Affymetrix, Illumina and aCGH arrays; (ii) a fast and accurate segmentation algorithm to call CNVs based on
Genome Alteration Detection Analysis (GADA); and (iii) functions for displaying and exporting the Copy Number
calls, identification of recurrent CNVs, multivariate analysis of population structure, and tools for performing
association studies. Using a large dataset containing 270 HapMap individuals (Affymetrix Human SNP Array 6.0
Sample Dataset) we demonstrate a flexible pipeline implemented with the package. It requires less than one
minute per sample (3 million probe arrays) on a single core computer, and provides a flexible parallelization for
very large datasets. Case-control data were generated from the HapMap dataset to demonstrate a GWAS analysis.

Conclusions: The package provides the tools for creating a complete integrated pipeline from data normalization
to statistical association. It can effciently handle a massive volume of data consisting of millions of genetic markers
and hundreds or thousands of samples with very accurate results.

Background
High resolution oligonucleotide array platforms with
millions of markers have enabled the study of copy
number variation (CNV). CNVs are alterations of the
genome in which small segments of DNA sequence are
duplicated (gained) or deleted (lost) [1-5]. These altera-
tions can affect regulatory regions or coding portions of
a gene, and have been found associated with a number
of genetic disorders and some complex heritable
diseases [6].
In contrast to SNPs, which rely on having linkage

disequilibrium with the underlying causal mutation,
CNVs are more likely to point the underlying biological
cause that affects the phenotype of interest. This is
because the duplication or deletion can readily explain a
gain or loss in gene expression levels. While it has been
shown that that common CNVs can be tagged well with

SNPs (77%) [4,5], Conrad et al. [5] also argue for the
need to consider all classes of variation (SNPs and all
structural variants, common and rare) in genome wide
association studies. In this context, CNVs affecting small
regions (in the order of a few kilobases) or structurally
complex CNVs (e.g., CNVs without shared boundaries,
or nested CNVs) as seen by [7] require high resolution
microarrays (millions of probes) and very accurate tech-
niques in placing the copy number change locations.
Detection of rare CNVs also requires large sample sizes
making essential computationally efficient tools for the
CNV extraction.
The complete analysis of CNV association requires

three main steps: i) normalization, ii) segmentation, and
iii) common alteration and association analysis. The
objective of the normalization is to clean as much as
possible the data from all known sources of experimen-
tal variation unrelated to copy number changes. In con-
trast to SNP association studies, where we can perform
genotyping for each probe individually after normaliza-
tion, studies using CNVs require the identification of
contiguous stretches of probes with the same underlying
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copy number change. Thus, CNV association studies
require a more complex pipeline. In this paper we pre-
sent a new R package (R-GADA) that facilitates the
implementation of a complete pipeline from data nor-
malization to the final CNV association analysis. Since
data normalization is highly specific of each microarray
technology the package can import normalized data
from several packages such as aroma. affymetrix
and tools provided by Illumina and Affymetrix. The seg-
mentation algorithm implemented in the package is
based on the Genome alteration detection analysis
(GADA) [8]. Compared with circular binary segmenta-
tion (CBS) [9], one of the most accurate segmentation
algorithms available, GADA has similar or better accu-
racy and is several orders of magnitude faster. Recently,
GADA has been used by [5] and [10] to analyze very
large data sets. GADA had a limited availability as a C/
Matlab library, and lacked a complete pipeline to facili-
tate the analysis that the presented package provides.
The package presents new functionality for automati-
cally splitting the data in files for each sample and chro-
mosome, which can then be analyzed in parallel in a
multicore computer. After fitting the GADA model, R-
GADA offers efficient methods for adjusting the final
segmentation sensitivity and false positive rate, as well
as a complete set of tools for visualizing and reporting
copy number alterations. Most prominently, R-GADA

offers tools for identifying population structure in the
CNV data that can be taken into account on the final
case-control CNV association study. The pipeline offers
a flexible computational framework that can easily
accommodate changes in any stage of the analysis to
fulfill the requirements of the study.
The package is demonstrated on a large dataset

