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Abstract
Background: Accurate evaluation and modelling of residue-residue interactions within and between proteins is a key 
aspect of computational structure prediction including homology modelling, protein-protein docking, refinement of 
low-resolution structures, and computational protein design.

Results: Here we introduce a method for accurate protein structure modelling and evaluation based on a novel 4-
distance description of residue-residue interaction geometry. Statistical 4-distance preferences were extracted from 
high-resolution protein structures and were used as a basis for a knowledge-based potential, called Hunter. We 
demonstrate that 4-distance description of side chain interactions can be used reliably to discriminate the native 
structure from a set of decoys. Hunter ranked the native structure as the top one in 217 out of 220 high-resolution 
decoy sets, in 25 out of 28 "Decoys 'R' Us" decoy sets and in 24 out of 27 high-resolution CASP7/8 decoy sets. The 
same concept was applied to side chain modelling in protein structures. On a set of very high-resolution protein 
structures the average RMSD was 1.47 Å for all residues and 0.73 Å for buried residues, which is in the range of 
attainable accuracy for a model. Finally, we show that Hunter performs as good or better than other top methods in 
homology modelling based on results from the CASP7 experiment. The supporting web site http://
bioinfo.weizmann.ac.il/hunter/ was developed to enable the use of Hunter and for visualization and interactive 
exploration of 4-distance distributions.

Conclusions: Our results suggest that Hunter can be used as a tool for evaluation and for accurate modelling of 
residue-residue interactions in protein structures. The same methodology is applicable to other areas involving high-
resolution modelling of biomolecules.

Background
Accurately predicting the protein structure is one of the
major goals of computational structural biology. In the
recent years, computational methods for evaluation and
modelling of proteins and their interactions have
emerged and become, in some areas, a viable alternative
for time and resource-consuming structural biology
experiments. However, predicting the structure of a pro-
tein from its amino acid sequence is still a very challeng-
ing task and new approaches to model and evaluate
protein structures are needed.

All proteins share the same backbone, with their struc-
ture and function determined solely by the side chains of
the 20 different amino acids. Therefore, a precise model-
ling of residue-residue and residue-backbone interactions
is a crucial aspect in computational evaluation of pro-
teins. Computational methods rely on a potential func-
tion to evaluate the interactions within proteins [1]. In
general, two types of the potential functions currently
exist: physics-based [2-4] and knowledge-based [5]. The
former rely on the basic physical principles to describe
the forces that drive structure and function of proteins.
However, physical force fields applied to proteins rely on
estimations and simplifications to make them computa-
tionally feasible [6]. Knowledge-based potentials (KBP)
derive statistical preferences on different features from
structural and sequence databases and implicitly capture
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the many factors affecting the protein in its natural envi-
ronment. A few problems are related to statistical poten-
tials including the Boltzmann assumption [7], additivity
of terms [8], choosing a reference state [9] and transfer-
ability of potentials [10,11]. However, knowledge-based
potentials have numerous applications and were success-
fully used in threading [12], validation of experimentally
determined protein structures [13,14], ab initio structure
prediction [15,16], decoy discrimination [17-19] and
more.

In spite of the successful use of knowledge-based
potentials in many areas, they have limited applicability
for high-resolution description of side chain packing. In
coarse-grained potentials, various approximations are
used to avoid explicit consideration of side chains; thus, a
residue can be represented as a single pseudo atom
located at the center of mass of side chain atoms [20,21].
Such approximation limits the ability of coarse-grained
potentials to reconstruct the fine details of residue-resi-
due interactions. All-atom potentials treat side chain
atoms explicitly and usually derive statistics on pairwise
atom-atom distances [18,22]. However, each atom is con-
sidered separately and not as a part of a side chain. There-
fore, information on mutual constraints between atoms is
lost. Importance of orientation dependence of side chain
packing was recognized and applied to fold recognition
[23,24] and to analysis of pi-pi, pi-cation, and hydropho-
bic interactions [25]. In the recent study, orientation
dependence was tackled by treating residues as being
composed of rigid blocks [17]. Obtaining statistics on
mutual orientation of the blocks allowed successful decoy
discrimination and accurate side chain modelling [17,26].
An alternative approach for a detailed description of resi-
due-residue interactions was recently presented by us
[27]. This approach defines the interaction of two resi-
dues in terms of four distances between two pairs of
atoms (Figure 1). The pairs of atoms are either chosen
from the residues side chains or backbones so as to define
side chain-side chain (ScSc) interactions or side chain-
main chain (ScMc) interactions, respectively. Such
description allows detailed analysis of preferable geome-
try of residue interactions [27].

In the current study, we utilise these 4-distance data to
develop a novel knowledge-based potential, called
Hunter. The statistical preferences on the geometry of
residue-residue interaction were derived from a large set
of high-resolution protein structures and normalized
according to a random model. We demonstrate that
Hunter can be successfully applied to evaluate and model
protein structures. Examples include the discrimination
of native structures from decoys, predicting side chain
conformations in protein structures and homology mod-
elling.

Results
Development of the knowledge-based potential
We began by defining pairs of atoms, among which four
distances were calculated, for each of 190 ScSc and 18
ScMc residue-residue interactions. As described in the
Methods, pairs of atoms with maximal number of con-
tacts in 9394 high-resolution protein structures were
identified (Atom Set 1; see Additional file 1: Table S1 and
S2). More than 3 × 106 contacts were collected, with an
average of 16,000 contacts per residue pair. As an alterna-
tive approach, we picked pairs of atoms manually based
on consideration of functional group characteristics for a
given amino acid (Atom Set 2). For example, carboxyl
oxygens were chosen in Asp and Glu pairs, carbonyl oxy-
gen and side chain nitrogen - in Asn and Gln pairs, termi-
nal guanidyl nitrogens - in Arg, etc. (Table S3). Even
though the number of contacts was similar in both cases,
the set of atoms defined with our first approach demon-
strated slightly better performance (Table 1), and was
therefore used in the subsequent study. Throughout
Hunter's development stages, we evaluated Hunter's per-
formance by its ability to remodel side chains of known
protein structures and calculated the RMSD between the
model and the X-ray structure. The assumption being
that the accuracy of side chain modelling is directly
related to the overall performance of the KBP.

Given the atom contact pair, a residue-residue contact
is represented by four distances {dist} = {d11,d12,d21,d22},
where dij is the distance between atom i of the first resi-
due and atom j of the second residue (Figure 1). All con-
tacts collected for a given residue pair provide
information regarding the preferred 4-distance combina-
tions and the probability to observe them in native pro-
tein structures. To incorporate the derived distance
information into the KBP, contact data collected for a
particular residue pair were used to build a 4-dimensional
histogram (Figure 2). For a given residue-residue contact
(AA), each bin in the histogram gives the probability
P({dist}|AA) for a defined set of distances. Such probabil-
ity distributions were used to score interactions between
any pair of residues by applying inverse Boltzmann rela-
tion (Equation 2).

