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Abstract
Background: The nucleosome is the fundamental packing unit of DNAs in eukaryotic cells. Its detailed positioning on 
the genome is closely related to chromosome functions. Increasing evidence has shown that genomic DNA sequence 
itself is highly predictive of nucleosome positioning genome-wide. Therefore a fast software tool for predicting 
nucleosome positioning can help understanding how a genome's nucleosome organization may facilitate genome 
function.

Results: We present a duration Hidden Markov model for nucleosome positioning prediction by explicitly modeling 
the linker DNA length. The nucleosome and linker models trained from yeast data are re-scaled when making 
predictions for other species to adjust for differences in base composition. A software tool named NuPoP is developed 
in three formats for free download.

Conclusions: Simulation studies show that modeling the linker length distribution and utilizing a base composition 
re-scaling method both improve the prediction of nucleosome positioning regarding sensitivity and false discovery 
rate. NuPoP provides a user-friendly software tool for predicting the nucleosome occupancy and the most probable 
nucleosome positioning map for genomic sequences of any size. When compared with two existing methods, NuPoP 
shows improved performance in sensitivity.

Background
Most eukaryotic genomic DNA is wrapped in
nucleosomes, which occlude and strongly distort the
wrapped DNA. Accumulating evidence shows that the
DNA sequence itself is highly predictive of nucleosome
positioning in vivo [1-7], and that nucleosome position-
ing is closely related to chromosome functions [1,8-11]. A
fast software tool for predicting nucleosome positioning
is highly desirable.

Several statistical methods for nucleosome positioning
prediction have been proposed in the literature. In [2] a
method was proposed based on cross-correlation with a
nucleosome DNA sequence signature. In [1] a Markov
model was used together with consideration of steric
exclusion and thermodynamic equilibrium. In [3], a sup-
port vector machine (SVM) was trained based on the dif-
ferential k-mer usage between nucleosome and linker

DNAs. In [4], the authors proposed an N-score model to
discriminate nucleosome and linker DNAs using wavelet
energies as covariates in a logistic regression model. In
[5], a web-interface called "nuScore" for estimation of the
affinity of histone core to DNA and prediction of
nucleosome positioning was developed based on the
DNA deformation energy score. In [6,7], the model from
[1] was improved by incorporation of differential k-mer
usage (most notably, poly(dA:dT) tracts, which are
strongly disfavored by nucleosomes). This model can be
further improved by accounting for nucleosome-
nucleosome interaction [12].

While the nucleosomal features are universal, eukary-
otic genomes vary in nucleosomal repeat length [13] and
base composition. The nucleosomal repeat length is dic-
tated by the length distribution of linker DNAs that sepa-
rate neighboring nucleosomes, and it determines the
overall nucleosome density in the chromatin fiber. The
contribution of this paper is a duration Hidden Markov
Model and a software tool called NuPoP for genome-
wide nucleosome positioning prediction. We show that
incorporation of linker length information can achieve
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better sensitivity in prediction. In addition, we propose a
re-scaling method to adjust for base composition varia-
tion when using yeast models to make predictions for
other species. A relatively superior performance of this
approach is established by comparing it with other exist-
ing tools.

Methods
Model
The hidden Markov model (HMM) has been known for
decades. An excellent and famous tutorial is Rabiner's
1989 paper [14], in which the model, algorithms, and
applications were carefully and thoroughly reviewed. A
conventional HMM implicitly assumes a geometric dura-
tion distribution for each state, which can be wrong in
real applications. Modeling the explicit duration of each
state can improve the prediction of HMMs (e.g., [14-17]).
We model each chromosomal DNA sequence with a
duration hidden Markov model (dHMM) of two oscillat-
ing states: nucleosome (N) and linker (L), where the
nucleosome state has a fixed length of 147 bp, and the
linker state has a variable length. We assume that at the
end of each state, the chain must transit to the other state;
additionally, a complete chromatin sequence must start
with and end in a linker state. We trained a 4th order
time-dependent Markov chain for the the N state, and a
homogeneous 4th order Markov chain for the L state to
distinguish the k-mer usage preferences for k up to 5
between the nucleosome and linker states as shown in
other methods, e.g., [3,6] (see below for details).