consisting of 270 Hapmap samples (Affymetrix Human
SNP 6.0 array sample data). We generated case-control
data associated with some CNVs illustrating a potential
scenario encountered on GWAS using CNVs. The latter
exemplifies the entire analysis process from data
normalization, segmentation, recurrent CNV analysis,
population structure correction, to the final statistical
association analysis; see the illustration of pipeline analy-
sis in Figure 1. More examples are provided through the
R-GADA user manual and the Google group http://
groups.google.com/group/gadaproject used for providing
support.

Software main features
Importing normalized data to gada
Data can be imported to gada from Illumina, Affymetrix or
any other platform that provides information about ratio
intensities such as aCGH. We have implemented three
different functions for this purpose: setupGADAIllu-
mina. setupGADAaffy and setupGADAgeneral.

Figure 1 Pipeline analysis. Analysis strategies for CNV association studies. On the left, we show the main steps of the pipeline, and on right
the algorithms used in each step. The algorithms in bold are explicitly used in the present paper; alternatives procedures, easily adaptable in the
pipeline, are also shown.
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setupGADAIllumina function uses information
obtained from BeadStudio tools http://www.illumina.com.
The software allows information to be provided in either a
unique text file or a file per individual (or groups of
individuals). Alternatively, setupGADAaffy can import
data from the Affymetrix Genotyping Console 3.0 (GTC3)
http://www.affymetrix.com that extracts normalized log2
ratio intensities from a collection of CEL files. The gada
package also handles files containing log2 ratios of other
platforms, such as aCGH with the function setupGADA-
general, which can also be used for cases without chro-
mosome position information. Throughout this paper we
interchangeably use the terms log2 ratios or hybridization
intensity ratios when we refer to these normalized values.

Breakpoint identification using sparse Bayesian
learning (SBL)
The underlying model for the DNA copy number and
the hybridization ratio intensities observed for each
probe in the array is illustrated in Figure 2. The number
of copies for each autosomal portion of the human
genome is generally 2 but, sometimes, small portions of
the DNA are duplicated or deleted originating CNV
polymorphisms.
The log2 ratio of the array probes increases with the

number of times its underlying DNA sequence is pre-
sent in the genome. The normalization step, which is
specific of each array platform, should correct for

inherent array biases; so contiguous probes sampling the
same CNV have the same log2 ratio average.
Thus, the problem of copy number detection can be

casted as a segmentation analysis, where the objective is
to identify the set of breakpoints and copy number
values that most likely originated the observed data. In
the GADA model, the experimental data y is explained
by a copy number signal x, made of piece wise constant
segments, and a random error Î,

y x= + = + Fw (1)

The piece-wise component can be conveniently
decomposed on a special base F = {fm}m = 0.. M-1 of step
functions at probe m. If x has very few breakpoints,
then most of the coefficients of the expansion will be
zero, and thus the vector of weights w will be sparse.
Using sparse Bayesian learning (SBL) [11], this sparse

vector of weights can be computed as a maximum a
posteriori estimate

w∧ = − − −argmin log ( | ) log ( | ) log ( ),
w

p y p pw w   (2)

where the first two terms are normally distributed - N

(Fw, s1) and Πm m mN w( | , )0 1 − respectively -and the

vector of hyperparameters a follows a gamma distribu-
tion ΠmΓ (am|a,b). While a and other distribution
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Figure 2 Probe log2 ratio intensities. Schematic representation of probe log2 ratio intensities with two underlying CNVs. Four breakpoints (a1,
a2,a3 and a4) separate two altered segments with average intensities c3 and c1, from the unaltered segments with baseline c2.
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parameters are estimated from the data, the parameters
a and b are directly controlled by the user.
Typically b is set to zero as an uninformative prior,

and a takes values within the range 0.2 and 0.8. The
user then adjusts the level of sparseness solely with the
parameter a. The reader is referred to Pique-Regi et al.
[8] for more details on the application of Sparse
Bayesian Learning (SBL) to segmentation analysis.