The bin size greatly affects the histograms: using 1 Å
interval per bin resulted in blurring the exact details of
residue-residue interaction, however, using excessively
small bins raised the level of noise because of the decreas-
ing quanta of data points per bin. We tested bins of size
0.25 Å, 0.5 Å, 0.75 Å and 1 Å, and came to the conclusion
that 0.5 Å best served the aims of this study. Considering
the rapid growth of the PDB database, smaller bin defini-
tions may be of advantage in the future. Still, even 0.5 Å
interval per bin does not produce a smooth distribution.
The small amount of data results in a high level of noise.
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Therefore, an additional step of smoothing was applied
such that the bin value was recalculated as an average of
values in adjacent bins and the bin itself. The different bin
sizes and atom identities were tested for their accuracy to
remodel the side chains of a set of 30 proteins (Table 1).
As can be seen, the best performance was achieved using
Atom Set 1, a bin size of 0.5 Å, and data smoothing. Inter-
estingly, the reduced rotamer library performed much
better than the full library, suggesting that the informa-
tion content in the ScSc term is not sufficiently large to
handle the additional degrees of freedom given in the full
library (Table 1).

It should be noted that, in principle, there are various
ways to chose pairs of atoms defining ScSc interactions.
In addition to the two described above, we examined also
the possibility to choose atom pairs that would maximize
Kullback-Leibler distance (DKL): a "distance" from a real
to a random distribution in our case. This would allow
deriving the most informative set of atoms for a given set
of PDB structures. Nevertheless, the performance of the
DKL-set was worse than the two described above (data not
shown). Among the described atom sets the preference
was given to Atom Set 1 as it allows collecting better con-
tact statistics, which is the main limiting factor in the 4-

distance description. This set performed also slightly bet-
ter, though, the difference between the two sets might be
not very compelling (Table 1).

We found that smoothing improved performance of the
ScSc term even though the current algorithm has the
obvious drawback that the central bin value is over-
whelmed by its neighbours. Nevertheless, the perfor-
mance of the smoothed ScSc term was superior over non-
smoothed one for the majority of bin sizes (Table 1). The
same trend is observed for both Atom Set 1 and 2. It is
interesting to note that the accuracy of non-smoothed
ScSc term increases with a larger bin size, while with the
smooth term an opposite trend is observed. Though non-
smoothed distributions are more detailed, the current
limitations in computational optimization of side chain
conformations do not allow adequate sampling of such
distributions (see discussion).

When using only the EScSc term an RMSD of 2.28 Å was
obtained for the reduced rotamer library and 2.89 Å for
the full library (Table 1). As there are many other factors
effecting side chain conformations in protein structures
that are not covered by the EScSc term, we added addi-
tional terms to Hunter: a ScMc contact term, a rotamer
probability term and a modified Lennard-Jones term

Figure 1 Four-distance definition of inter-residue interactions for the Asn-Gln pair. (a) To define the interaction, one pair of side chain atom is 
chosen in the first residue (Asn) and another pair is chosen in the second residue (Gln). The four distances (OE1-OD1, OE1-ND2, NE2-OD1, NE2-ND2) 
define mutual positions of chosen side chain atoms. (b) A 2-dimensional projection (OD1-NE2 versus ND2-OE1 distance) of the 4-distance distribu-
tions for the Asn-Gln pair. Peaks in the histogram indicate preferred distance combinations. The peak indicated by the arrow corresponds to the ar-
rangement of side chain atoms in the panel (a). The histogram was built with a bin size of 0.25 Å, without smoothing. The histogram is represented 
as a contour plot generated with MATLAB. All 4-distance distributions can be viewed in the supporting web site http://bioinfo.weizmann.ac.il/hunter/.

http://bioinfo.weizmann.ac.il/hunter/
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(Equation 1). Our knowledge-based potential was opti-
mized on a set of 30 proteins and tested on a larger set of
94 protein structures. We noted that the combination of
Erot and Elj terms by itself already gave reasonable accu-
racy in side chain modelling. However, adding the EScSc
term and the EScMc term further increased the accuracy.
Thus, using all four terms for modelling with full rotamer
library gave 1.47 Å RMSD on a set of 94 structures (Table
2). Modelling with the reduced rotamer library resulted
in 1.52 Å RMSD on the same set of structures. We found
that the EScMc term by itself did not perform well though
combining it with EScSc term gave improvement in side
chain packing (Table 2). Two other terms were tested
with the KBP, a solvation term (both the Lazaridis-Kar-
plus approach [28] and the Eisenberg-McLachlan
approach were tested [29,30]) and an entropy term based
on the move acceptance ratio at each position during
Monte Carlo minimization. Unfortunately, both terms
did not improve side chain modelling accuracy and there-
fore were not included in the final potential (data not
shown).

Recognition of native protein structures
We investigated whether the ScSc term can be used to
identify the native structure within a set of decoys. This
would tell us about general applicability of the developed
term for evaluating accuracy of residue-residue interac-
tions in protein structures. We tested the ScSc term for its
ability to identify native protein structure within the
Decoys 'R' Us decoy sets [31]. Out of 34 decoy sets, the
native structure was ranked first in 29 (Table 3). In the
remaining 5 cases, two native structures were determined
by NMR. The failure of Hunter in these cases may not be
surprising, as NMR data do not comply with our 4-dis-
tance distributions [27]. For the other three cases the fail-
ure may be attributed to the low quality of the native
structures (2.8 Å). Next, we compared Hunter's perfor-
mance to four other methods [17,32]. We found that
these methods performed quite similarly to ours: Hunter
- 29/34, OPUS-PSP [17]- 31/34, DOPE [32]- 28/32,
DFIRE [19]- 27/32 (see Table S4 for details). Most of the
decoys in the Decoys 'R' Us sets differ significantly from
the native structures (the closest structure had RMSD of
~4 Å). Therefore, the performance of Hunter was tested

Table 1: Performance of the ScSc knowledge-based term in modelling

Atom set Histogram type Bin size, Å Side chain RMSD, Å

Reduced RL Full RL

Atom Set 1 Smoothed 0.25 2.37 2.95

0.50 2.28 2.89

0.75 2.41 3.00

1.00 2.47 3.04

Non-smoothed 0.25 2.69 3.32

0.50 2.58 3.21

0.75 2.55 3.08

1.00 2.46 3.04

Atom Set 2 Smoothed 0.25 2.42 3.11

0.50 2.38 3.03

0.75 2.43 3.16

1.00 2.53 3.17

Non-smoothed 0.25 2.67 3.47

0.50 2.62 3.27

0.75 2.53 3.14

1.00 2.43 3.06

To determine the best combination of parameters for the ScSc term, a set of 30 proteins was remodelled using the ScSc term only with 
different atom sets, bin sizes, and with or without histogram smoothing. The side chain RMSD was calculated for side chains atoms excluding 
Cβ atoms. Results for both the reduced and full rotamer libraries are presented.
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on additional high-resolution decoy sets [33], where the
Cα RMSD (between decoys and native structures) ranges
from 1.1 Å to 5 Å. Hunter correctly identified the native
structure in 217 out 220 decoy sets. Again, for NMR
structures the success rate was much lower, only 30 out of
80 (data not shown).