Let e = e1, ..., e147 be a nucleosome DNA sequence. Let
PN be the probability of observing e as a nucleosome,
computed as the product of probabilities for both Watson
and Crick strands under the 4th order Markov Chain
model. We assume that the linker DNA length of a given
species has an unknown distribution FL(k) defined for k =
1, ..., τ L (the maximum linker length we allow). An
observed linker DNA sequence e = e1, ..., ek carries two
pieces of information, the length is k bp, and given which,
the emitted letters are e1, ..., ek. Let GL(e|k) denote the
homogeneous Markov chain model for the linker DNA
(again including both strands). Then observing e as a
linker DNA has probability

Suppose x = x1, ..., xn is a genomic DNA sequence of
length n, where xi = A/C/G/T. Let z = z1, ..., zn be the cor-
responding hidden state path, where zi = 1 if xi is covered
by a nucleosome state, and 0 otherwise. Suppose that the
path z = z1, ..., zn partitions x into k consecutive
nucleosome or linker state blocks, in which the

nucleosome blocks have a uniform length of 147 bp,
whereas the length of linker blocks may vary. We denote
these blocks as y = y+, ..., yB, and their state identification
as s = s1, ..., sB, where si = 1 if yi is nucleosome state, and 0
otherwise. The probability of observing (x, z) is given by

where π0(s1) and πe(sB) stand for the probabilities that
the chain initializes and ends with state s1 and sk respec-
tively, and I is an indicator function. Since we assume that
a complete chromatin sequence must start with and end
in a linker state, π0(s1 = 0) = πe(sB = 0) = 1. We define the
nucleosome occupancy at a specific position i, denoted oi,
as the posterior probability that zi = 1, i.e.,

We also define the histone binding affinity score at
position i as the log likelihood ratio for the region xi-73, ...
xi, ..., xi+73 to be a nucleosome vs. a linker, i.e.,

Given the models PN, GL and FL, the optimal path z can
be found by the standard Viterbi algorithm, and the
nucleosome occupancy score can be estimated using for-
ward and backward algorithms.

Data and model training
We utilized the 503,264 yeast nucleosome DNA reads
from 454 pyrosequencing published in [6] for model
training and assessment. Among 371,914 reads that each
were mapped to a unique region of the yeast genome, we
first selected reads of length between 146 and 149 bp. If
multiple such reads existed for the same nucleosome, we
selected the one with the highest BLAST score. The
resulting non-redundant set of 18,547 nucleosome
sequences were center aligned to train the nucleosome
model PN. The 4th order time dependent Markov chain
can be defined by the base composition at the first posi-
tion qN(x1), and the transitional probabilities qN(x2|x1),
qN(x3|x1, x2), qN(x4|x1, x2, x3), qN(xk|xk-4, xk-3, xk-2, xk-1),
for k = 5, ..., 147, xi = A/C/G/T, i = 1, ..., 147, where the
subscript k, i index the positions within a nucleosome.
These probabilities are trained using the corresponding
observed fractions or conditional fractions based on the
center alignment, with a three bp moving average (as
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explained in [1,18]). We further identified 8,090 reads-
free regions of length 7-500 bp to train the linker state
model GL. The 4th order homogeneous Markov model
for the linker DNAs can be completely defined by the sta-
tionary base composition qL(xi), and the transition prob-
abilities qL(xi|xi-1), qL(xi|xi-1, xi-2), qL(xi|xi-1, xi-2, xi-3),
qL(xi|xi-1, xi-2, xi-3, xi-4). By "homogeneous", we mean that
these probabilities are all constants as functions of i.
These probabilities were trained using their observed val-
ues as in the nucleosome model. For example, qL(xi|xi-1,
xi-2, xi-3, xi-4) was trained by calculating the fraction of
occurrences of transitions from any four letters to the
fifth letter in the selected putative linker DNA sequences.