Backward elimination (BE)
The significance of each segment’s breakpoint is
assessed with the t-statistic [8], computed with the para-
meter estimates provided by the SBL step.

t
w j

FIFI
j =

′ −

∧
| |

[ ]
.

 2 1
(3)

where FI is the matrix representation of the reduced
basis F for which wj ≠ 0. Breakpoints with small t are
discarded with a backward elimination (BE) procedure,
until the segment with lowest t achieves a predefined
threshold T. This backward elimination ranking of
breakpoints with the adjustment of T is obtained with a
very small computational cost.
The SBL and BE procedures make no assumptions on

the amplitude of the reconstructed segments. The
objective is to provide a nearly optimal set of ampli-
tudes and breakpoint positions that best fits the log2
ratios observed in the array. Once the breakpoints are
fixed, in order to achieve the minimal residual error,
the amplitude corresponding to each segment is given
by the average hybridization level of all the probes that
fall inside that segment. The consequence of this model,
is that segments that correspond to the same underlying
copy number state may be given a different reconstruc-
tion amplitude; and, an additional step has to be used
to classify these segments into a copy number (0, 1, 2,
3, 4, ...) or alteration status (Non-Altered, Gain and
Loss). Here, we adopt the latter three state classification
strategy and focus on alterations not comprising the
extent of a whole chromosome. Hence, we first estimate
the base-line Non-Altered amplitude by calculating the
median value of all reconstructed segment amplitudes
in a chromosome. Then, we use the same threshold
T to classify all the segments into Gain (Loss) state if
the segment amplitude is significantly above (below) the
base-line amplitude, or into Non-altered state otherwise.
This approach classifies the relative copy number state
of each segment with respect the number of copies the
chromosome has. For cases, where whole chromosome
alterations are expected, the base-line amplitude can be
fixed by the user.

Multivariate analysis
The copy number calls generated in the previous
section are categorical variables with three levels: loss,
no-change and gain in copy number. For this data,
Multiple Correspondence Analysis (MCA) [12] can be
used as a unsupervised group classification. One of
features of MCA is its principle of distributional
equivalence, which assures invariance in the results
when rows or columns with identical conditional
proportions are merged. This allows the identification
of common CNV regions that can be used in the ana-
lysis without loss of information. Note that this feature
is not required in SNP analysis that use PCA. A super-
vised discrimination of CNV maps can also be per-
formed with a Multiple Correspondence Discriminant
Analysis (MCDA). In this case, CNVs that are impor-
tant for the discrimination can be ranked according to
their correlation to the class direction (l) on the k-th
principal axis subspace [13]
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rather than to the axes themselves. In this equation Vi

(k) is the coordinate of class centroid i in the direction
of class l; xij is the aggregated indicator matrix of seg-
ment callings for the group i and segment j. This corre-
lation can be tested for significance with a permutation
test on the class labels and can also be used to rank the
variables according to their importance to discriminate
each class. The ranking allows the selection of a group
of CNVs which are most relevant for the discrimination.
A subsequent unsupervised classification with the
selected variables confirms their relevance in population
labeling.

Implementation
The package streamlines CNV segmentation analysis,
separated into three major processes: 1) Importing data
files containing the normalized log2 ratio intensities of
either Illumina or Affymetrix arrays or any other tech-
nology such aCGH, 2) applying GADA and 3) summar-
izing and visualizing results. These three steps can be
performed for an individual array or for multiple sam-
ples. In the latter case, the software separates data into
different files, one for each sample, allowing an easy way
to perform parallel computation.
The functions of the package, their call and arguments

are illustrated in detail on the Additional File 1 where
specific example applications are described. The file is
the user’s manual that gives a detailed tutorial for
analyzing specific data-sets.
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Importing normalized data
The pipeline analysis of several samples requires a spe-
cial data management for the input data. Specialized
functions like splitDataBeadStudio, for Illumina
data, and those in aroma.affimatrix package are
used to build the directory structure required by gada.
Raw data for n subjects stored in a single file is split
into n files within the subdirectory “rawData”, created
automatically in the working directory. Loading data
into the R session is performed by either setupPar-
GADAIllumina or setupParGADAAffy. An R object
of type “setupGADA” is created and taken as input for
the segmentation routines. This data handling ensures
smooth conversion of array output to suitable input for
the segmentation algorithms.