A more challenging decoy set is to use CASP submis-
sions. These represent decoys that other experts found
compelling enough to submit for CASP. The ScSc term
only was tested to recognize the native structure among a
large set of modelled structures submitted for each of 73
targets solved by X-ray for high-accuracy template-based
modelling in CASP7/8 (Table 4). Our ScSc term correctly
identifies the native structure in 53 cases (73%). Consid-
ering only high-resolution targets (resolution < 2 Å), the
ScSc term scores the target structure with rank 1 in 24
cases and rank 2 in two cases out of 27 targets. This sug-
gests a significant difference in the detailed architecture
of the modelled structures relative to the native structure.
We found that among other tested methods, OPUS-PSP
performed slightly better than Hunter while the other

methods showed much lower discriminative power
(Table S5). Figure 3 shows four examples of calculated
Hunter scores for decoys taken from the CASP7/8 set. In
all four cases the Z-score of the wild-type structures is
the lowest. It is worth noting that no correlation is
observed between RMSD and score of decoy structures
and/or a funnel-like shape, suggesting a qualitative differ-
ence between the real structure and the models.

Monte Carlo side chain optimization
For side chain modelling the ScSc term was combined
with the ScMc, the Lennard-Jones and the rotamer terms.
Simultaneous optimization of a large number of side
chain conformations is a computationally demanding
task. In the current study, we used Monte Carlo Simu-
lated Annealing minimization (MCSA). As a stochastic
algorithm MCSA does not guarantee to identify a global
minimum (GM). However, it is known to identify near-
GM solutions efficiently [34]. We investigated the imple-
mentation of this minimization protocol and our poten-
tial for side chain modelling. During the side chain

Figure 2 Six 2-dimensional projections of the 4-distance distribution for the Asn-Gln pair. Interaction between Asn and Gln is defined by four 
distances between OD1, ND2 atoms of Asn and OE1, NE2 atoms of Gln. The 4-distance data for Asn-Gln were collected from high-resolution protein 
structures (see Methods for details) and are displayed in six 2-dimensional projections. Each projection represents mutual distribution of two particular 
distances. The peaks in distributions indicate preferred mutual arrangements of atoms under consideration. The histograms were built with a bin size 
of 0.25 Å without smoothing. The histograms are represented as contour plots generated with MATLAB.
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optimization of barnase-barstar complex (Figure 4), the
model with the lowest score has an RMSD of 1.44 Å,
while the native structure rebuilt using discrete rotamers
(best-rotameric) has an RMSD of 0.43 Å. Due to rota-
meric constraints of the side chain optimization, the
native structure is never attainable. Irrespectively of the
rotamer library, MCSA never sampled the region
between the best-rotameric structure and the structure
with the lowest score. Starting the MCSA from the best-
rotameric structure did not change the outcome (Figure 4
inset), indicating that the lowest scoring structure is dic-
tated by our potential rather than by the implementation
of the minimization protocol. While the best-rotameric
structure is very close to the native one in terms of
RMSD, its score is much higher. It might be that all struc-
tures with RMSD between 0.43 Å and 1.44 Å have a bad
score because of the clashes resulting from the use of dis-
crete rotamers. To further investigate this issue, a modi-
fied version of MCSA was implemented, where at each
step one dihedral angle was modified arbitrarily by 5° for
off-rotamer sampling. However, this did not improve sig-
nificantly the results.

Side chain prediction within proteins
We tested Hunter's performance for side chain placement
on the set of 100 proteins compiled by Word et al. [35].
This set includes very high-resolution protein structures
(1.7 Å or better, R-value of 20% or better, and sequence
identity < 30%) with various minor corrections, including
180° flips of side chain amides (where needed). We
excluded from our analysis six structures (PDB IDs:
1ETM, 1NOT, 1MET, 1CNR, 1EDM, 2ERL) since their
chain length is less 50 amino acids, and these structures
are mostly peptide-like. The side chains in 94 high-reso-
lution protein structures were remodelled using the opti-

mal combination of weights, and the modelled structures
were compared to the native ones resulting in an average
RMSD of 1.47 Å (Table 5; see also Table S6 for additional
details). The RMSD for buried and exposed side chains
was 0.73 Å and 1.72 Å. The χ1-angles were predicted cor-
rectly within ± 15° cutoff for 79%, 89%, and 72% of all,
buried, and exposed residues respectively (59%, 75%, 51%
when considering χ1- and χ2-angles). Even better results
were obtained when using a subset of 49 protein struc-
tures, which are not part of a larger macromolecular
assembly and do not contain ligands: 1.43 Å for all resi-
dues and 0.68 Å for buried ones (Table S6). For most of
this study we used RMSD as a measure of side chain
accuracy, as we believe that it better represents the accu-
rate position of side chain atoms.

Comparing Hunter to other commonly used side chain
placement methods (Table 5) shows that Hunter (RMSD
= 1.47 Å) performed better on the same set of 94 proteins
than SCWRL4 (1.65 Å), SCCOMP (1.72 Å), SCAP (1.72
Å) and OPUS-Rota (1.56 Å). Hunter is the slowest of
these methods, with an average run time of 1 minute per
protein versus 5 seconds for SCWRL and OPUS-Rota.
However, the slowest component in Hunter is the Len-
nard-Jones term, while the ScSc and the ScMc terms are
not computationally demanding. Interestingly, we
noticed that prediction accuracy depends on the individ-
ual protein structure: modelling 94 proteins with differ-
ent methods showed large differences between the
proteins, independent of the method used. One common
term that could explain this is the percentage of exposed
residues in a protein: a correlation factor of 0.5 was found
between per protein side chain RMSD and the percentage
of exposed residues.

To compare the accuracy of modelling individual amino
acids we used nRMSD (see Table S7 for details), which is
the relation between the average RMSD of randomly
placing a side chain and the RMSD for the modelled side
chain (nRMSD of 1 Å is for random placement). Not sur-
prisingly, hydrophobic and aromatic residues were mod-
elled better than polar and charged residues as they tend
to be more buried (Figure 5). Figure 6a provides a visual
illustration of the accuracy of side chain modelling for the
protein barstar (PBD ID 1BRS and 2HXX). Nearly all the
buried side chains were placed in their correct conforma-
tion within the limit of the rotamer library, with a few
exposed side chains adopting a wrong conformation.
However, these surface exposed residues adopt different
side chain conformations also in the two crystal struc-
tures of barstar, suggesting that the accuracy of model-
ling is inherently limited. In Figure 6b, we demonstrate
modelled side chain conformations of barnase starting
from the X-ray and NMR structures (PDB IDs 1A2P and
1FW7, respectively; backbone RMSD between X-ray and
NMR structure is 1.07 Å). We show that Hunter's side

Table 2: Contribution of different terms to side chain 
prediction accuracy

Side chain RMSD, Å

All Buried Exposed

EScSc, EScMc, Erot, Elj 1.47 0.73 1.72

Erot, Elj 1.52 0.77 1.78

EScSc, EScMc 2.28 1.39 2.61

EScSc, Erot 1.87 1.36 2.05

EScSc, Elj 2.04 0.97 2.41

Elj 2.13 1.04 2.51

Erot 2.25 2.05 2.29

The contribution of the different term to Hunter was evaluated 
by rebuilding side chain conformations on a test set of 94 
proteins. The full rotamer library was used with Hunter (see 
Methods for details).