Our initial nucleosome/linker model was trained using
the yeast data. A complication arises when predicting
nucleosomes for other species because organisms may
differ significantly in their DNA base composition. We
propose to scale up or down the probabilities in the
Markov models by a factor determined by the difference
of the base composition between the current species and
yeast. For example, in C. elegans, the fraction of A plus T
bases is 0.645 compared to 0.617 in yeast. For a specific
transition probability qN(A|....) at any specific
nucleosomal position defined for yeast, we scaled it up as
qN(A|....) × 0.645/0.617 for the corresponding transition
probability at that given position for C. elegans. Likewise
the transition probabilities for G/C will be scaled down
by a factor of 0.355/0.383.

All the re-scaled probabilities are then normalized. The
same re-scaling applies to the linker model. We shall use
simulations below to show that re-scaling improves pre-
diction regarding sensitivity and false discovery rate.
Using the trained nucleosome model (PN) and linker
model (GL), we further train the linker DNA length distri-
bution as follows. We assume that the linker DNAs in any
given species or cell type have a maximum length τ L =
500 bp.

This algorithm contains the following steps:
1. Initialize the algorithm with a uniform distribution

for FL(k) for k = 1, ... τ L where τ L is the maximum allow-
able linker length.

2. Use the forward and backward algorithm to obtain
the posterior expectation of FL(k) for each k. For a
sequence x = x1, ..., xn, let nk be the number of linker
DNAs of length k. Then

for k = 1, ..., τ L .

for k = 1, ..., τ L .

3. Update the empirical linker length distribution from
step 2 using a kernel smoothing method as follows:

where K is the standard Gaussian kernel and h is the
bandwidth parameter optimally chosen by the leave-one
cross-validation method as in [19].

4. Use the updated linker length distribution from step
3 to compute the nucleosome occupancy and optimal
positioning.

Compared to Viterbi training (i.e., using linker length
predicted from the Viterbi algorithm), using the posterior
expectation obtained in Eq. (1) combined with the kernel
method in Eq. (2) performs overwhelmingly better in
minimizing the summed square errors

 (unpublished work [17]). In the
developed software tool NuPoP, we have trained the
linker DNA length distributions for 11 different species
including human, mouse, rat, zebrafish, D. melanogaster,
C. elegans, S. cerevisiae, C. albicans, S. pombe; A. thaliana
and maize. The linker DNA length distribution (FL) for
each species has been trained by scanning the corre-
sponding genome sequences based on τ  L = 500. We
found that the re-scaled nucleosome and linker profiles,
together with the trained linker length distribution, not
only roughly recover the genome-wide base composi-
tions, but also the dinucleotide frequencies for different
species. The frequency of each single or di-nucleotide in
simulated genomes typically differs by ≤ 1% from that
observed in the corresponding real genomes (results not
shown). As different cell types from the same organism
(with the same genome) can exhibit quite different linker
DNA length distributions [13], a useful future refinement
would utilize high quality nucleosome maps for the given
cell type, when such data become available.

Software tools
We have developed a software tool called NuPoP, imple-
mented in three different formats: an R package tested for
Windows XP, Linux and Mac OS X; a stand-alone Fortran
program; and an NuPoP web server, all available from
http://nucleosome.stats.northwestern.edu. The R pack-
age is built upon the Fortran program. It provides addi-
tional handy functions to visualize the resulting Viterbi
(most probable nucleosome position map) and
nucleosome occupancy predictions. Both the R package
and Fortran program can handle a genomic sequence of
any length with a RAM demand <400 M bytes. The pre-
dicted results are stored locally in the working directory.
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The web server provides an interface through which the
user can submit their own sequence up to 500 K bp in
length for fast online prediction. When making a predic-
tion, the user is required to specify which species the
genomic sequence is from. If the species is not on the list,
NuPoP will calculate the base composition of the input
DNA sequence and then choose the nucleosome and
linker models from a species that has the most similar
base composition. An alternative model with a 1st order
time-dependent Markov chain for the nucleosome state
and a homogeneous 1st order Markov model for the
linker state, trained in the same way, is also implemented
in NuPoP as an option.