Segmentation procedure
Segmentation is made of two consecutive algorithms
implemented in two separate R-functions within the
gada package. The first function (parSBL) uses sparse
Bayesian learning (SBL) to discover the most likely
positions and magnitudes for a change in copy number,
i.e. the breakpoints. The SBL model is governed by a
hierarchical Bayesian prior, which is uninformative with
respect to the location and magnitude of the copy num-
ber changes but restricts the total number of break-
points. Sensitivity, given by the maximum breakpoint
sparseness, is controlled by the hyperparameter a. The
second function (parBE) is an algorithm that uses a
backward elimination (BE) strategy to rank the statistical
significance of each breakpoint obtained from SBL. The
results from parSBL and parBE are stored in separate
files, one for each sample.

Parallel computation
The package enforces a strict directory structure on the
working directory to perform the analysis of multiple
samples. However, the only required directory is that
containing the raw data. This structure is designed to
reduce memory demands and to easily set up simulta-
neous parallel processes, a main and novel feature of the
present implementation.
While the analysis is readily installed to perform single

background process, if multiple processors are available,
the computing time can be greatly reduced. This facility
is implemented with the snow and Rmpi packages
http://cran.r-project.org/web/packages/snow. Parallel
computation is straight-forward after loading the
previous packages.

Single array
In the case of analyzing a single sample, the file man-
agement system is not required. Data can be directly
loaded on the R console from a text file containing the

log2 ratios for each probe. Setting up the loaded data
into a “setupGADA” object is still required and depends
on its original format. This is done with setup-
GADAIllumina, setupGADAAffy or setupGADA-
general as previously described. Segmentation follows
from the sequential application of the single array func-
tions SBL and BackwardElimination.

False discovery rate
The critical value T required in the BE step is used to
establish the final degree of desired sparseness by
adjusting the level of FDR. The procedure also requires
the specification of the parameter MinSegLen, which
determines the minimum number of altered probes in
each segment. The two-step strategy (SBL and BE)
allows the flexible adjustment of sparseness after break-
point estimation. Specifically, optimal T is found with-
out re-computation of parSBL. Table 1 shows suitable
combinations of parameters to achieve desired sensitiv-
ity and FDR.
A simulation study illustrates the behavior of FDR as

function of T and MinSegLen. The general simulation
model follows [14], however, we have changed the
length of the altered and non-altered segments for more
realistic matching of non-cancer settings. Figure 3
shows the FDR for different T and MinSegLen values.
As expected, FDR decreases when T or MinSegLen
increases.

Summarizing and displaying segmentation results
The segmentation obtained by GADA returns a collec-
tion of segments with breakpoint positions on the most
likely locations for copy number change, and segment
amplitudes corresponding to the average log2 ratios of
the probes falling between two consecutive breakpoints.
The summary function determines which of these ratios
correspond to possible changes in copy number, by
establishing alteration boundaries. The limits, if not
selected by the user, are estimated using the × chromo-
some of a reference population containing males and
females. Segments with amplitudes below (above) the
interval limit are reported with a loss (gain) in copy
number. All other segments are considered as non-
altered. The result of summary is an R-object of class
data.frame that stores the name, chromosome and
position of the initial probe of each altered segment,
and the number of subject with such alteration.