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ETM
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1NOT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1MET
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CNR
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1EDM
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2ERL
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1A2P
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FW7
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Table 3: Discrimination of native structures in Decoys 'R' Us multiple decoys sets

Resolution, Å Rank of native 
structure

Z-score of native 
structure

Number of 
decoys

RMSD range, Å

4state_reduced

1sn3 1.20 1 5.3 660 1.3 - 9.1

4rxn 1.20 1 5.7 677 1.4 - 8.1

4pti 1.50 1 4.4 686 1.4 - 9.3

1ctf 1.70 1 4.7 630 1.3 - 9.1

1r69 2.00 1 6.6 676 0.9 - 8.3

3icb 2.30 15 2.5 654 0.9 - 9.4

2cro 2.35 1 4.1 673 0.8 - 8.3

fisa

4icb 1.60 1 6.6 500 4.8 - 14.1

2cro 2.35 1 5.4 501 4.3 - 12.6

1fc2 2.80 33 1.6 501 3.1 - 10.6

1hdd-C 2.80 1 5.3 501 2.8 - 12.9

fisa_casp3

smd3 ? 1 7.1 1200 8.5 - 17.0

1bg8-A 2.20 1 6.1 1200 6.0 - 15.8

1bl0 2.30 1 6.0 972 3.6 - 18.2

1eh2 NMR 1 4.4 2413 4.0 - 15.3

1jwe NMR 1 8.3 1407 7.8 - 20.9

lattice_ssfit

4icb 1.60 1 5.1 1988 4.7 - 12.9

1ctf 1.70 1 6.2 1999 5.4 - 12.8

1fca 1.80 1 4.2 1986 5.1 - 11.4

1pgb 1.92 1 6.2 1997 5.8 - 12.9

1beo 2.20 1 6.6 1998 7.0 - 15.6

1dkt-A 2.90 1 5.5 1995 6.7 - 14.0

1nkl NMR 1 5.2 1995 5.3 - 13.6

1trl-A NMR 1 5.8 1998 5.4 - 12.5

lmds

1igd 1.10 1 8.1 501 3.1 - 12.6

2ovo 1.50 1 5.6 348 4.4 - 13.4

4pti 1.50 1 5.2 344 4.9 - 13.2

1ctf 1.70 1 7.6 496 3.6 - 12.5

1b0n-B 1.90 1 5.3 498 2.4 - 6.0

1shf-A 1.90 1 7.7 437 4.4 - 12.3

2cro 2.35 1 7.7 501 3.9 - 13.5

1fc2 2.80 49 1.5 501 4.0 - 8.4

1bba NMR 501 -3.8 501 2.8 - 8.9

1dtk NMR 3 3.6 216 4.3 - 12.6

Each decoy structure and the native structure were scored and ranked using the Hunter's ScSc term only. Rank of 1 corresponds to the 
structure with the lowest score. The Z-score of the native structure was calculated to estimate Hunter's ability to discriminate the native 
structure from decoy structures. Resolution is of the X-ray structure.
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Table 4: Discrimination of native structures in CASP 7/8 decoys sets

Resolution, Å Rank of native 
structure

Number of 
decoys

Z-score of native 
structure

RMSD range, Å

CASP7

T0288 1.1 2 373 2.3 1.6 - 11.2

T0359 1.4 1 383 2.7 1.8 - 12.8

T0340 1.5 1 416 2.0 0.7 - 8.9

T0324_D1 1.5 1 342 3.4 1.6 - 13.3

T0324_D2 1.5 1 400 3.2 1.2 - 10.7

T0305 1.6 1 321 2.3 0.9 - 19.8

T0332 1.6 1 343 2.9 1.5 - 10.9

T0366 1.7 1 414 2.7 0.9 - 8.0

T0291 1.8 1 252 1.9 2.0 - 19.2

T0290 1.8 2 196 2.3 0.5 - 13.4

T0313 1.9 1 366 2.9 2.4 - 19.0

T0311 1.9 1 403 2.8 1.4 - 11.1

T0295_D1 1.9 1 295 2.2 1.1 - 15.1

T0295_D2 1.9 1 235 2.2 1.1 - 23.9

T0303_D1 1.9 1 194 3.9 1.7 - 14.1

T0308 2.0 1 385 2.1 1.3 - 13.9

T0317 2.0 1 341 3.1 1.6 - 13.1

T0346 2.0 6 348 1.8 0.4 - 13.6

T0339_D2 2.1 1 399 2.8 1.7 - 15.7

T0345 2.1 1 314 2.2 0.8 - 16.0

T0367 2.2 1 337 3.3 2.0 - 17.2

T0292_D1 2.2 4 298 2.2 1.3 - 10.8

T0292_D2 2.2 1 174 4.3 3.0 - 13.8

T0315 2.2 1 384 2.8 0.9 - 13.0

T0334 2.5 1 328 2.0 1.5 - 45.5

T0326 2.5 1 281 2.2 3.1 - 29.3

T0328 2.8 1 317 2.9 1.7 - 40.1

CASP8

T0488-D1 1.3 1 341 3.3 1.1 - 5.6

T0508-D1 1.5 1 283 3.5 1.3 - 11.8

T0459-D1 1.7 1 296 3.5 1.4 - 8.4

T0423-D1 1.7 1 349 3.2 1.2 - 15.1

T0454-D1 1.8 22 464 1.5 0.8 - 6.2

T0504-D3 1.8 1 241 3.8 1.2 - 21.6

T0445-D1 1.8 1 174 6.1 1.4 - 11.2

T0392-D1 1.8 1 327 2.2 1.2 - 8.1

T0447-D1 1.9 1 116 4.3 1.3 - 32.5

T0505-D1 1.9 1 246 3.0 1.3 - 10.3

T0506-D1 1.9 1 297 3.9 1.4 - 11.3

T0432-D1 1.9 1 169 3.9 1.4 - 17.1

T0388-D1 2.0 1 133 3.5 1.1 - 10.7

T0402-D1 2.0 1 310 4.2 1.5 - 22.6
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chain prediction accuracy is within the difference
between the X-ray and NMR structures, indicating that
Hunter provides high-resolution information.