Results
Updating FL improves prediction

Updating the linker length distribution not only helps
recover the true nucleosome density, but also improves
prediction. We demonstrated this by simulation as fol-
lows. We simulated 10 genomic sequences with the 4th
and 1st order yeast models respectively, each containing
10,000 nucleosomes and 10,001 linkers. The linker DNA
length was simulated from a Normal distribution (μ =
100, σ = 20) and a Gamma distribution (α = 1, β = 1/40). If
a nucleosome is predicted within ±35 bp of a true
nucleosome, we define it as a correct positive prediction.
The rate of the correct positive prediction, referred to as
sensitivity, is defined as the percentage of the 10,000
nucleosomes that are correctly predicted. In addition, we
include the false discovery rate (FDR), defined as the frac-
tion of the predicted nucleosomes that reside > ±35 bp
away from any true nucleosomes, as the second measure
for model performance. In analogy to statistical hypothe-
sis testing, the sensitivity measures the power of predic-
tion, while the FDR measures the fraction of type I errors
in the positive claims. The results are presented in Table 1
and 2. In both cases, the linker length was initialized as a
uniform distribution with τ L = 200. Compared to the
Gamma distribution, the Normal distribution is relatively
flatter. Thereby updating the linker length distribution
did not significantly change the total number of predicted

nucleosomes (or nucleosome density). The sensitivity
increased on average by ~ 4-5% and the FDR dropped by
~ 5% after one update (for both the first and fourth order
models). Further updating continued to improve the pre-
diction until it stabilized after four iterations. In contrast,
the Gamma model is much more skewed. The uniform
linker length distribution resulted in an under-estimation
of the total number of nucleosomes. By four updatings,
the sensitivity increased by 8%, while FDR remained rela-
tively more stable.

We also observe that under the same setting and condi-
tion, the fourth order model performs slightly but uni-
formly better than the first order model in both
sensitivity and FDR. This is given that the true models are
known and we scan the sequence using the true models.
In theory, the first order Markov chain model is nested in
the fourth order model. Therefore if the true model is the
first order, a well trained fourth order model will have the
same prediction power as the first order model, but not
vice versa. Since training a higher order Markov chain
model requires more data, inadequate training can
undermine the prediction power.

Re-scaling vs. not Re-scaling
To illustrate the advantages of re-scaling, we re-scaled the
yeast profiles according to the base composition of the
maize genome (G/C scaling factor in maize is 1.2). Using
the re-scaled profiles we simulated 10 genomic sequences
that each contain 10,000 nucleosomes and 10,001 linkers.
The linker DNA length followed the same two distribu-
tions as in Table 1 and 2. We compare the prediction
results from the scaled and non-scaled yeast profiles in
Table 3 and 4. We found using the re-scaled ("correct")
profile yields a lower FDR than using the yeast profile. In
addition, updating the linker length under the correct
profile consistently improves the sensitivity and FDR
until prediction stabilizes. In contrast, while using the
yeast profile to scan the simulated maize-like genome, the
prediction drastically deteriorates as the linker length
updating proceeds. The same simulation was repeated on
other species including human and C. elegans, where the

Table 1: Updating linker length improves prediction - Normal linker length model

1st order 4th order

update total sensitivity(%) FDR(%) update sensitivity (%) FDR(%)

0 10215 (14) 72 (0.5) 30 (0.5) 0 10253 (15) 75 (0.4) 27 (0.4)

1 10210 (12) 76 (0.5) 25 (0.5) 1 10231 (18) 80 (0.5) 22 (0.5)

4 10120 (19) 83 (0.7) 18 (0.8) 4 10131 (16) 85 (0.6) 16 (0.7)