Table 1 Parameter selection

(higher sensitivity, higher FDR) <–> (aa = 0.2,T > 3)

<–> (aa = 0.5,T > 4)

(lower sensitivity, lower FDR) <–> (aa = 0.8,T > 5)

Recommended settings of a and T depending on the desired level of
sensitivity and FDR.
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The R package plotrix is used to display the result-
ing segments within a given chromosome or across the
whole genome. As a data.frame, the output is ready
for downstream association analysis implemented on R.
Alternatively, they can be exported in BED format and
imported into any of the popular genome browsers such
as those from UCSC and Ensembl.

Multivariate Analysis
The output of the GADA algorithm is easily converted
to a matrix of CNVs(columns) and subjects (row) with
entries -1 (loss), 0 (no-change) and 1(gain). The function
getReducedData produces the matrix for all the
CNVs across the genome; it also groups and filters the
variables. Contiguous variables are grouped together
within blocks whose extremes do not differ in more
than VarSimil%, and variables (or blocks) with less
than 1-subVariation% across subjects are discarded.
The parameters are set by the user. If desired, this data
reduction can also be performed with other algorithms
(i.e. CGHregions), which can be, nevertheless, slower
and less flexible for dealing with a large amount of data.
MCA is performed with the general function dudi.

acm from ade4, an R package for multivariate analysis.

The variable scores, onto the principal component
sub-space, can be used as co-variates of an association test
to account for population stratification. Specific plots are
implemented for displaying such analyses. For identifying
a subset of CNVs with the highest prediction power, an
MCDA can be performed. More specialized functions,
enveloping those of ade4, have been developed for this
type of analysis. This functions include discrimin.cnv
and rank.variables. The second of these ranks the
CNVs according to their correlation onto the population
centroids. Variables can be selected by establishing a mini-
mum value for the correlation, assessing their statistical
significance with a permutation test, or maximizing the
cross-validation accuracy on a train set. Note that the two
last options are more computational demanding.

Association Analysis
Association analysis is implemented for a logistic regres-
sion model and a likelihood ratio test (LRT). The func-
tion multiCNVassoc repeatedly computes the LRT,
comparing a model that includes covariates (e.g., sex,
age, population, etc.) with the same model for which the
CNV under consideration has been added. The p-value
is then computed using a Chi-squared test. This
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Figure 3 GADA parameter T as a function of FDR. The figure shows the increment of T-threshold with False discovery rate (FDR) in a
simulation study with aa = 0:2. A selection on T can clearly fix a desired FDR in CNV detection.
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function returns an object of class “multiCNVassoc” that
can be printed or plotted using the R generic functions
print and plot respectively. We also provide a proce-
dure to deal with multiple comparisons. The function
getPvalBH returns the p-values for association cor-
rected by the Benjamini-Hochberg(BH) method. This is
a heuristic method that is robust against positive depen-
dence and increasingly conservative as correlation
increases. Association tests that need to be corrected for
population stratification can incorporate as covariates
the scores of the first eigen-values of an MCA.
Note that in this association study CNVs are not

treated as simple SNPs. One single probe (not all the
probes falling under a CNV) is chosen as a representa-
tive of a CNV block. This forms a reduced matrix that
is obtained as explained in the previous section. If a
complex structure of overlapping CNV segments exists
across the samples, multiple alternative segments will be
considered for association. Although, the example con-
sidered here only covers common CNVs, we anticipate
that the approach presented here will be helpful for
analyzing more complex scenarios and for developing
better association tools. Particularly for rare CNVs,
novel association analysis methods are necessary where
genes (or DNA regulatory element) are disrupted at dif-
ferent non-overlapping parts.

Connection with Aroma.Affymetrix
GADA can be called within the Aroma.Affymetrix
package http://www.aroma-project.org/, which provides
a comprehensive normalization strategy, as used by [6]
and an analysis framework for copy number detection
and visualization. GADA segmentation tools are spe-
cially adapted to the package pipeline, by replacing,
within an Aroma.Affymetrix session, the function
CbsModel() by our implemented function GadaModel().