We have shown previously that the differences between
interfaces and monomeric proteins relate to the amino
acid composition but not to the chemistry of the interac-
tions [36]. Therefore, we evaluated also the suitability of
Hunter for interface remodelling. We identified 20 non-
redundant protein-protein hetero-complexes solved to
high resolution [37] and remodelled the side chains. In
this case, the interface residues were modelled at the

same level of accuracy as all residues (1.63 Å interface
residues RMSD versus 1.67 Å all residues RMSD; Table
S8). The overall worse RMSD values for the 20 protein-
protein complexes comparing to the 94 monomeric pro-
teins used above may be due to the lower resolution of
the structures of the complexes (1.2-2.3 Å for the 20 pro-
tein-protein complexes versus 0.8-1.7 Å for the 94 mono-
mers). Next, we modelled a set of 20 dimers which were
solved to high resolution (similar to the monomer set of
94 structures), and indeed the average RMSD for Hunter
improved to 1.57 Å.

T0418-D1 2.0 1 335 3.4 1.1 - 11.2

T0418-D2 2.0 1 344 4.2 1.5 - 10.2

T0422-D2 2.0 1 299 3.1 1.6 - 12.3

T0491-D1 2.0 12 319 2.3 1.6 - 10.9

T0428-D1 2.0 3 335 2.4 0.7 - 9.4

T0426-D1 2.1 3 168 2.7 0.5 - 6.0

T0396-D1 2.1 1 403 2.8 1.4 - 13.9

T0398-D1 2.1 1 273 2.5 0.6 - 33.5

T0398-D2 2.1 1 301 2.9 0.6 - 10.6

T0453-D1 2.1 3 322 3.2 1.3 - 8.0

T0435-D1 2.2 1 296 3.4 1.8 - 12.6

T0400-D1 2.2 1 270 3.9 1.3 - 11.3

T0452-D1 2.2 1 279 4.5 1.7 - 13.2

T0452-D2 2.2 1 319 3.2 1.0 - 15.0

T0486-D1 2.3 1 302 4.2 1.3 - 9.9

T0404-D1 2.4 1 317 3.7 0.9 - 7.4

T0479-D1 2.4 4 317 2.7 1.2 - 7.7

T0456-D2 2.5 2 331 2.6 2.7 - 8.8

T0390-D1 2.7 1 287 2.5 1.4 - 16.7

T0455-D1 2.7 1 297 3.3 1.4 - 8.3

T0416-D1 2.7 1 265 2.6 1.4 - 42.1

T0450-D1 2.7 3 263 2.6 1.5 - 53.5

T0458-D1 2.7 7 342 1.9 0.6 - 9.3

T0438-D1 2.8 5 254 2.8 1.3 - 11.2

T0438-D2 2.8 11 311 1.7 1.0 - 12.5

T0442-D1 2.8 11 250 1.4 1.1 - 25.1

T0442-D2 2.8 66 315 0.8 0.7 - 21.6

T0444-D1 2.8 7 314 2.2 0.9 - 7.8

T0461-D1 2.8 1 307 2.9 1.6 - 10.0

T0441-D2 2.9 1 271 3.1 1.8 - 7.2

T0470-D1 2.9 36 334 1.3 1.7 - 11.0

T0470-D2 2.9 16 324 1.6 1.0 - 13.4

See a legend of Table 3 for details.

Table 4: Discrimination of native structures in CASP 7/8 decoys sets (Continued)
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Side chain prediction in comparative modelling
So far, we used the native backbone to model side chains.
While this is of academic interest, the real test would be
to model side chains on homology-modelled structures
[38]. Using templates always results in backbone inaccu-
racies in the final models that in turn affect the accuracy
of side chain prediction. We collected CASP7 predictions
submitted by the six top-performing groups for each tar-
get domain in the high accuracy template-based model-

ling category (HA/TBM) [39]. Then, we compared the
submitted results to those generated by Hunter. As can be
seen in Table 6, Hunter performed as good or better than
the best side chain prediction method per model. We also
remodelled the side chains of NMR structures, and found
that the RMSD of the models equals that of the original

Figure 3 Discriminating the native structures in four CASP 7/8 de-
coy sets (T0359, T0340, T0488, T0508) using Hunter. Each structure 
in a particular decoy set was scored with Hunter ScSc term only. All ob-
tained scores were converted to Z-scores. The Z-score of each decoy 
protein was plotted against its Cα-RMSD to the native structure. The 
native structure (0 Å RMSD) is shown as large circle, and has the lowest 
score (indicated as ranks in Tables S4 and S5). In most cases no funnel-
like shape is observed.

Figure 4 Monte Carlo side chain optimization of barnase-barstar 
complex using Hunter. A model of the complex (PDB ID 1BRS) with 
the lowest score has a side chain RMSD of 1.44 Å (filled triangle; gray 
dots in the plot are the conformations sampled during a MCSA run). 
The native structure (filled circle) is never attainable in the side chain 
modelling due to use of a discrete rotamer library. Instead, the best 
rotameric structure for the complex would have a RMSD of 0.43 Å 
(filled square). None of the conformations in the region between 0.43 
Å and 1.44 Å is ever sampled. To investigate this problem, a MCSA run 
was started from the best-rotameric structure (see inset). As can be 
seen in the inset, such a MCSA run, nevertheless, converges to the 
same region as a standard run.

Table 5: Comparing performance of side modelling methods

Method RMSD (Å) Contact score χ1 (± 15°) χ1+2 (± 15°)

All Buried Exposed % %

Hunter 1.47 0.73 1.72 39 79 60

OPUS-Rota 
[26]

1.56 0.91 1.80 35 77 56

SCAP [50] 1.72 1.00 1.96 37 69 46

SCCOMP [42] 1.72 1.03 1.96 34 69 49

SCWRL4.0 [51] 1.65 0.87 1.93 35 76 55

Side chains were rebuilt using five different methods in a set of 94 high-resolution protein structures. The average statistics on side chain 
prediction accuracy was calculated in terms of side chain RMSD, contact score, and chi-angle prediction accuracy. Side chain RMSD was 
calculated for side chain atoms except Cβ. A residue was considered as exposed or buried if its relative solvent exposed area is greater or less 
than 15%, respectively. Contact score reflects amount of correctly predicted atom-atom contacts and is calculated as described in Methods.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BRS
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NMR structures in relation with the equivalent X-ray
structure (see also Figure 6b).

Discussion
Here, we introduce Hunter, a novel structure modelling
method. The method relies on a detailed description of
residue-residue interaction geometry as derived from
high-resolution protein structures. We demonstrate that

such 4-distance description can be used successfully to
evaluate protein structures and model side chain interac-
tions with high accuracy. It should be noted that it would
take at least 6 parameters to have a truly complete
description of ScSc geometry. However, because of the
limited size of the PDB, we opted to use four distances,
which provides a good compromise between the number
of parameters and the number of available data points.
Other authors used three parameters, as for example in
the classical treatment by Singh and Thornton to map the
position of single atoms relative to a predefined part of
the side chain [40]. We have also tried an alternative defi-
nition with three distances but found the results less sat-
isfactory. In this study, we used a culled list of protein
structures with a resolution of 2 Å or better and a maxi-
mum sequence identity of 90%. The relatively relaxed
threshold on sequence identity did not adversely influ-
ence the derived statistics as even small changes in pro-
tein structures result in variation of constrained
distances, thus the collected data is not redundant. In
spite of the large number of protein structures in the
database, for some residue pairs the number of extracted
contacts was low, which led to a low bin count in the his-
tograms. A large bin size may solve this problem; how-
ever, in such situation the distance constraints become
blurred. Instead, smoothing was applied and the bin size
of 0.5 Å was found to be optimal (Table 1). We found that
even the simplest smoothing algorithm improves side
chain prediction accuracy. This relates to several aspects
of the 4-distance definition: one is the noise in distribu-

Figure 5 Per residue side chain modelling accuracy. Per residue 
RMSDs after modelling using Hunter were collected for all side chain 
conformations on the set of 94 models. Each per residue RMSD was 
normalized (see Table S7 for details), and an average normalized RMSD 
was calculated. Hydrophobic residues are on the right side of the plot 
while polar ones are on the left side.