Total predictions, sensitivity, and false discovery rate (FDR) are the averages (standard deviations in parentheses) based on 10 repeated 
simulations. For each simulation a genomic sequence consisting of 10000 nucleosomes and 10001 linkers were simulated using the 1st and 
4th order yeast models. The linker length distribution was initialized as uniform on 1,..., 200, and was iteratively updated in the dHMM. Results 
are shown after 0, 1, and 4 updates.
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base composition is similar to yeast (A/T scaling factor is
0.96 for C. elegans, and 1.03 for human). Unsurprisingly,
the results from the scaled yeast profile were still better
than those from the original yeast profile in terms of both
sensitivity and FDR, while the difference is much smaller
than for the maize case (results not shown).

NuPoP vs. other software tools
We briefly assess the prediction performance of NuPoP
by comparing it with two existing methods: the N-score
method of [4] (results kindly provided by Dr. G. Yuan,
personal communication) and the Markov model/ther-
modynamic equilibrium method of [7] (to be called MM/
TE method below). As the exact genome-wide
nucleosome positioning map is unknown, we utilize the
371,914 454 high-throughput sequence reads to identify
well-defined nucleosomes. We first selected sequences of
length between 130-160 bp and constructed a reads-
based occupancy map. The reads-occupancy score at a
specific position is defined as the number of reads that
covered this position. Then we calculated the moving
average of this reads occupancy score using a 147 bp win-
dow. A sharp peak in the average occupancy curve indi-
cates a nucleosome with well-defined positioning.
Considering that the average linker DNA length is 20 bp

in yeast [13], we quantified the sharpness of the peak by
calculating the slope from the peak point to the up-/
down-stream 20 bp point on the average occupancy
curve. We set one condition for the peak to be selected as
the center of a nucleosome to be that the absolute value
of slope from either side should be > 0.01. Secondly, we
required that the peak height itself must be ≥ 1.9, i.e., a
well-defined nucleosome must be testified by at least two
well-overlapped reads. We chose the threshold value as
1.9 instead of 2.0 because the overlap of the two reads can
be less than 147 bp, resulting in a peak on the moving
average curve slightly lower than 2.0. With these criteria,
a total of 20,471 well-defined nucleosomes are selected
from the 16 chromosomes of yeast. A snapshot of a
region with many selected well-defined nucleosomes is
presented in Figure 1. Figure 2 provides a snapshot of
nucleosome occupancy predicted by NuPoP together
with the reads-occupancy.

We first assess the sensitivity of predictions from
NuPoP using the well-defined control set. If there is a
predicted nucleosome within ±k bp of any well-defined
nucleosomes (center to center), we count this as one cor-
rect prediction. We varied k from 5, 10, ... 70, 73 to inves-
tigate the sensitivity behavior at different precision
thresholds. The N-score model predicted 48,394

Table 2: Updating linker length improves prediction - Gamma linker length model

1st order 4th order

update total sensitivity(%) FDR(%) update total sensitivity (%) FDR(%)

0 8670 (22) 59 (0.7) 32 (0.7) 0 8896 (27) 64 (0.5) 28 (0.5)

1 9347 (25) 65 (0.8) 30 (0.7) 1 9550 (42) 70 (0.6) 26 (0.6)

4 9833 (39) 67 (0.7) 31 (0.7) 4 9880 (35) 72 (0.5) 27 (0.6)

Total predictions, sensitivity, and false discovery rate (FDR) are the averages (standard deviations in parentheses) based on 10 repeated 
simulations. For each simulation a genomic sequence consisting of 10000 nucleosomes and 10001 linkers were simulated using the 1st and 
4th order yeast models. The linker length distribution was initialized as uniform on 1,..., 200, and was iteratively updated in the dHMM. Results 
are shown after 0, 1, and 4 updates.