Results and Discussion
In this section we show the results obtained in the main
stages of a typical analysis pipeline (the main features of
the modules and the type of input/output information
they use). The results are illustrated with two sample
data sets. The first consist of a set of 8 samples using
Illumina Human1M-Duo arrays with 3 M probes. The
second dataset consist of 270 lymphoblastoid cell-lines
from the HapMap project using Affymetrix SNP 6.0
arrays. A more detailed, step by step, description of
these analyses can be followed in Additional file 1.

Segmentations
The sample data for eight (non HapMap) subjects has
over 3 M probes and comes in a BeadStudio format.
The first three columns contain name of probe, chro-
mosome and genomic position. Subsequent columns

store the (log2) ratios for each individual. After splitting
into files, loading and setting up, the data was segmen-
ted with an a = 0.8 and T = 8, a choice to optimize
FDR. A summary of the output of such segmentation is
illustrated as follows:
> allSamples
Summary results for 8 individuals
NOTE: 814 segments with length not in the

range 0-Inf bases and with mean log2ratio
in the range (-0.24, 0.14) have been
discarded
Number of Total Segments:
# segments Gains % Losses %
444 38 8.6 406 91.4

Summary of length of segments:
Min. 1st Qu. Median Mean 3rd Qu. Max.
2169 20510 58600 221200 167700 8547000
Number of Total Segments by chromosome:

segments Gains Losses
Chromosome 1 34 2 32
Chromosome 2 23 2 21
Chromosome 3 16 0 16
Chromosome 4 26 0 26
Chromosome 5 16 2 14
Chromosome 6 74 9 65
Chromosome 7 14 2 12
Chromosome 8 29 2 27
Chromosome 9 12 0 12
Chromosome 10 18 5 13
Chromosome 11 23 3 20
Chromosome 12 10 1 9
Chromosome 13 5 0 5
Chromosome 14 15 1 14
Chromosome 15 12 0 12
Chromosome 16 32 2 30
Chromosome 17 25 2 23
Chromosome 18 9 0 9
Chromosome 19 18 2 16
Chromosome 20 11 0 11
Chromosome 21 6 0 6
Chromosome 22 16 3 13
In this example the limits of the non-altered probes

were estimated at (-0.24, 0.14) and all segments are con-
sidered (length: 0-Inf). If the user is interested in consider-
ing only segments in a given range, the argument
length.base should be changed indicating their mini-
mum and maximum size. Plots of the segments are readily
obtained for the whole genome (Figure 4) or a given chro-
mosome (Figure 5). The processing time for the whole
analysis (Mac OS × 10.4.11 2.33 GHz), set up sequentially
(not parallel), for eight subjects was approximately 7 min
30 s. Specifically: loading and setting up data: 200.3 s, SBL:
180.1 s and BE: 63.9 s. These times are reduced propor-
tionally to the number of computing cores if the process is
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parallelized. A previous study [8] showed that the differ-
ences in sensitivity and FDR between GADA and CBS are
small (<3%). However, GADA is 100-fold faster. Here we
show that a complete implementation of the algorithm
with functions for data handling, segmentation and output
writing is still computationally efficient. Given that the
core of the segmentation is only two sequential functions,
the method is amenable for incorporation as a routine
step into association analysis.
The gain/loss ratio of 8.6% versus 91.4% obtained on

this 8 samples is different of that of HapMap samples.
For the HapMap samples, we obtain 26.2% gain and
73.8% loss CNV segments which is similar to that pre-
viously reported by [5]. This higher number of deletions
than duplications may be attributed to the greater tech-
nical challenge of robustly detecting duplications using
oligonucleotide arrays.