Figure 6 Evaluating side chain prediction accuracy using Hunter in X-ray and NMR structures. (a) Side chain conformations of the barstar struc-
ture were modelled using Hunter and compared to those determined in two different X-ray crystal structures. For most buried side chains, conforma-
tion predicted with Hunter is in a good agreement with observed conformations in the crystal structures. For a number of exposed residues (circled 
in the figure) Hunter's side chain conformation is different from those observed in crystal structures; however, their conformations differ also between 
the structures. (b) Side chains were rebuilt with Hunter starting from the X-ray or NMR structures of barnase (PDB IDs 1A2P and 1FW7, respectively; 
backbone RMSD between X-ray and NMR structure is 1.07 Å). RMSD between X-ray and NMR - 1.45 Å; X-ray modelled versus NMR modelled - 1.49 Å; 
X-ray versus NMR modelled - 1.54 Å; X-ray modelled versus NMR, 1.52 Å; X-ray versus X-ray modelled, 0.85 Å; NMR versus NMR modelled - 1.15 Å.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1A2P
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FW7
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tions due to the limited amount of contact data, and the
second is the mutual correlations in the 4-distance term.
This results in rugged histograms, which in turn affects
the efficiency of computational minimization. Smoothing
allows lowering barriers and improving MCSA perfor-
mance. Other computational methods like the dead-end
elimination algorithm [41] might be beneficial with 4-dis-
tance distributions and are being currently studied.
Another way to deal with histogram ruggedness is to rep-
resent probability density as a continuous function. To
this end we tried the Gaussian Mixture Model, however,
no improvement was achieved. A possible way to over-
come limited 4-distance data is by hierarchical splitting of
the histograms depending on population density. How-
ever, as this would slow the run time we did not imple-
ment this method.

Hunter was able to successfully identify native struc-
tures in multiple decoys sets. While decoys are similar to
native structure, the details of residue-residue interac-
tions are often incorrect. This is not the case for many of
the protein structures determined by NMR, where the
native NMR structure is already not optimal according to
the KBP and therefore does not differ much from decoy

structures. Similarly, we find that the resolution of the X-
ray structure correlates with decoy prediction accuracy
(Table 4). In the low-resolution structures the energy
minimization has a significant contribution, suggesting
that the accuracy of current minimization methods is
limited [6,27]. In decoy recognition, Hunter is basically
used as a "scoring" device, when geometry of the interac-
tion is evaluated according to derived statistical prefer-
ences. In this case the ruggedness of histograms does not
have a significant impact. Indeed, we found that
smoothed and non-smoothed distributions could be used
equally well for discriminating the native structure (data
not shown). At the same time, the smoothing is crucial
for side chain modelling, which involves sampling rugged
histograms with discrete rotamers. Importantly, combin-
ing the ScSc term and Lennard-Jones term for discrimi-
nating the native structure within decoys sets does not
improve the results in CASP7/8 sets. Presumably, the
packing in the submitted models was optimized using the
Lennard-Jones term while the 4-distance description is
orthogonal to the commonly used terms. Thus, it proba-
bly has considerable and novel merit as an after-the-fact

Table 6: Hunter's performance for side chain predictions in homology modelling of structures from CASP7

Number of targets RMSD, Å Contact score χ1 (± 15°) % χ1+2 (± 15°) %

Hunter 28 4.1 17.7 63 41

TS004 4.1 17.1 60 37

Hunter 26 3.7 20.9 61 40

TS020 3.7 18.9 60 38

Hunter 27 4.0 19.2 62 41

TS186 4.0 16.0 60 37

Hunter 5 3.0 27.6 69 46

TS191 3.1 20.8 64 39

Hunter 6 3.8 18.5 61 37

TS397 3.8 16.5 59 38

Hunter 6 3.9 18.0 63 39

TS556 4.0 17.8 60 38

The results of the top six groups in CASP7 (according to Read and Chavali [39]) were taken for examining Hunter side chain modelling 
accuracy in homology modelling. Best models submitted by each group for every target were collected and the average side chain prediction 
accuracy was determined (side chain RMSD, contact score, chi-angle prediction accuracy). Then, Hunter was used to rebuild side chains on 
the set same set of submissions, and side chain prediction accuracy was evaluated and presented below. For each set of submissions two 
rows are given. The first row shows side chain modelling accuracy with Hunter while taking backbone coordinates from the best model 
submitted by the corresponding group for each target. The second row shows performance in side chain modelling by the group in CASP7. 
The group name is given here according to the CASP7 experiment.
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evaluation of predicted models (as done in the CASP
tests).

Independently, the 4-distance ScSc and ScMc terms are
insufficient to accurately model inter-residue interac-
tions. While the EScSc and EScMc terms accurately define
the mutual position of the constrained atoms, these terms
do not define conformation of the entire side chain.
Therefore, to penalize unfavourable side chain conforma-
tions, the Erot term was introduced. The Elj term was
incorporated to optimize packing of the protein. Com-
bining the four terms EScSc, EScMc, Erot and Elj produced the
best results for modelling side chain conformations
(Table 2). We note that while adding the EScMc term to
EScSc alone improved the results, only a small improve-
ment was observed when the EScMc term was added to the
combination of EScSc, Erot and Elj terms (data not shown).
We think that a partial overlap of the components in our
KBP is the most plausible explanation for this fact. Pre-
sumably, EScMc adds only limited information over what is
already counted by EScSc, Erot and Elj terms. We also tested
a solvation term, and it did not improve side chain mod-
elling accuracy. We thought of two possible explanations:
it is possible that the KBP already implicitly captures sol-
vation effects, taking into account that the protein is sur-
rounded by water in the crystal environment. On the
other hand, solvation term might be of less importance in
side chain modelling contrary to protein design, as the
amino acid sequence is fixed.

Hunter was effective for side chain modelling and
allows modelling of different types of residue-residue
contacts, such as hydrogen bonding and pi-cation inter-
action without explicitly introducing their geometric fea-
tures. In this sense, it is similar to OPUS-PSP. However,
while in Hunter the interaction between a pair of residues
is defined in terms of 4 distances between only two pairs
of atoms, OPUS-PSP decomposes side chains into rigid
blocks and derives statistics on their preferred mutual
orientation. While both methods performed equally well
in discriminating native structure within high-resolution
Decoys 'R' Us and CASP 7/8 multiple decoys, Hunter
achieves better side chain prediction accuracy. We specu-
late that too many constraints (as in OPUS-Rota by con-
sidering interactions of individual blocks) may be counter
productive in side chain modelling.