Table 3: Re-scaling models improves prediction - Normal linker length model

model update re-scaled total sensitivity (%) FDR(%) update total sensitivity (%) FDR(%)

1st 0 10266 (12) 71 (0.4) 31 (0.4) 0 13272 (24) 59 (0.5) 55 (0.4)

1 10279 (15) 76 (0.4) 27 (0.4) 1 14803 (25) 53 (0.4) 64 (0.3)

2 10240 (19) 79 (0.3) 23 (0.3) 2 15383 (23) 51 (0.4) 67 (0.3)

4th 0 10280 (16) 74 (0.3) 28 (0.3) 0 12785 (28) 63 (0.4) 51 (0.4)

1 10267 (20) 79 (0.4) 24 (0.5) 1 14065 (25) 58 (0.3) 59 (0.3)

2 10220 (24) 81 (0.4) 20 (0.5) 2 14591 (24) 55 (0.4) 62 (0.3)

Total predictions, sensitivity, and false discovery rate (FDR) are the averages (standard deviations in parentheses) based on 10 repeated 
simulations. For each simulation a maize-like genomic sequence consisting of 10000 nucleosomes and 10001 linkers were simulated using the 
re-scaled 1st and 4th order yeast models. Each sequence was scanned using the true models (re-scaled, 1st or 4th order) and the yeast models 
with an initial uniform linker length distribution on 1,..., 200. The results after 0, 1, 2 updates of linker length distribution are compared.
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nucleosomes. The current software tool for MM/TE
method does not provide Viterbi predictions, but only the
nucleosome occupancy scores. Therefore we calculated
the moving average of the occupancy score using a 147 bp
moving window. The resulting peaks were treated as the
centers of predicted nucleosomes. If two peaks reside
within 127 bp, we discarded the one with smaller moving
average of occupancy score. This procedure identified
43,979 predicted nucleosomes (if we had required two
nucleosomes to be 147 bp away, even fewer nucleosomes
would have been identified). Likewise, using the occu-

pancy scores from NuPoP, we identified 52,327 and
51,380 predicted nucleosomes under the 4th and 1st
order models respectively. In Figure 3a, we compare the
sensitivity estimates from the 4th order model of NuPoP
with the N-score and MM/TE methods at different
threshold values of prediction accuracy (the fourth order
model from NuPoP performs better, but very slightly,
than the first order model. Hence the latter was omitted
in Figure 3 for better presentation). As the sensitivity
tends to increase with an increase in the total predictions,
we further selected 43,979 and 48,394 best predictions

Table 4: Re-scaling models improves prediction - Gamma linker length mode l

model update re-scaled total sensitivity (%) FDR(%) update total sensitivity (%) FDR(%)

1st 0 8746 (28) 60 (0.7) 31 (0.6) 0 10640 (19) 70 (0.3) 35 (0.3)

1 9471 (42) 67 (0.7) 30 (0.6) 1 11513 (14) 60 (0.6) 48 (0.6)

2 9787 (38) 68 (0.5) 30 (0.4) 2 11812 (18) 55 (0.4) 53 (0.3)

4th 0 8886 (18) 63 (0.3) 29 (0.4) 0 10461 (25) 73 (0.7) 30 (0.7)

1 9533 (26) 70 (0.8) 27 (0.8) 1 11190 (32) 66 (0.7) 41 (0.7)

2 9775 (33) 72 (0.8) 27 (0.9) 2 11443 (26) 63 (0.5) 45 (0.5)

Total predictions, sensitivity, and false discovery rate (FDR) are the averages (standard deviations in parentheses) based on 10 repeated 
simulations. For each simulation a maize-like genomic sequence consisting of 10000 nucleosomes and 10001 linkers were simulated using the 
re-scaled 1st and 4th order yeast models. Each sequence was scanned using the true models (re-scaled, 1st or 4th order) and the yeast models 
with an initial uniform linker length distribution on 1,..., 200. The results after 0, 1, 2 updates of linker length distribution are compared.

Figure 1 A plot of the experimentally defined reads occupancy score (red curve) for a region of yeast chromosome 4 showing the selected 
well-defined nucleosomes (grey shaded bars).
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from NuPoP model (here "best" is in the sense of the larg-
est sum of occupancies over 147 bp) to compare with the
N-score method and in Figure 3b and 3c respectively.