Multivariate analysis
MCA analysis was performed for the HapMap http://
www.hapmap.org sample population of 270 subjects
(30 trios of CEU and Yoruban each, 45 Han Chinese
and 45 Japanese from Tokyo). Data was initially
segmented across all chromosomes and a reduced matrix
(1465 CNV blocks) was obtained with varSimil = 0.99
and subVariation = 0.90. In Figure 6 we plot the
subject scores in the principal axes subspace of a MCA.
Labelling each individual with its corresponding group
color, we observe that three populations, namely CEU,
YRI and CHB-JPT are clearly differentiated. The finer
separation between CHB and JPT is not captured at with
this unsupervised classification. When analyzing a CNV
association study, this loadings can be used to correct for
differences in ancestries, as Price et al. [15] have done for
SNP data using PCA scores.

Figure 4 Probe segmentation across the whole genome. The figure illustrates the chromosomal positions of copy number alterations found
in a sample of 8 individuals. Gains are depicted in red while loses in blue. In this sample alterations are found all across the genome, particularly
with more frequency in sexual chromosomes.
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A supervised classification (MCDA) of the samples
was performed with discrimin.cnv and followed by
rank.variables. The ranking of the variables
according to their maximum correlation across group
axes is illustrated in Figure 7. We chose 87 variables,
which had correlations higher than 0.5, to run an MCA.
The results are shown in Figure 8. We observe that this
reduced set of variables is able to classify, unsupervised,
the populations similarly to the complete set of CNVs.
This suggests that population ancestry can be accounted
to a high degree with the sampling of very few markers.
In addition, we run MCA for the two groups CHB-JPT
and chose the optimal variables that revealed a degree
of separation between such groups, see Figure 9.

Association analysis
One of the main aims of CNVs studies is to assess
association between CNVs and disease. In order to illus-
trate how to perform this analysis using gada, we have
generated case-control data for HapMap samples. We
have randomly generated cases and controls with higher
proportion of cases for YRI population. Figure 10 is a
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typical outcome of an association analysis. Here, we
illustrate the -log10 p values for association analyses with
and without adjusting for population stratification, show-
ing the adequate correction achieved by using MCA.

Conclusions
We present a package that implements a very flexible
pipeline for coupling diverse steps in the analysis of
copy number alteration studies. The pipeline integrates
in a single R-package the main components of such
analysis, such as consecutively coupling normalization,
segmentation, recurrent region identification, population
stratification analysis and association tests. This unified
frame-work and its implementation allow different
modules to be easily substituted as new methods or
improvements are made.
Some methods incorporate B-allele frequency in the

detection of CNVs. Although GADA does not use this
information, the algorithm is as precise as CBS and other
algorithms that do use such information [8]. It has been

shown, however, that the segmentation of the B-allele fre-
quency is informative in detecting mosaicisms as described
in [16]. The implementation of GADA in the present pipe-
line is easily adaptable to this type of analysis and is illu-
strated in http://groups.google.com/group/gadaproject.
Among its main features, the pipeline enables the

import of data from multiple sources (e.g., Affymetrix
GTC, Illumina and Aroma.affymetrix). In addition, its
segmentation algorithm is very fast, easily parallelized,
and its sensitivity can be adjusted quickly. Multiple plot-
ting tools are offered to display results, which can also
be exported back into standard formats or used in
further R-based analyses. The R-GADA package also
integrates new tools for identifying population structure
and association analysis. The pipeline is applied to the
HapMap samples, illustrating the importance of all the
steps in the final association analysis. The package
should be specially useful for upcoming CNV associa-
tion studies which are expected to increase in the num-
ber of subjects and probes tested. The segmentation
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kernel is especially suited for detecting rare and small
CNVs, but further efforts are required to develop novel
tools that can link these CNVs to underlying functional
elements on the DNA sequence.

Availability and requirements
• Project name: Gada Project
• Project home page: http://groups.google.com/
group/gadaproject
• Operating system(s): Platform independent
• Programming language: R 2.9.0
• License: GNU GPL

Additional material

Additional file 1: User’s Manual. gada-manual.pdf is the user’s guide of
gada, where step-by-step segmentation on two sample data sets and
the classification of the HapMap groups are described in detail.
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