In modelling high-resolution structures, the RMSD val-
ues obtained by Hunter for buried, surface and all resi-
dues are 0.73 Å, 1.72 Å, 1.47 Å for the 94 protein
structures and 1.43 Å, 0.68 Å and 1.70 Å for the clean set
of 49 structures (Table S6). Those should be compared to
the theoretical limit of accuracy, which is dictated by the
best-rotameric structure (which has an average RMSD of
0.4 Å), and by the deviation in the same structure solved
multiple times (which is 0.5, 1.0 and 0.8 Å for buried,

exposed and all residues, respectively) [42]. Thus, for bur-
ied residues the lower bound on the side chain prediction
accuracy expected to be ~0.64 Å RMSD (variance of the
sum of the two independent factors mentioned above),
which does not leave much room for improvement. This
is illustrated in Figure 6, where all buried residues of
barstar were perfectly modelled. The surface residues,
which deviated in the model, also deviated in two barstar
crystal structures or between the X-ray and NMR struc-
tures of barnase, showing the known tendency of surface
residues to be flexible. Interestingly, when comparing the
per amino acid type or per protein performance of
Hunter to other methods, the different methods showed
the same trends. Hydrophobic and aromatic amino acids
are modelled best while polar amino acids perform
worse. This is expected, as polar amino acids are more
frequently located on the surface.

Hunter performs also as good or better than the top
methods in comparative modelling when backbone coor-
dinates are not accurate (Table 6). Particularly, the con-
tact score (which evaluates the quality of predicted atom-
atom contacts) was better for the Hunter-refined models
than the submitted structures. While it is generally
accepted that accuracy of the backbone coordinates
affects accuracy of side chain placement, our results sug-
gest that Hunter should be less sensitive to this effect and
can absorb small backbone movement. This is due to the
fact that side chain placement is driven by side chain
interactions and thus less influenced by backbone confor-
mation.

One of our future goals is to employ the 4-distance
method for computational protein design, which is, in
general, a two-step process. First, a detailed model of a
protein or protein complex is built, and then, in the sec-
ond step, its energetic characteristics are evaluated. At
the moment Hunter is able to accurately model residue-
residue contacts. The second step, however, would
require dealing with additivity and independence of the
terms as well as accounting for additional factors like
interaction with water, entropic effects, and backbone
flexibility and is the topic of future research.

Conclusions
The Hunter knowledge-based potential uses a new 4-dis-
tance description of residue-residue interactions. We
demonstrate that the statistical preferences on the 4-dis-
tance geometry can be extracted from high-resolution
protein structures and applied to structure modelling. We
show that Hunter is successful in identifying native pro-
tein structure among decoy structures and in accurate
prediction of side chain conformations in protein struc-
tures. We describe and discuss all the necessary steps to
construct the potential and possible alternatives for the
choices being made. The supporting web site http://bio-

http://bioinfo.weizmann.ac.il/hunter/
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info.weizmann.ac.il/hunter/ is developed for the scien-
tific community to make the results of our study easily
accessible. The presented methodology described can be
employed in other areas involving high-resolution model-
ling of biomolecules such as refinement of low-resolution
structures, structure prediction, protein-protein docking
and modelling mutations [43].

Methods
Knowledge-based potential
The knowledge-based potential was constructed as a lin-
ear combination of 4 terms:

where EScSc is a knowledge-based term based on
detailed description of ScSc interaction geometry, EScMc is
a knowledge-based term based on detailed description of
ScMc interaction geometry, Erot is the rotamer term, Elj is
the Lennard-Jones term, and wScSc, wScMc, wrot, wlj are the
weights for each term. The terms of the potential are
detailed below.

Side chain-side chain (EScSc) and side chain-main chain 

(EScMc) contact terms

The EScSc contact term evaluates the geometry of ScSc
interaction between pairs of residues. This geometry is
defined in terms of 4 distances between two pairs of
atoms; each pair is from a different residue (Figure 1). For
every given pair of residues a specific set of 4 contact
atoms is defined. As Gly does not have a side chain, only
190 (out of 210 possible) ScSc interactions were defined
in the current study. To choose the set of 4 atoms, all pos-
sible combinations of 2 atoms per residue were defined. A
precompiled set of 9394 high-resolution protein struc-
tures was obtained from PISCES server [44] (resolution <
2 Å, mutual sequence identity < 90%, R-value < 0.25) and
the number of contacts between residues for each 4-atom
combination was determined. Two residues were consid-
ered to be in contact if at least one of the 4 distances was
less than 5 Å. For identifying real contacts, 5 Å is a rela-
tively long cutoff, and may include cases where another
piece of structure is in between. The final score (as
described further in this section) is derived as log of the
ratio Preal/Prand. At about 5 Å little difference should be
observed in inter-residue contacts derived from real and
random structures, and those long-range contacts are
mostly cancelled out [27]. In addition, as modelling is
done using rotamer space, we extended the distance defi-
nition because of their discrete nature.

The set of 4 atoms, which gave the largest number of
contacts for a given residue pair was chosen to define

geometry of ScSc interaction (Table S1). Noteworthy, dif-
ferent pairs of atoms may be used to define the interac-
tion with different residues. For example, NH1 and NH2
of Arg were chosen for the Arg-Lys pair, while CD2 and
NH2 were chosen for the Arg-Asp pair (Table S1).

The collected contact data were used to build the real
distribution - the probability of observing every 4-dis-
tance combination in high-resolution protein structures.
To this end, a four-dimensional histogram with a con-
stant bin size of 0.5 Å along each dimension from 0 to 10
Å was built. An additional step of smoothing was applied
such that the bin value was recalculated as an average of
values in adjacent bins and the bin itself. The number of
measurements within a single bin was divided by the total
number of measurements, thus the sum of all bin values
equals to one.

Similarly, the random distribution was built based on
contact data collected from randomized protein struc-
tures. These structures were obtained by modelling at
each position a side chain rotamer picked at random
from the backbone-dependent rotamer library (see
details on generating the rotamer library below). All
rotamers were treated equally without considering their
probabilities and irrespective of rotamer clashes. Clashes
do not interfere as the final score is derived as the ratio of
Preal/Prand, and thus a large Prand value would only
increase the unfavourable score for clashing distances.
The identities of amino acids during modelling were pre-
served. The set of randomized structures was build based
on the list of 9394 proteins described above.

The equation to calculate the EScSc term is given as fol-
lows:

where M is a number of residues, Preal and Prand are the
product of two probabilities:

P({dist}|AA) is the probability of observing the 4-dis-
tance combination for a given residue pair and P(AA) is
the probability to observe a ScSc contact for a given resi-
due pair in protein structures. High-resolution protein
structures and random structures were used to derive
Preal and Prand, respectively. The summation is done over
all unique contacting residue pairs. In a similar way, the
EScMc term was constructed to account for the ScMc inter-
action geometry (see Additional file 1: Supplementary
Methods for complete details).