The sensitivity results suggest that the predictions from
NuPoP outperforms the other two methods in two
senses. Firstly, the sensitivity from NuPoP is 4.9-8.3%
higher than the other two methods at different threshold
values (Figure 3a). Secondly, while controlling the total
predictions to be the same, NuPoP has ~ 3.2-5.3% higher
sensitivity than the MM/TE method (Figure 3b), when
the precision threshold is ≤ ±35. As the precision thresh-
old gets less stringent, the difference attenuates and even-
tually vanishes. The contrast between NuPoP and the N-
score method is even larger as shown in Figure 3c.

As a further comparison, we computed the predictions
of the dHMM method under a uniform linker length dis-
tribution defined on 1, 2,..., 500. This method predicted
48,334 nucleosomes under the 4th order models, achiev-
ing a sensitivity 3.0-6.6% higher than the MM/TE method
(Figure 3a). When controlling the total predictions to be
the same as MM/TE method or N-score method, the
resulting sensitivity curve almost perfectly overlaps with
that from NuPoP. Therefore we omitted these results
from Figure 3b and 3c.

One could further attempt to evaluate the false positive
rate (FPR), measuring the fraction of linker regions that
were falsely classified as nucleosome regions (or similarly
the false discovery rate, FDR). This task requires well-
defined linker regions. A problem, however, is that the
average length of linker DNAs in yeast (20 bp; [13]) is

smaller than the dispersion in lengths of the nucleosome
DNAs as isolated biochemically (which is often 30-50 bp
full width at half maximum, notwithstanding that the
nucleosome as defined crystallographically has precisely
147 bp of DNA). Thus existing nucleosome maps lack the
precision needed to define such short linker DNAs.
Moreover, various sampling biases such as the DNA
sequence preferences of the micrococcal nuclease used to
liberate nucleosomes biochemically (which preferentially
cleaves A/T rich regions) could yield longer genomic
regions that are free of recovered nucleosome DNA reads
even if they are actually nucleosome occupied [20].
Attempts to evaluate the FPR given these problems in the
data could result in misleading conclusions. For these
reasons, FPR evaluation is not pursued in this paper.

Discussion
The duration Hidden Markov model proposed in this
paper is a generic model for the oscillating structure of
nucleosome and linker DNAs in chromatin fiber. The
Markov models can be replaced by any other models for
the nucleosome and linker states. The kernel method for
linker length training is nonparametric and typically
robust. We showed in the simulation that updating the
linker length distribution iteratively improves sensitivity
and FDR in prediction if appropriate nucleosome and
linker models are used. In particular, the first iteration
often achieves the most pronounced improvement. In
contrast inappropriate nucleosome and linker models
could lead to the opposite outcome, as shown in the sim-

Figure 2 A snapshot of predicted nucleosome occupancy from NuPoP (shaded grey) compared with the experimentally obtained reads-
occupancy (red).
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ulation studies (Table 3 and Table 4). In reality, the
genomic DNAs are complicated by their biological func-
tions. The models trained based on typical nucleosomes
or linkers may not well fit some special genomic regions
like repeated elements. To avoid possible risks due to
such complications, we trained the linker length distribu-
tion less greedily by using only one iteration in NuPoP.

Limitations may still exist in the model training and
assessment used in this study. The MNase is known to
have strong preference to cleave dinucleotides containing
only A/T [21]. Consequently the MNase-mapped
nucleosome sequences can be systematically biased in
some regions. This bias could undermine the prediction
power because of the dampened signal in the trained
nucleosome model. The systematic bias may also exist in
the well-defined nucleosomes, causing inaccuracy in sen-
sitivity estimation. A better map of nucleosomes is highly
desirable for both purposes. For species other than yeast,

we currently lack high-quality genome-wide nucleosome
sequence data (e.g., like the 454 reads) for model training
and model validation. The advantages of the re-scaling
method shown using simulation in this paper need to be
further assessed once such high-quality data becomes
available. Moreover, the results from different methods in
this paper were all based on the default settings. The N-
score method was originally trained based on a much
smaller set of nucleosome and linker sequences. A better
training using a larger set could improve this method's
predictions. In addition, different settings in the N-score
or MM/TE methods can lead to different predictions,
which we did not further investigate here. Finally, the
software for MM/TE method only provides the occu-
pancy score. Different ways to call a predicted
nucleosome based on the occupancy score might lead to
different conclusions.