E w E w E w E w EScSc ScSc ScMc ScMc rot rot lj lj= + + + (1)
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http://bioinfo.weizmann.ac.il/hunter/
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Rotamer term (Erot)

The rotamer term was incorporated to the potential to
penalize for side chain conformations with low probabil-
ity and is defined as follows:

where  is the rotamer probability as taken from the

backbone-dependent rotamer library [45],  is a
number of rotamers for a modelled residue, and M is a
number of residues.

Lennard-Jones term (Elj)

The packing of atoms in the protein structure is modelled
with the Lennard-Jones term as follows:

where εij is the depth of the potential well,  is the
distance at the minimum of the potential, and dij is the
distance between two atoms. The favourable energies
were accumulated in the Elja term and the repulsive ones
in the Eljr term. To avoid excessive repulsion due to close
placement of atoms during side chain optimization, the
repulsive term Eljr was linearized at a cutoff distance dij <

0.89 [46]. All protein heavy atoms in the Lennard-
Jones term calculations were grouped into 20 classes
(Table S9). The well depths for a pair of atoms were calcu-
lated as , where individual εi values for each

atom class were defined as in the CHARMM19 parame-

ter set [47]. The radii in calculating  = ri + rj dis-
tances were fitted to reproduce interatomic distances
observed in protein structures. To perform the fit,
PROBE software was used to determine atoms in direct
contact [35]. PROBE was run with an increased probe
radius of 1 Å (using "-Radius1.0" flag) assuming implicit
hydrogens ("-Implicit"). Mainchain-mainchain interac-
tions were included in the calculations ("-MC"). The
unformatted PROBE output (generated with "-Unformat-
ted" flag) was processed to extract all pairs of atoms in
direct contact in the set of 9394 high-resolution protein
structures. Then the interatomic distances were deter-
mined from the corresponding PDB structures. Distance
distributions were built for all 210 types of pairwise inter-

atomic distances. The peak location in each distribution
was used to identify the optimal interactomic distances.
No special consideration was given to different geome-
tries of interacting atoms (e.g. edge and face distances for
aromatic C). For polar atoms only the distances to non-
polar atoms were used to define the radii, to avoid the
shorter distances found in hydrogen bonds. To model
correctly polar-polar interactions, the optimal distance
between them in the LJ term was set to reproduce those
found in the PDB. Some other types were discarded as
not having a sufficient number of observations (< 10000).
The least-squares fitting of 20 atom radii was performed
for the remaining 91 pairwise distances with results pre-
sented in Table S9.

Rotamer library
A discrete set of side chain conformations from the back-
bone-dependent rotamer library was used to rebuild side
chains [45]. The original rotamer library was extended by
adding additional rotamers, whose chi-angles deviate by
one sigma from the tabulated values. Thus, a rotamer in
the original library with n dihedral angles is replaced in
the extended library by 3n. The rotamer probabilities
were recalculated assuming a normal distribution around
the tabulated chi-angles with the variances given in the
library. In addition, a reduced library was created by
ranking rotamers by probability and discarding low-prob-
ability rotamers (with a cumulative probability of 0.03).
This decreased the library size by half while maintaining
reasonable sampling accuracy. Both libraries were tested
for side chain modelling and are referred in the text as
"full" and "reduced" libraries.

Side chain placement
Monte Carlo Simulated Annealing (MCSA) method is
used to optimize side chain conformations [34]. Initially,
random rotamers were assigned to all side chains, with
the temperature being gradually raised till 95% of the
moves were accepted. Each MC move comprises of
choosing the position and the rotamer to be placed at that
position. Every position and every rotamer are sampled
uniformly at random. The rotamers are chosen from the
backbone-dependent rotamer library taking into account
the φ/ϕ backbone angles of the modelled position. If a
new state gets a lower score (Enew) than the previous one
(E0) the move is accepted. Otherwise, the move is
accepted with Boltzmann probability p = exp(-ΔE/T),
where ΔE = Enew- E0. During MC cycle the temperature
was gradually decreased to zero in 100 steps with 10000
rotamer substitutions at each step. The structure with the
lowest score was tracked during the optimization. At the
final stage, a quenching was performed: a position is
picked at random and every rotamer was tested at that
position. If a new rotamer lowered the score, it was kept;
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otherwise, it was rejected. The procedure was repeated
many times till the moment that any single rotamer at any
position does not improve the score further.

Fitting weights
The relative contribution of different terms in the KBP
was parameterized on a set of 30 proteins (PDB IDs: 1iib,
1bqk, 1d7p, 1bkr, 1nwp, 1svy, 1vhh, 1nbc, 1nkr, 1onc,
1xnb, 3std, 1kuh, 1m6p, 1c52, 1evh, 1vsr, 1mug, 2tnf,
1qft, 1flp, 1ido, 1mgt, 1cv8, 5cyt, 1npk, 1atz, 1dhn, 2cua,
1tx4) from the Protein Data Bank [48]. These proteins
share less than 30% sequence identity with each other and
with any protein in the test set (see Results). The weights
were calibrated in order to minimize the root mean
square deviation (RMSD) of side chain atoms between
the model and the native structure (note that similar
weights were obtained when fitting using a smaller (10
proteins) or larger (100 proteins) training set). In the first
step, the relative contribution of Erot and Elj terms were
determined by varying the parameter λ from 0 to 1 with
0.05 steps in the equation E = λErot+ (1-λ)Elj. Then, EScSc
term was weighted similarly relative to Erot and Elj consid-
ering them as a single term. At the last step, EScMc was
weighted relative to other terms. The final set of weights
was 0.13, 0.13, 0.33, 0.41 for wScSc, wScMc, wrot, wlj, respec-
tively. Additional optimization was applied such that each
weight was modified by small increment/decrement at a
time to identify a better nearby solution. However, the
improvement in side chain modelling accuracy was negli-
gible.

Contact score
The contact score [49] was used to evaluate the accuracy
of ScSc and ScMc contact prediction. First, all ScSc and
ScMc atom-atom contacts were determined in the native
protein structure. Two atoms were considered to be in
contact if the distance between their centers was less than
sum of van der Waals radii plus 1 Å. The van der Waals
radii used in the calculation were 1.548 Å for C, 1.348 Å
for O, 1.400 Å for N, and 1.808 Å for S. Then contacts
were calculated in the modelled structure. Those that had
equivalent contacts in the native structure were given a
score. If the contact in the modelled structure was
between 0.125 Å further apart and 0.0675 Å closer than
the equivalent contact in the native structure, a score of 4
was assigned. If the contact did not fall within this inter-
val but was within the next interval 0.25 Å/0.125 Å, a
score of 3 was assigned and, further on, a score of 2 for
0.5 Å/0.25 Å interval, a score of 1 for 1 Å/0.5 Å interval.
Total score was divided by the number of native contacts
and multiplied by 25 to scale it from 0 to 100.
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