Finally, we address the question of which subset of the
available 454 reads data might best be used for training
the nucleosome model. In NuPoP, we trained the
nucleosome model using selected non-redundant
nucleosome reads of length within a short range (146-149
bp), to retain strong high resolution nucleosome
sequence signatures, e.g., the _10 bp-periodic dinucle-
otide signals. As comparisons, we trained two additional
nucleosome models: one using the selected non-redun-
dant reads of length 122-177 bp (retaining the non-
redundancy but yielding far more training data), and the
other using all reads of length 122-177 bp. The resulting
models both contain the k-mer usage information that
distinguishes nucleosomes from linkers (e.g., [3,4]), while
the dinucleotide signals in these models are much weaker
due to poor alignment of these reads. Furthermore, as the
reads count at a nucleosome site is heavily biased by the
G/C content due to MNase specificity and other effects in
the experiment, the model trained from the redundant
reads tends to be over-enriched in G/C. When combined
with the linker model from NuPoP, the two alternative
nucleosome models yielded comparable sensitivity as
NuPoP in predicting the approximate positioning of
nucleosomes, assessed based on the 20,471 well-defined
nucleosomes used above. This comparison, however, is
not sensitive to spatial precision of the predictions.
Therefore, we asked further, given that a nucleosome is
predicted within ±73 of a true nucleosome, which model
predicts the location more accurately? To investigate this,
we simulated genomic sequences using the nucleosome
and linker models from NuPoP. We compared the predic-
tion from the three models and found that the true model
with strong signals achieves much better prediction accu-
racy than the two alternative models. For example, 16.1%
of the predictions from the true model were prefect (with
0 bp offset), compared to 8.7% and 5.9% respectively from
the other two models (results not shown).

Figure 3 Comparing sensitivity of NuPoP predictions with exist-
ing methods. The sensitivity is assessed based on 20,471 well-defined 
nucleosomes from 454 nucleosomes reads. We call a prediction cor-
rect if a nucleosome is predicted within +/- k bp distance (X-axis) of a 
well-defined nucleosome (center to center) for k = 5 to 73. (a) Sensitiv-
ity plot of NuPoP (black) compared with N-score method (blue), MM/
TE method (red), and the duration Hidden Markov Model using a uni-
form distribution on 1,...,500 (pink). The random expectation curve is 
not calculated because the total number of predictions varies in differ-
ent methods. (b) Sensitivity plot of NuPoP (black) compared with MM/
TE method (red) and random expectation (green) while controlling the 
total predictions to be the same as MM/TE method. Green: random ex-
pectation. (c) Sensitivity plot of NuPoP (black) compared with N-score 
method (red) and random expectation (green) while controlling the 
total predictions to be the same as N-score method.
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Conclusions
The dHMM model proposed in this paper is effective in
characterizing the oscillating structure of nucleosome
and linker DNAs in chromatin fiber. Explicit modeling of
linker length improves the prediction of nucleosome
positioning regarding sensitivity. The developed software
tool NuPoP provides a user-friendly interface for predict-
ing nucleosome occupancy and the most probable
nucleosomes positioning map genome-wide.

Availability and requirements
NuPoP software tools are freely available from http://
nucleosome.stats.northwestern.edu. The R package shall
be made available through bioconductor http://www.bio-
conductor.org upon publication. To run the NuPoP For-
tran stand-alone program, a Fortran compiler is required.
For the NuPoP R package, an R version later than 2.9 is
required.
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